1
|
Tyanova S, Cox J. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. Methods Mol Biol 2018; 1711:133-148. [PMID: 29344888 DOI: 10.1007/978-1-4939-7493-1_7] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mass spectrometry-based proteomics is a continuously growing field marked by technological and methodological improvements. Cancer proteomics is aimed at pursuing goals such as accurate diagnosis, patient stratification, and biomarker discovery, relying on the richness of information of quantitative proteome profiles. Translating these high-dimensional data into biological findings of clinical importance necessitates the use of robust and powerful computational tools and methods. In this chapter, we provide a detailed description of standard analysis steps for a clinical proteomics dataset performed in Perseus, a software for functional analysis of large-scale quantitative omics data.
Collapse
|
|
7 |
373 |
2
|
Piñeiro-Yáñez E, Reboiro-Jato M, Gómez-López G, Perales-Patón J, Troulé K, Rodríguez JM, Tejero H, Shimamura T, López-Casas PP, Carretero J, Valencia A, Hidalgo M, Glez-Peña D, Al-Shahrour F. PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data. Genome Med 2018; 10:41. [PMID: 29848362 PMCID: PMC5977747 DOI: 10.1186/s13073-018-0546-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Large-sequencing cancer genome projects have shown that tumors have thousands of molecular alterations and their frequency is highly heterogeneous. In such scenarios, physicians and oncologists routinely face lists of cancer genomic alterations where only a minority of them are relevant biomarkers to drive clinical decision-making. For this reason, the medical community agrees on the urgent need of methodologies to establish the relevance of tumor alterations, assisting in genomic profile interpretation, and, more importantly, to prioritize those that could be clinically actionable for cancer therapy. RESULTS We present PanDrugs, a new computational methodology to guide the selection of personalized treatments in cancer patients using the variant lists provided by genome-wide sequencing analyses. PanDrugs offers the largest database of drug-target associations available from well-known targeted therapies to preclinical drugs. Scoring data-driven gene cancer relevance and drug feasibility PanDrugs interprets genomic alterations and provides a prioritized evidence-based list of anticancer therapies. Our tool represents the first drug prescription strategy applying a rational based on pathway context, multi-gene markers impact and information provided by functional experiments. Our approach has been systematically applied to TCGA patients and successfully validated in a cancer case study with a xenograft mouse model demonstrating its utility. CONCLUSIONS PanDrugs is a feasible method to identify potentially druggable molecular alterations and prioritize drugs to facilitate the interpretation of genomic landscape and clinical decision-making in cancer patients. Our approach expands the search of druggable genomic alterations from the concept of cancer driver genes to the druggable pathway context extending anticancer therapeutic options beyond already known cancer genes. The methodology is public and easily integratable with custom pipelines through its programmatic API or its docker image. The PanDrugs webtool is freely accessible at http://www.pandrugs.org .
Collapse
|
research-article |
7 |
49 |
3
|
Vlachavas E, Pilalis E, Papadodima O, Koczan D, Willis S, Klippel S, Cheng C, Pan L, Sachpekidis C, Pintzas A, Gregoriou V, Dimitrakopoulou-Strauss A, Chatziioannou A. Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape. Comput Struct Biotechnol J 2019; 17:177-185. [PMID: 30809322 PMCID: PMC6374701 DOI: 10.1016/j.csbj.2019.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Transcriptomic profiling has enabled the neater genomic characterization of several cancers, among them colorectal cancer (CRC), through the derivation of genes with enhanced causal role and informative gene sets. However, the identification of small-sized gene signatures, which can serve as potential biomarkers in CRC, remains challenging, mainly due to the great genetic heterogeneity of the disease. METHODS We developed and exploited an analytical framework for the integrative analysis of CRC datasets, encompassing transcriptomic data and positron emission tomography (PET) measurements. Profiling data comprised two microarray datasets, pertaining biopsy specimen from 30 untreated patients with primary CRC, coupled by their F-18-Fluorodeoxyglucose (FDG) PET values, using tracer kinetic analysis measurements. The computational framework incorporates algorithms for semantic processing, multivariate analysis, data mining and dimensionality reduction. RESULTS Transcriptomic and PET data feature sets, were evaluated for their discrimination performance between primary colorectal adenocarcinomas and adjacent normal mucosa. A composite signature was derived, pertaining 12 features: 7 genes and 5 PET variables. This compact signature manifests superior performance in classification accuracy, through the integration of gene expression and PET data. CONCLUSIONS This work represents an effort for the integrative, multilayered, signature-oriented analysis of CRC, in the context of radio-genomics, inferring a composite signature with promising results for patient stratification.
Collapse
Key Words
- 18F-FDG PET
- ACADM, Acyl-Coenzyme A Dehydrogenase
- AUC, Area Under the Curve
- CCT7, Chaperonin Containing TCP1 Subunit 7
- CD44, CD44 Molecule (Indian Blood Group)
- CRC, Colorectal cancer
- Colorectal cancer
- DE, Differentially Expressed
- FD, Fractal Dimension
- FDG, F-18-Fluorodeoxyglucose
- GDC, Genomics Data Commons
- GEO, Gene Expression Omnibus
- GSTP1, Glutathione S-Transferase Pi 1
- KIT, Proto-Oncogene Receptor Tyrosine Kinase
- Lasso, least absolute shrinkage and selection operator
- MFA, Multiple Factor Analysis
- Microarray analysis
- PCs, Principal Components
- PET, Positron Emission Tomography
- ROC, Receiver-operator Characteristic curve
- Radiogenomics
- SUV, Standardized Uptake Value
- TCGA
- TCGA-COAD, The Cancer Genome Atlas-Colon Adenocarcinoma
- Translational bioinformatics
Collapse
|
research-article |
6 |
48 |
4
|
Tenenbaum JD. Translational Bioinformatics: Past, Present, and Future. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:31-41. [PMID: 26876718 PMCID: PMC4792852 DOI: 10.1016/j.gpb.2016.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 02/04/2023]
Abstract
Though a relatively young discipline, translational bioinformatics (TBI) has become a key component of biomedical research in the era of precision medicine. Development of high-throughput technologies and electronic health records has caused a paradigm shift in both healthcare and biomedical research. Novel tools and methods are required to convert increasingly voluminous datasets into information and actionable knowledge. This review provides a definition and contextualization of the term TBI, describes the discipline’s brief history and past accomplishments, as well as current foci, and concludes with predictions of future directions in the field.
Collapse
|
Review |
9 |
27 |
5
|
A novel mixed integer programming for multi-biomarker panel identification by distinguishing malignant from benign colorectal tumors. Methods 2015; 83:3-17. [PMID: 25980368 DOI: 10.1016/j.ymeth.2015.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/20/2023] Open
Abstract
Multi-biomarker panels can capture the nonlinear synergy among biomarkers and they are important to aid in the early diagnosis and ultimately battle complex diseases. However, identification of these multi-biomarker panels from case and control data is challenging. For example, the exhaustive search method is computationally infeasible when the data dimension is high. Here, we propose a novel method, MILP_k, to identify serum-based multi-biomarker panel to distinguish colorectal cancers (CRC) from benign colorectal tumors. Specifically, the multi-biomarker panel detection problem is modeled by a mixed integer programming to maximize the classification accuracy. Then we measured the serum profiling data for 101 CRC patients and 95 benign patients. The 61 biomarkers were analyzed individually and further their combinations by our method. We discovered 4 biomarkers as the optimal small multi-biomarker panel, including known CRC biomarkers CEA and IL-10 as well as novel biomarkers IMA and NSE. This multi-biomarker panel obtains leave-one-out cross-validation (LOOCV) accuracy to 0.7857 by nearest centroid classifier. An independent test of this panel by support vector machine (SVM) with threefold cross validation gets an AUC 0.8438. This greatly improves the predictive accuracy by 20% over the single best biomarker. Further extension of this 4-biomarker panel to a larger 13-biomarker panel improves the LOOCV to 0.8673 with independent AUC 0.8437. Comparison with the exhaustive search method shows that our method dramatically reduces the searching time by 1000-fold. Experiments on the early cancer stage samples reveal two panel of biomarkers and show promising accuracy. The proposed method allows us to select the subset of biomarkers with best accuracy to distinguish case and control samples given the number of selected biomarkers. Both receiver operating characteristic curve and precision-recall curve show our method's consistent performance gain in accuracy. Our method also shows its advantage in capturing synergy among selected biomarkers. The multi-biomarker panel far outperforms the simple combination of best single features. Close investigation of the multi-biomarker panel illustrates that our method possesses the ability to remove redundancy and reveals complementary biomarker combinations. In addition, our method is efficient and can select multi-biomarker panel with more than 5 biomarkers, for which the exhaustive methods fail. In conclusion, we propose a promising model to improve the clinical data interpretability and to serve as a useful tool for other complex disease studies. Our small multi-biomarker panel, CEA, IL-10, IMA, and NSE, may provide insights on the disease status of colorectal diseases. The implementation of our method in MATLAB is available via the website: http://doc.aporc.org/wiki/MILP_k.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
19 |
6
|
Denny JC. Surveying Recent Themes in Translational Bioinformatics: Big Data in EHRs, Omics for Drugs, and Personal Genomics. Yearb Med Inform 2014; 9:199-205. [PMID: 25123743 PMCID: PMC4287076 DOI: 10.15265/iy-2014-0015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To provide a survey of recent progress in the use of large-scale biologic data to impact clinical care, and the impact the reuse of electronic health record data has made in genomic discovery. METHOD Survey of key themes in translational bioinformatics, primarily from 2012 and 2013. RESULT This survey focuses on four major themes: the growing use of Electronic Health Records (EHRs) as a source for genomic discovery, adoption of genomics and pharmacogenomics in clinical practice, the possible use of genomic technologies for drug repurposing, and the use of personal genomics to guide care. CONCLUSION Reuse of abundant clinical data for research is speeding discovery, and implementation of genomic data into clinical medicine is impacting care with new classes of data rarely used previously in medicine.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
15 |
7
|
Felmeister AS, Masino AJ, Rivera TJ, Resnick AC, Pennington JW. The biorepository portal toolkit: an honest brokered, modular service oriented software tool set for biospecimen-driven translational research. BMC Genomics 2016; 17 Suppl 4:434. [PMID: 27535360 PMCID: PMC5001241 DOI: 10.1186/s12864-016-2797-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND High throughput molecular sequencing and increased biospecimen variety have introduced significant informatics challenges for research biorepository infrastructures. We applied a modular system integration approach to develop an operational biorepository management system. This method enables aggregation of the clinical, specimen and genomic data collected for biorepository resources. METHODS We introduce an electronic Honest Broker (eHB) and Biorepository Portal (BRP) open source project that, in tandem, allow for data integration while protecting patient privacy. This modular approach allows data and specimens to be associated with a biorepository subject at any time point asynchronously. This lowers the bar to develop new research projects based on scientific merit without institutional review for a proposal. RESULTS By facilitating the automated de-identification of specimen and associated clinical and genomic data we create a future proofed specimen set that can withstand new workflows and be connected to new associated information over time. Thus facilitating collaborative advanced genomic and tissue research. CONCLUSIONS As of Janurary of 2016 there are 23 unique protocols/patient cohorts being managed in the Biorepository Portal (BRP). There are over 4000 unique subject records in the electronic honest broker (eHB), over 30,000 specimens accessioned and 8 institutions participating in various biobanking activities using this tool kit. We specifically set out to build rich annotation of biospecimens with longitudinal clinical data; BRP/REDCap integration for multi-institutional repositories; EMR integration; further annotated specimens with genomic data specific to a domain; build application hooks for experiments at the specimen level integrated with analytic software; while protecting privacy per the Office of Civil Rights (OCR) and HIPAA.
Collapse
|
research-article |
9 |
11 |
8
|
Li H, Pouladi N, Achour I, Gardeux V, Li J, Li Q, Zhang HH, Martinez FD, 'Skip' Garcia JGN, Lussier YA. eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs. J Biomed Inform 2015; 58:226-234. [PMID: 26524128 DOI: 10.1016/j.jbi.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 01/19/2023]
Abstract
The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
9 |
9
|
Marín M, Esteban FJ, Ramírez-Rodrigo H, Ros E, Sáez-Lara MJ. An integrative methodology based on protein-protein interaction networks for identification and functional annotation of disease-relevant genes applied to channelopathies. BMC Bioinformatics 2019; 20:565. [PMID: 31718537 PMCID: PMC6849233 DOI: 10.1186/s12859-019-3162-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Biologically data-driven networks have become powerful analytical tools that handle massive, heterogeneous datasets generated from biomedical fields. Protein-protein interaction networks can identify the most relevant structures directly tied to biological functions. Functional enrichments can then be performed based on these structural aspects of gene relationships for the study of channelopathies. Channelopathies refer to a complex group of disorders resulting from dysfunctional ion channels with distinct polygenic manifestations. This study presents a semi-automatic workflow using protein-protein interaction networks that can identify the most relevant genes and their biological processes and pathways in channelopathies to better understand their etiopathogenesis. In addition, the clinical manifestations that are strongly associated with these genes are also identified as the most characteristic in this complex group of diseases. Results In particular, a set of nine representative disease-related genes was detected, these being the most significant genes in relation to their roles in channelopathies. In this way we attested the implication of some voltage-gated sodium (SCN1A, SCN2A, SCN4A, SCN4B, SCN5A, SCN9A) and potassium (KCNQ2, KCNH2) channels in cardiovascular diseases, epilepsies, febrile seizures, headache disorders, neuromuscular, neurodegenerative diseases or neurobehavioral manifestations. We also revealed the role of Ankyrin-G (ANK3) in the neurodegenerative and neurobehavioral disorders as well as the implication of these genes in other systems, such as the immunological or endocrine systems. Conclusions This research provides a systems biology approach to extract information from interaction networks of gene expression. We show how large-scale computational integration of heterogeneous datasets, PPI network analyses, functional databases and published literature may support the detection and assessment of possible potential therapeutic targets in the disease. Applying our workflow makes it feasible to spot the most relevant genes and unknown relationships in channelopathies and shows its potential as a first-step approach to identify both genes and functional interactions in clinical-knowledge scenarios of target diseases. Methods An initial gene pool is previously defined by searching general databases under a specific semantic framework. From the resulting interaction network, a subset of genes are identified as the most relevant through the workflow that includes centrality measures and other filtering and enrichment databases.
Collapse
|
Systematic Review |
6 |
7 |
10
|
Lakshmanan VK, Ojha S, Jung YD. A modern era of personalized medicine in the diagnosis, prognosis, and treatment of prostate cancer. Comput Biol Med 2020; 126:104020. [PMID: 33039808 DOI: 10.1016/j.compbiomed.2020.104020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
The present era is witnessing rapid advancements in the field of medical informatics and modern healthcare management. The role of translational bioinformatics (TBI), an infant discipline in the field of medical informatics, is pivotal in this revolution. The development of high-throughput technologies [e.g., microarrays, next-generation sequencing (NGS)] has propelled TBI to the next stage in this modern era of medical informatics. In this review, we assess the promising translational outcomes of microarray- and NGS-based discovery of genes, proteins, micro RNAs, and other active biological compounds aiding in the diagnosis, prognosis, and therapy of prostate cancer (PCa) to improve treatment strategies at the localized and/or metastatic stages in patients. Several promising candidate biomarkers in circulating blood (miR-25-3p and miR-18b-5p), urine (miR-95, miR-21, miR-19a, and miR-19b), and prostatic secretions (miR-203) have been identified. AURKA and MYCN, novel candidate biomarkers, were found to be specifically expressed in neuroendocrine PCa. The use of BTNL2 gene mutations and inflammasomes as biomarkers in immune function-mediated, inherited PCa has also been elucidated based on NGS data. Although TBI discoveries can benefit clinical performance metrics, the translational potential and the in vivo performance of TBI outcomes need to be verified. In conclusion, TBI aids in the effective clinical management of PCa; furthermore, the fate of personalized/precision medicine mostly relies on the enhanced diagnostic, prognostic, and therapeutic potential of TBI.
Collapse
|
Review |
5 |
6 |
11
|
Leveraging concept-based approaches to identify potential phyto-therapies. J Biomed Inform 2013; 46:602-14. [PMID: 23665360 DOI: 10.1016/j.jbi.2013.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 02/04/2023]
Abstract
The potential of plant-based remedies has been documented in both traditional and contemporary biomedical literature. Such types of text sources may thus be sources from which one might identify potential plant-based therapies ("phyto-therapies"). Concept-based analytic approaches have been shown to uncover knowledge embedded within biomedical literature. However, to date there has been limited attention towards leveraging such techniques for the identification of potential phyto-therapies. This study presents concept-based analytic approaches for the retrieval and ranking of associations between plants and human diseases. Focusing on identification of phyto-therapies described in MEDLINE, both MeSH descriptors used for indexing and MetaMap inferred UMLS concepts are considered. Furthermore, the identification and ranking consider both direct (i.e., plant concepts directly correlated with disease concepts) and inferred (i.e., plant concepts associated with disease concepts based on shared signs and symptoms) relationships. Based on the two scoring methodologies used in this study, it was found that a Vector Space Model approach outperformed probabilistic reliability based inferences. An evaluation of the approach is provided based on therapeutic interventions catalogued in both ClinicalTrials.gov and NDF-RT. The promising findings from this feasibility study highlight the challenges and applicability of concept-based analytic strategies for distilling phyto-therapeutic knowledge from text based knowledge sources like MEDLINE.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
5 |
12
|
Structural network analysis of biological networks for assessment of potential disease model organisms. J Biomed Inform 2013; 47:178-91. [PMID: 24211613 DOI: 10.1016/j.jbi.2013.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 08/08/2013] [Accepted: 10/21/2013] [Indexed: 01/10/2023]
Abstract
Model organisms provide opportunities to design research experiments focused on disease-related processes (e.g., using genetically engineered populations that produce phenotypes of interest). For some diseases, there may be non-obvious model organisms that can help in the study of underlying disease factors. In this study, an approach is presented that leverages knowledge about human diseases and associated biological interactions networks to identify potential model organisms for a given disease category. The approach starts with the identification of functional and interaction patterns of diseases within genetic pathways. Next, these characteristic patterns are matched to interaction networks of candidate model organisms to identify similar subsystems that have characteristic patterns for diseases of interest. The quality of a candidate model organism is then determined by the degree to which the identified subsystems match genetic pathways from validated knowledge. The results of this study suggest that non-obvious model organisms may be identified through the proposed approach.
Collapse
|
Journal Article |
12 |
5 |
13
|
Regan K, Payne PRO. From Molecules to Patients: The Clinical Applications of Translational Bioinformatics. Yearb Med Inform 2015; 10:164-9. [PMID: 26293863 PMCID: PMC4587059 DOI: 10.15265/iy-2015-005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE In order to realize the promise of personalized medicine, Translational Bioinformatics (TBI) research will need to continue to address implementation issues across the clinical spectrum. In this review, we aim to evaluate the expanding field of TBI towards clinical applications, and define common themes and current gaps in order to motivate future research. METHODS Here we present the state-of-the-art of clinical implementation of TBI-based tools and resources. Our thematic analyses of a targeted literature search of recent TBI-related articles ranged across topics in genomics, data management, hypothesis generation, molecular epidemiology, diagnostics, therapeutics and personalized medicine. RESULTS Open areas of clinically-relevant TBI research identified in this review include developing data standards and best practices, publicly available resources, integrative systemslevel approaches, user-friendly tools for clinical support, cloud computing solutions, emerging technologies and means to address pressing legal, ethical and social issues. CONCLUSIONS There is a need for further research bridging the gap from foundational TBI-based theories and methodologies to clinical implementation. We have organized the topic themes presented in this review into four conceptual foci - domain analyses, knowledge engineering, computational architectures and computation methods alongside three stages of knowledge development in order to orient future TBI efforts to accelerate the goals of personalized medicine.
Collapse
|
research-article |
10 |
4 |
14
|
The use of PanDrugs to prioritize anticancer drug treatments in a case of T-ALL based on individual genomic data. BMC Cancer 2019; 19:1005. [PMID: 31655559 PMCID: PMC6815385 DOI: 10.1186/s12885-019-6209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Acute T-cell lymphoblastic leukaemia (T-ALL) is an aggressive disorder derived from immature thymocytes. The variability observed in clinical responses on this type of tumours to treatments, the high toxicity of current protocols and the poor prognosis of patients with relapse or refractory make it urgent to find less toxic and more effective therapies in the context of a personalized medicine of precision. METHODS Whole exome sequencing and RNAseq were performed on DNA and RNA respectively, extracted of a bone marrow sample from a patient diagnosed with tumour primary T-ALL and double negative thymocytes from thymus control samples. We used PanDrugs, a computational resource to propose pharmacological therapies based on our experimental results, including lists of variants and genes. We extend the possible therapeutic options for the patient by taking into account multiple genomic events potentially sensitive to a treatment, the context of the pathway and the pharmacological evidence already known by large-scale experiments. RESULTS As a proof-of-principle we used next-generation-sequencing technologies (Whole Exome Sequencing and RNA-Sequencing) in a case of diagnosed Pro-T acute lymphoblastic leukaemia. We identified 689 disease-causing mutations involving 308 genes, as well as multiple fusion transcript variants, alternative splicing, and 6652 genes with at least one principal isoform significantly deregulated. Only 12 genes, with 27 pathogenic gene variants, were among the most frequently mutated ones in this type of lymphoproliferative disorder. Among them, 5 variants detected in CTCF, FBXW7, JAK1, NOTCH1 and WT1 genes have not yet been reported in T-ALL pathogenesis. CONCLUSIONS Personalized genomic medicine is a therapeutic approach involving the use of an individual's information data to tailor drug therapy. Implementing bioinformatics platform PanDrugs enables us to propose a prioritized list of anticancer drugs as the best theoretical therapeutic candidates to treat this patient has been the goal of this article. Of note, most of the proposed drugs are not being yet considered in the clinical practice of this type of cancer opening up the approach of new treatment possibilities.
Collapse
|
Case Reports |
6 |
4 |
15
|
Gout AM, Arunachalam S, Finkelstein DB, Zhang J. Data-driven approaches to advance research and clinical care for pediatric cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188571. [PMID: 34051287 DOI: 10.1016/j.bbcan.2021.188571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022]
Abstract
Pediatric cancer is a rare disease with a distinct etiology and mutational landscape compared with adult cancer. Multi-omics profiling of retrospective and prospective cohorts coupled with innovative computational analysis have been instrumental in uncovering mechanisms of tumorigenesis and drug resistance that are now informing pediatric cancer clinical therapy. In this review we present the major data resources of pediatric cancer and actionable insights into pediatric cancer etiology stemming from the identification of oncogenic gene fusions, mutational signature analysis, systems biology, cancer predisposition and survivorship studies - that have led to improved clinical diagnosis, discovery of new drug-targets, pharmacological therapy, and screening for genetic predisposition. Ultimately, integration of large-scale omics datasets generated through international collaboration is required to maximize the power of data-driven approaches to advance pediatric cancer research informing clinical therapy.
Collapse
|
Journal Article |
4 |
3 |
16
|
Bruggemann L, Hawthorne C, Samudrala R, Lopez-Campos GH. Linking Genome and Exposome: Computational Analysis of Human Variation in Chemical-Target Interactions. Stud Health Technol Inform 2020; 270:1331-1332. [PMID: 32570644 DOI: 10.3233/shti200427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growing amount of available public data repositories containing a plethora of rich chemical and biomedical information is enabling new in silico research avenues. In this project we aim to link human genome variations and the exposome applying in silico biomedical informatics approaches to analyse the potential effects of those variants in the interactions with different chemicals.
Collapse
|
|
5 |
|
17
|
Shahjahan, Dey JK, Dey SK. Translational bioinformatics approach to combat cardiovascular disease and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:221-261. [PMID: 38448136 DOI: 10.1016/bs.apcsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bioinformatics is an interconnected subject of science dealing with diverse fields including biology, chemistry, physics, statistics, mathematics, and computer science as the key fields to answer complicated physiological problems. Key intention of bioinformatics is to store, analyze, organize, and retrieve essential information about genome, proteome, transcriptome, metabolome, as well as organisms to investigate the biological system along with its dynamics, if any. The outcome of bioinformatics depends on the type, quantity, and quality of the raw data provided and the algorithm employed to analyze the same. Despite several approved medicines available, cardiovascular disorders (CVDs) and cancers comprises of the two leading causes of human deaths. Understanding the unknown facts of both these non-communicable disorders is inevitable to discover new pathways, find new drug targets, and eventually newer drugs to combat them successfully. Since, all these goals involve complex investigation and handling of various types of macro- and small- molecules of the human body, bioinformatics plays a key role in such processes. Results from such investigation has direct human application and thus we call this filed as translational bioinformatics. Current book chapter thus deals with diverse scope and applications of this translational bioinformatics to find cure, diagnosis, and understanding the mechanisms of CVDs and cancers. Developing complex yet small or long algorithms to address such problems is very common in translational bioinformatics. Structure-based drug discovery or AI-guided invention of novel antibodies that too with super-high accuracy, speed, and involvement of considerably low amount of investment are some of the astonishing features of the translational bioinformatics and its applications in the fields of CVDs and cancers.
Collapse
|
|
1 |
|
18
|
Tang T, Liu X, Wu R, Shen L, Ren S, Shen B. CTRR-ncRNA: A Knowledgebase for Cancer Therapy Resistance and Recurrence Associated Non-coding RNAs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:292-299. [PMID: 36265769 PMCID: PMC10626174 DOI: 10.1016/j.gpb.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cancer therapy resistance and recurrence (CTRR) are the dominant causes of death in cancer patients. Recent studies have indicated that non-coding RNAs (ncRNAs) can not only reverse the resistance to cancer therapy but also are crucial biomarkers for the evaluation and prediction of CTRR. Herein, we developed CTRR-ncRNA, a knowledgebase of CTRR-associated ncRNAs, aiming to provide an accurate and comprehensive resource for research involving the association between CTRR and ncRNAs. Compared to most of the existing cancer databases, CTRR-ncRNA is focused on the clinical characterization of cancers, including cancer subtypes, as well as survival outcomes and responses to personalized therapy of cancer patients. Information pertaining to biomarker ncRNAs has also been documented for the development of personalized CTRR prediction. A user-friendly interface and several functional modules have been incorporated into the database. Based on the preliminary analysis of genotype-phenotype relationships, universal ncRNAs have been found to be potential biomarkers for CTRR. The CTRR-ncRNA is a translation-oriented knowledgebase and it provides a valuable resource for mechanistic investigations and explainable artificial intelligence-based modeling. CTRR-ncRNA is freely available to the public at http://ctrr.bioinf.org.cn/.
Collapse
|
research-article |
2 |
|
19
|
Singh S, Pandey AK, Prajapati VK. From genome to clinic: The power of translational bioinformatics in improving human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:1-25. [PMID: 38448133 DOI: 10.1016/bs.apcsb.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Translational bioinformatics (TBI) has transformed healthcare by providing personalized medicine and tailored treatment options by integrating genomic data and clinical information. In recent years, TBI has bridged the gap between genome and clinical data because of significant advances in informatics like quantum computing and utilizing state-of-the-art technologies. This chapter discusses the power of translational bioinformatics in improving human health, from uncovering disease-causing genes and variations to establishing new therapeutic techniques. We discuss key application areas of bioinformatics in clinical genomics, such as data sources and methods used in translational bioinformatics, the impact of translational bioinformatics on human health, and how machine learning and artificial intelligence are being used to mine vast amounts of data for drug development and precision medicine. We also look at the problems, constraints, and ethical concerns connected with exploiting genomic data and the future of translational bioinformatics and its potential impact on medicine and human health. Ultimately, this chapter emphasizes the great potential of translational bioinformatics to alter healthcare and enhance patient outcomes.
Collapse
|
|
1 |
|