1
|
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020; 7:11. [PMID: 32169119 PMCID: PMC7068984 DOI: 10.1186/s40779-020-00240-0] [Citation(s) in RCA: 2009] [Impact Index Per Article: 401.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
An acute respiratory disease, caused by a novel coronavirus (SARS-CoV-2, previously known as 2019-nCoV), the coronavirus disease 2019 (COVID-19) has spread throughout China and received worldwide attention. On 30 January 2020, World Health Organization (WHO) officially declared the COVID-19 epidemic as a public health emergency of international concern. The emergence of SARS-CoV-2, since the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, marked the third introduction of a highly pathogenic and large-scale epidemic coronavirus into the human population in the twenty-first century. As of 1 March 2020, a total of 87,137 confirmed cases globally, 79,968 confirmed in China and 7169 outside of China, with 2977 deaths (3.4%) had been reported by WHO. Meanwhile, several independent research groups have identified that SARS-CoV-2 belongs to β-coronavirus, with highly identical genome to bat coronavirus, pointing to bat as the natural host. The novel coronavirus uses the same receptor, angiotensin-converting enzyme 2 (ACE2) as that for SARS-CoV, and mainly spreads through the respiratory tract. Importantly, increasingly evidence showed sustained human-to-human transmission, along with many exported cases across the globe. The clinical symptoms of COVID-19 patients include fever, cough, fatigue and a small population of patients appeared gastrointestinal infection symptoms. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Currently, there are few specific antiviral strategies, but several potent candidates of antivirals and repurposed drugs are under urgent investigation. In this review, we summarized the latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19, and discussed the current treatment and scientific advancements to combat the epidemic novel coronavirus.
Collapse
|
Review |
5 |
2009 |
2
|
Abstract
Globally, hepatitis C virus (HCV) has infected an estimated 130 million people, most of whom are chronically infected. HCV-infected people serve as a reservoir for transmission to others and are at risk for developing chronic liver disease, cirrhosis, and primary hepatocellular carcinoma (HCC). It has been estimated that HCV accounts for 27% of cirrhosis and 25% of HCC worldwide. HCV infection has likely been endemic in many populations for centuries. However, the wave of increased HCV-related morbidity and mortality that we are now facing is the result of an unprecedented increase in the spread of HCV during the 20th century. Two 20th century events appear to be responsible for this increase; the widespread availability of injectable therapies and the illicit use of injectable drugs.
Collapse
|
Topic Highlight |
18 |
829 |
3
|
Deplazes P, Rinaldi L, Alvarez Rojas CA, Torgerson PR, Harandi MF, Romig T, Antolova D, Schurer JM, Lahmar S, Cringoli G, Magambo J, Thompson RCA, Jenkins EJ. Global Distribution of Alveolar and Cystic Echinococcosis. ADVANCES IN PARASITOLOGY 2017; 95:315-493. [PMID: 28131365 DOI: 10.1016/bs.apar.2016.11.001] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses. Echinococcus multilocularis (causative agent of AE) is widely distributed in the northern hemisphere where it is typically maintained in a wild animal cycle including canids as definitive hosts and rodents as intermediate hosts. The species Echinococcus granulosus, Echinococcus ortleppi, Echinococcus canadensis and Echinococcus intermedius are the causative agents of CE with a worldwide distribution and a highly variable human disease burden in the different endemic areas depending upon human behavioural risk factors, the diversity and ecology of animal host assemblages and the genetic diversity within Echinococcus species which differ in their zoonotic potential and pathogenicity. Both AE and CE are regarded as neglected zoonoses, with a higher overall burden of disease for CE due to its global distribution and high regional prevalence, but a higher pathogenicity and case fatality rate for AE, especially in Asia. Over the past two decades, numerous studies have addressed the epidemiology and distribution of these Echinococcus species worldwide, resulting in better-defined boundaries of the endemic areas. This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology.
Collapse
|
Review |
8 |
623 |
4
|
Otter JA, Donskey C, Yezli S, Douthwaite S, Goldenberg SD, Weber DJ. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect 2016; 92:235-50. [PMID: 26597631 PMCID: PMC7114921 DOI: 10.1016/j.jhin.2015.08.027] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
Abstract
Viruses with pandemic potential including H1N1, H5N1, and H5N7 influenza viruses, and severe acute respiratory syndrome (SARS)/Middle East respiratory syndrome (MERS) coronaviruses (CoV) have emerged in recent years. SARS-CoV, MERS-CoV, and influenza virus can survive on surfaces for extended periods, sometimes up to months. Factors influencing the survival of these viruses on surfaces include: strain variation, titre, surface type, suspending medium, mode of deposition, temperature and relative humidity, and the method used to determine the viability of the virus. Environmental sampling has identified contamination in field-settings with SARS-CoV and influenza virus, although the frequent use of molecular detection methods may not necessarily represent the presence of viable virus. The importance of indirect contact transmission (involving contamination of inanimate surfaces) is uncertain compared with other transmission routes, principally direct contact transmission (independent of surface contamination), droplet, and airborne routes. However, influenza virus and SARS-CoV may be shed into the environment and be transferred from environmental surfaces to hands of patients and healthcare providers. Emerging data suggest that MERS-CoV also shares these properties. Once contaminated from the environment, hands can then initiate self-inoculation of mucous membranes of the nose, eyes or mouth. Mathematical and animal models, and intervention studies suggest that contact transmission is the most important route in some scenarios. Infection prevention and control implications include the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings.
Collapse
|
Review |
9 |
480 |
5
|
Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta 2020; 508:254-266. [PMID: 32474009 PMCID: PMC7256510 DOI: 10.1016/j.cca.2020.05.044] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global challenge. Despite intense research efforts worldwide, an effective vaccine and viable treatment options have eluded investigators. Therefore, infection prevention, early viral detection and identification of successful treatment protocols provide the best approach in controlling disease spread. In this review, current therapeutic options, preventive methods and transmission routes of COVID-19 are discussed.
Collapse
|
Review |
5 |
459 |
6
|
Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis 2019; 19:101. [PMID: 30704406 PMCID: PMC6357359 DOI: 10.1186/s12879-019-3707-y] [Citation(s) in RCA: 443] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
Although short-range large-droplet transmission is possible for most respiratory infectious agents, deciding on whether the same agent is also airborne has a potentially huge impact on the types (and costs) of infection control interventions that are required.The concept and definition of aerosols is also discussed, as is the concept of large droplet transmission, and airborne transmission which is meant by most authors to be synonymous with aerosol transmission, although some use the term to mean either large droplet or aerosol transmission.However, these terms are often used confusingly when discussing specific infection control interventions for individual pathogens that are accepted to be mostly transmitted by the airborne (aerosol) route (e.g. tuberculosis, measles and chickenpox). It is therefore important to clarify such terminology, where a particular intervention, like the type of personal protective equipment (PPE) to be used, is deemed adequate to intervene for this potential mode of transmission, i.e. at an N95 rather than surgical mask level requirement.With this in mind, this review considers the commonly used term of 'aerosol transmission' in the context of some infectious agents that are well-recognized to be transmissible via the airborne route. It also discusses other agents, like influenza virus, where the potential for airborne transmission is much more dependent on various host, viral and environmental factors, and where its potential for aerosol transmission may be underestimated.
Collapse
|
Review |
6 |
443 |
7
|
Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. ENVIRONMENT INTERNATIONAL 2016; 86:14-23. [PMID: 26479830 DOI: 10.1016/j.envint.2015.09.007] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 05/21/2023]
Abstract
Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change.
Collapse
|
Review |
9 |
397 |
8
|
van Duin D, Paterson DL. Multidrug-Resistant Bacteria in the Community: Trends and Lessons Learned. Infect Dis Clin North Am 2017; 30:377-390. [PMID: 27208764 DOI: 10.1016/j.idc.2016.02.004] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multidrug resistant (MDR) bacteria are one of the most important threats to public health. Typically, MDR bacteria are associated with nosocomial infections. However, some MDR bacteria have become prevalent causes of community-acquired infections. The spread of MDR bacteria into the community is a crucial development, and is associated with increased morbidity, mortality, health care costs, and antibiotic use. Factors associated with community dissemination of MDR bacteria overlap but are distinct from those associated with nosocomial spread. Prevention of further community spread of MDR bacteria is of the utmost importance, and requires a multidisciplinary approach involving all stakeholders.
Collapse
|
Review |
8 |
352 |
9
|
Abstract
The continuing spread of African swine fever (ASF) outside Africa in Europe, the Russian Federation, China and most recently to Mongolia and Vietnam, has heightened awareness of the threat posed by this devastating disease to the global pig industry and food security. In this review we summarise what we know about the African swine fever virus (ASFV), the disease it causes, how it spreads and the current global situation. We discuss current control methods in domestic and wild pigs and prospects for development of vaccines and other tools for control.
Collapse
|
Review |
6 |
308 |
10
|
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014; 26:431-44. [PMID: 25453224 PMCID: PMC4314449 DOI: 10.1016/j.smim.2014.09.012] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
305 |
11
|
Romig T, Deplazes P, Jenkins D, Giraudoux P, Massolo A, Craig PS, Wassermann M, Takahashi K, de la Rue M. Ecology and Life Cycle Patterns of Echinococcus Species. ADVANCES IN PARASITOLOGY 2017; 95:213-314. [PMID: 28131364 DOI: 10.1016/bs.apar.2016.11.002] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genus Echinococcus is composed of eight generally recognized species and one genotypic cluster (Echinococcus canadensis cluster) that may in future be resolved into one to three species. For each species, we review existing information on transmission routes and life cycles in different geographical contexts and - where available - include basic biological information of parasites and hosts (e.g., susceptibility of host species). While some Echinococcus spp. are transmitted in life cycles that involve predominantly domestic animals (e.g., dog - livestock cycles), others are wildlife parasites that do or do not interact with domestic transmission. In many cases, life cycle patterns of the same parasite species differ according to geography. Simple life cycles contrast with transmission patterns that are highly complex, involving multihost systems that may include both domestic and wild mammals. Wildlife transmission may be primary or secondary, i.e., resulting from spillovers from domestic animals. For most of the species and regions, existing information does not yet permit a conclusive description of transmission systems. Such data, however, would be highly relevant, e.g., for anticipation of geographical changes of the presence and frequency of these parasites in a warming world, or for initiating evidence-based control strategies.
Collapse
|
Review |
8 |
292 |
12
|
Kumar N, Acharya A, Gendelman HE, Byrareddy SN. The 2022 outbreak and the pathobiology of the monkeypox virus. J Autoimmun 2022; 131:102855. [PMID: 35760647 PMCID: PMC9534147 DOI: 10.1016/j.jaut.2022.102855] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
Abstract
Following two reports of monkeypox virus infection in individuals who returned from Nigeria to the USA, one who returned to Texas (July 2021) and the other to the Washington, DC area (November 2021), the number of monkeypox infection have dramatically increased. This sounded an alarm of potential for spreading of the virus throughout the USA. During 2022, there was a report of monkeypox virus infection (May 6, 2022) in a British national following a visit to Nigeria who developed readily recognizable signs and symptoms of monkeypox virus infection. Soon following this report, case numbers climbed. By June 10, 2022, more than 1,500 cases were reported in 43 countries, including Europe and North America. While the prevalence of the monkeypox virus is well known in central and western Africa, its presence in the developed world has raised disturbing signs for worldwide spread. While infection was reported during the past half-century, starting in the Democratic Republic of Congo in 1970, in the United States, only sporadic monkeypox cases have been reported. All cases have been linked to international travel or through African animal imports. The monkeypox virus is transmitted through contact with infected skin, body fluids, or respiratory droplets. The virus spreads from oral and nasopharyngeal fluid exchanges or by intradermal injection; then rapidly replicates at the inoculation site with spreads to adjacent lymph nodes. Monkeypox disease begins with constitutional symptoms that include fever, chills, headache, muscle aches, backache, and fatigue. Phylogenetically the virus has two clades. One clade emerged from West Africa and the other in the Congo Basin of Central Africa. During the most recent outbreak, the identity of the reservoir host or the primary carriage remains unknown. African rodents are the suspected intermediate hosts. At the same time, the Centers for Disease Control (CDC) affirmed that there are no specific treatments for the 2022 monkeypox virus infection; existing antivirals shown to be effective against smallpox may slow monkeypox spread. A smallpox vaccine JYNNEOS (Imvamune or Imvanex) may also be used to prevent infection. The World Health Organization (WHO), has warned that the world could be facing a formidable infectious disease challenge in light of the current status of worldwide affairs. These affairs include the SARS-COVID-19 pandemic and the Ukraine-Russia war. In addition, the recent rise in case of numbers worldwide could continue to pose an international threat. With this in mind, strategies to mitigate the spread of monkeypox virus are warranted.
Collapse
|
Review |
3 |
282 |
13
|
COVID-19 in Latin America: The implications of the first confirmed case in Brazil. Travel Med Infect Dis 2020; 35:101613. [PMID: 32126292 PMCID: PMC7129040 DOI: 10.1016/j.tmaid.2020.101613] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
|
Comment |
5 |
260 |
14
|
Prata DN, Rodrigues W, Bermejo PH. Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138862. [PMID: 32361443 PMCID: PMC7182516 DOI: 10.1016/j.scitotenv.2020.138862] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 04/13/2023]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a -4.8951% (t = -2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers.
Collapse
|
research-article |
5 |
256 |
15
|
Ren SY, Wang WB, Gao RD, Zhou AM. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases 2022; 10:1-11. [PMID: 35071500 PMCID: PMC8727245 DOI: 10.12998/wjcc.v10.i1.1] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
The appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant Omicron (B.1.1.529) has caused panic responses around the world because of its high transmission rate and number of mutations. This review summarizes the highly mutated regions, the essential infectivity, transmission, vaccine breakthrough and antibody resistance of the Omicron variant of SARS-CoV-2. The Omicron is highly transmissible and is spreading faster than any previous variant, but may cause less severe symptoms than previous variants. The Omicron is able to escape the immune system's defenses and coronavirus disease 2019 vaccines are less effective against the Omicron variant. Early careful preventive steps including vaccination will always be key for the suppression of the Omicron variant.
Collapse
|
Minireviews |
3 |
223 |
16
|
Qiu Y, Chen X, Shi W. Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China. JOURNAL OF POPULATION ECONOMICS 2020; 33:1127-1172. [PMID: 32395017 PMCID: PMC7210464 DOI: 10.1007/s00148-020-00778-2] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study models local and cross-city transmissions of the novel coronavirus in China between January 19 and February 29, 2020. We examine the role of various socioeconomic mediating factors, including public health measures that encourage social distancing in local communities. Weather characteristics 2 weeks prior are used as instrumental variables for causal inference. Stringent quarantines, city lockdowns, and local public health measures imposed in late January significantly decreased the virus transmission rate. The virus spread was contained by the middle of February. Population outflow from the outbreak source region posed a higher risk to the destination regions than other factors, including geographic proximity and similarity in economic conditions. We quantify the effects of different public health measures in reducing the number of infections through counterfactual analyses. Over 1.4 million infections and 56,000 deaths may have been avoided as a result of the national and provincial public health measures imposed in late January in China.
Collapse
|
research-article |
5 |
218 |
17
|
Abstract
The trillions of microbes living in the gut-the gut microbiota-play an important role in human biology and disease. While much has been done to explore its diversity, a full understanding of our microbiomes demands an evolutionary perspective. In this review, we compare microbiomes from human populations, placing them in the context of microbes from humanity's near and distant animal relatives. We discuss potential mechanisms to generate host-specific microbiome configurations and the consequences of disrupting those configurations. Finally, we propose that this broader phylogenetic perspective is useful for understanding the mechanisms underlying human-microbiome interactions.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
214 |
18
|
Patel ZM, Fernandez-Miranda J, Hwang PH, Nayak JV, Dodd R, Sajjadi H, Jackler RK. Letter: Precautions for Endoscopic Transnasal Skull Base Surgery During the COVID-19 Pandemic. Neurosurgery 2020; 87:E66-E67. [PMID: 32293678 PMCID: PMC7184431 DOI: 10.1093/neuros/nyaa125] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
Letter |
5 |
213 |
19
|
She J, Jiang J, Ye L, Hu L, Bai C, Song Y. 2019 novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies. Clin Transl Med 2020; 9:19. [PMID: 32078069 PMCID: PMC7033263 DOI: 10.1186/s40169-020-00271-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
An ongoing outbreak of 2019-nCoV pneumonia was first identified in Wuhan, Hubei province, China at the end of 2019. With the spread of the new coronavirus accelerating, person-to-person transmission in family homes or hospitals, and intercity spread of 2019-nCoV occurred. At least 40,261 cases confirmed, 23,589 cases suspected, 909 cases death and 3444 cases cured in China and worldwide 24 countries confirmed 383 cases being diagnosed, 1 case death in February 10th, 2020. At present, the mortality of 2019-nCoV in China is 2.3%, compared with 9.6% of SARS and 34.4% of MERS reported by WHO. It seems the new virus is not as fatal as many people thought. Chinese authorities improved surveillance network, made the laboratory be able to recognize the outbreak within a few weeks and announced the virus genome that provide efficient epidemiological control. More comprehensive information is required to understand 2019-nCoV feature, the epidemiology of origin and spreading, and the clinical phenomina. According to the current status, blocking transmission, isolation, protection, and alternative medication are the urgent management strategies against 2019-nCoV.
Collapse
|
Review |
5 |
197 |
20
|
α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett 2019; 709:134316. [PMID: 31170426 DOI: 10.1016/j.neulet.2019.134316] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/01/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
Abstract
Over 20 years ago, the synaptic protein α-synuclein was identified as the primary component of the Lewy bodies (LBs) that are a sine qua non of Parkinson's disease (PD). Since that time, extensive research has demonstrated that α-synuclein pathology is not only a hallmark of PD, but can also cause neuronal dysfunction and death. Detailed staging of α-synuclein pathology in the brains of patients has revealed a progressive pattern of pathology that correlates with the symptoms of disease. Early in the disease course, PD patients exhibit motor dysfunction, and α-synuclein pathology at this stage is primarily found in regions controlling motor function. At later stages of disease as patients' cognitive function deteriorates, α-synuclein pathology can be found in cortical structures responsible for higher cognitive processing. The stereotypical progression of α-synuclein pathology through the brain over time suggests that there may be a physical transmission of pathological α-synuclein from one area of the brain to another. The transmission hypothesis posits that an initial seed of pathological α-synuclein in one neuron may be released and taken up by another vulnerable neuron and thereby initiate pathological misfolding of α-synuclein in the recipient neuron. In recent years, convergent evidence from various studies has indicated that pathological protein transmission can occur in the human brain. Cell and animal models based on the transmission hypothesis have shown not only that pathological α-synuclein can be transmitted from cell-to-cell, but that this pathology can lead to neuronal dysfunction and degeneration. The α-synuclein transmission hypothesis has profound implications for treatment of what is currently an intractable neurodegenerative disease. In this review, we explore the evidence for cell-to-cell transmission of pathological α-synuclein, the current understanding of how pathological α-synuclein can move to a new cell and template misfolding, and the therapeutic implications of α-synuclein transmission.
Collapse
|
Review |
6 |
192 |
21
|
Sangkham S. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2020; 2:100052. [PMID: 38620353 PMCID: PMC7543915 DOI: 10.1016/j.cscee.2020.100052] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 05/05/2023]
Abstract
The origin of the novel human coronavirus (SARS-CoV-2) and its potential for harm increased face mask and medical waste in the environment, thereby necessitating the urgent prevention and control of the pandemic. The article estimates the face mask and medical waste generation in Asia during the pandemic to convince the waste management and scientific communities to find ways to address the negative impact that the waste disposal has on the environment. Standardisation, procedures, guidelines and strict implementation of medical waste management related to COVID-19, community habitats and public areas should be carefully considered to reduce pandemic risks in hospitals, as proper medical waste disposal effectively controls infection sources.
Collapse
|
research-article |
5 |
191 |
22
|
Tang JW, Bahnfleth WP, Bluyssen PM, Buonanno G, Jimenez JL, Kurnitski J, Li Y, Miller S, Sekhar C, Morawska L, Marr LC, Melikov AK, Nazaroff WW, Nielsen PV, Tellier R, Wargocki P, Dancer SJ. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Hosp Infect 2021; 110:89-96. [PMID: 33453351 PMCID: PMC7805396 DOI: 10.1016/j.jhin.2020.12.022] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused untold disruption throughout the world. Understanding the mechanisms for transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is key to preventing further spread, but there is confusion over the meaning of ‘airborne’ whenever transmission is discussed. Scientific ambivalence originates from evidence published many years ago which has generated mythological beliefs that obscure current thinking. This article collates and explores some of the most commonly held dogmas on airborne transmission in order to stimulate revision of the science in the light of current evidence. Six ‘myths’ are presented, explained and ultimately refuted on the basis of recently published papers and expert opinion from previous work related to similar viruses. There is little doubt that SARS-CoV-2 is transmitted via a range of airborne particle sizes subject to all the usual ventilation parameters and human behaviour. Experts from specialties encompassing aerosol studies, ventilation, engineering, physics, virology and clinical medicine have joined together to produce this review to consolidate the evidence for airborne transmission mechanisms, and offer justification for modern strategies for prevention and control of COVID-19 in health care and the community.
Collapse
|
Review |
4 |
190 |
23
|
Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, Villena I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol 2019; 15:e00049. [PMID: 32095620 PMCID: PMC7033973 DOI: 10.1016/j.fawpar.2019.e00049] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite's success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife.
Collapse
|
Review |
6 |
186 |
24
|
Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. J Hepatol 2018; 69:1231-1241. [PMID: 30142426 PMCID: PMC7611400 DOI: 10.1016/j.jhep.2018.08.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Several steps in the HBV life cycle remain obscure because of a lack of robust in vitro infection models. These steps include particle entry, formation and maintenance of covalently closed circular (ccc) DNA, kinetics of gene expression and viral transmission routes. This study aimed to investigate infection kinetics and cccDNA dynamics during long-term culture. METHODS We selected a highly permissive HepG2-NTCP-K7 cell clone engineered to express sodium taurocholate co-transporting polypeptide (NTCP) that supports the full HBV life cycle. We characterized the replication kinetics and dynamics of HBV over six weeks of infection. RESULTS HBV infection kinetics showed a slow infection process. Nuclear cccDNA was only detected 24 h post-infection and increased until 3 days post-infection (dpi). Viral RNAs increased from 3 dpi reaching a plateau at 6 dpi. HBV protein levels followed similar kinetics with HBx levels reaching a plateau first. cccDNA levels modestly increased throughout the 45-day study period with 5-12 copies per infected cell. Newly produced relaxed circular DNA within capsids was reimported into the nucleus and replenished the cccDNA pool. In addition to intracellular recycling of HBV genomes, secondary de novo infection events resulted in cccDNA formation. Inhibition of relaxed circular DNA formation by nucleoside analogue treatment of infected cells enabled us to measure cccDNA dynamics. HBV cccDNA decayed slowly with a half-life of about 40 days. CONCLUSIONS After a slow infection process, HBV maintains a stable cccDNA pool by intracellular recycling of HBV genomes and via secondary infection. Our results provide important insights into the dynamics of HBV infection and support the future design and evaluation of new antiviral agents. LAY SUMMARY Using a unique hepatocellular model system designed to support viral growth, we demonstrate that hepatitis B virus (HBV) has remarkably slow infection kinetics. Establishment of the episomal transcription template and the persistent form of the virus, so called covalently closed circular DNA, as well as viral transcription and protein expression all take a long time. Once established, HBV maintains a stable pool of covalently closed circular DNA via intracellular recycling of HBV genomes and through infection of naïve cells by newly formed virions.
Collapse
|
research-article |
7 |
166 |
25
|
Gallardo MC, Reoyo ADLT, Fernández-Pinero J, Iglesias I, Muñoz MJ, Arias ML. African swine fever: a global view of the current challenge. Porcine Health Manag 2015; 1:21. [PMID: 28405426 PMCID: PMC5382474 DOI: 10.1186/s40813-015-0013-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022] Open
Abstract
African Swine Fever (ASF) is an important contagious haemorrhagic viral disease affecting swine whose notification is mandatory due to its high mortality rates and the great sanitary and socioeconomic impact it has on international trade in animal and swine products. This disease only affects porcine species, both wild and domestic, and produces a variety of clinical signs such as fever and functional disorders of the digestive and respiratory systems. Lesions are mainly characterized by congestive-haemorrhagic alterations. ASF epidemiology varies significantly between countries, regions and continents, since it depends on the characteristics of the virus in circulation, the presence of wild hosts and reservoirs, environmental conditions and human social behaviour. Furthermore, a specific host will not necessarily always play the same active role in the spread and maintenance of ASF in a particular area. Currently, ASF is endemic in most sub-Saharan African countries where wild hosts and tick vectors (Ornithodoros) play an important role acting as biological reservoirs for the virus. In Europe, the disease has been endemic since 1978 on the island of Sardinia (Italy) and since 2007, when it was first reported in Georgia, in a number of Eastern European countries. It is also endemic in certain regions of the Russia Federation, where domestic pig and wild boar populations are widely affected. By contrast, in the affected eastern European Union (EU) countries where ASF is currently as epidemic, the on-going spread of the disease affects mainly wild boar populations located in restricted areas and, to a much less extent, domestic pigs. Unlike most livestock diseases, no vaccine or specific treatment is currently available for ASF. Therefore, disease control is mainly based on early detection and the application of strict sanitary and biosecurity measures. Epidemiology of ASF is very complex by the existence of different virus circulating, reservoirs and a number of scenarios, and the on-going spread of the disease through Africa and Europe. Survivor pigs can remain persistently infected for months which may contribute to virus transmission and thus the spread and maintenance of the disease, thereby complicating attempts to control it.
Collapse
|
Review |
10 |
154 |