1
|
Manganiello G, Sacco A, Ercolano MR, Vinale F, Lanzuise S, Pascale A, Napolitano M, Lombardi N, Lorito M, Woo SL. Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Front Microbiol 2018; 9:1966. [PMID: 30233507 PMCID: PMC6127634 DOI: 10.3389/fmicb.2018.01966] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/02/2018] [Indexed: 01/25/2023] Open
Abstract
The present study investigated the transcriptomic and metabolomic changes elicited in tomato plants (Solanum lycopersicum cv. Micro-Tom) following treatments with the biocontrol agent Trichoderma harzianum strain M10 or its purified secondary metabolite harzianic acid (HA), in the presence or the absence of the soil-borne pathogen Rhizoctonia solani. Transcriptomic analysis allowed the identification of differentially expressed genes (DEGs) that play a pivotal role in resistance to biotic stress. Overall, the results support the ability of T. harzianum M10 to activate defense responses in infected tomato plants. An induction of hormone-mediated signaling was observed, as shown by the up-regulation of genes involved in the ethylene and jasmonate (ET/JA) and salicylic acid (SA)-mediated signaling pathways. Further, the protective action of T. harzianum on the host was revealed by the over-expression of genes able to detoxify cells from reactive oxygen species (ROS). On the other hand, HA treatment also stimulated tomato response to the pathogen by inducing the expression of several genes involved in defense response (including protease inhibitors, resistance proteins like CC-NBS-LRR) and hormone interplay. The accumulation of steroidal glycoalkaloids in the plant after treatments with either T. harzianum or HA, as determined by metabolomic analysis, confirmed the complexity of the plant response to beneficial microbes, demonstrating that these microorganisms are also capable of activating the chemical defenses.
Collapse
|
research-article |
7 |
61 |
2
|
Kidibule PE, Santos-Moriano P, Jiménez-Ortega E, Ramírez-Escudero M, Limón MC, Remacha M, Plou FJ, Sanz-Aparicio J, Fernández-Lobato M. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb Cell Fact 2018; 17:47. [PMID: 29566690 PMCID: PMC5863366 DOI: 10.1186/s12934-018-0895-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-d-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. Results Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5–6.5 and 30–40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the kcat/Km ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (d-glucosamine)1–8-GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. Conclusions Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated chitooligosaccharides, which have enormous biotechnological potential in medicine and food. Chit42 3D structure was characterized and analysed. Production and understanding of how the enzymes generating bioactive chito-oligomers work is essential for their biotechnological application, and paves the way for future work to take advantage of chitinolytic activities. Electronic supplementary material The online version of this article (10.1186/s12934-018-0895-x) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
54 |
3
|
Zehra A, Meena M, Dubey MK, Aamir M, Upadhyay RS. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. BOTANICAL STUDIES 2017; 58:44. [PMID: 29098503 PMCID: PMC5668223 DOI: 10.1186/s40529-017-0198-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/20/2017] [Indexed: 05/20/2023]
Abstract
Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H2O2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H2O2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.
Collapse
|
research-article |
8 |
48 |
4
|
Delabona PDS, Lima DJ, Robl D, Rabelo SC, Farinas CS, Pradella JGDC. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol 2016; 43:617-26. [PMID: 26883662 DOI: 10.1007/s10295-016-1744-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/12/2015] [Indexed: 12/22/2022]
Abstract
The use of glycerol obtained as an intermediate of the biodiesel manufacturing process as carbon source for microbial growth is a potential alternative strategy for the production of enzymes and other high-value bioproducts. This work evaluates the production of cellulase enzymes using glycerol for high cell density growth of Trichoderma harzianum followed by induction with a cellulosic material. Firstly, the influence of the carbon source used in the pre-culture step was investigated in terms of total protein secretion and fungal morphology. Enzymatic productivity was then determined for cultivation strategies using different types and concentrations of carbon source, as well as different feeding procedures (batch and fed-batch). The best strategy for cellulase production was then further studied on a larger scale using a stirred tank bioreactor. The proposed strategy for cellulase production, using glycerol to achieve high cell density growth followed by induction with pretreated sugarcane bagasse, achieved enzymatic activities up to 2.27 ± 0.37 FPU/mL, 106.40 ± 8.87 IU/mL, and 9.04 ± 0.39 IU/mL of cellulase, xylanase, and β-glucosidase, respectively. These values were 2 times higher when compared to the control experiments using glucose instead of glycerol. This novel strategy proved to be a promising approach for improving cellulolytic enzymes production, and could potentially contribute to adding value to biomass within the biofuels sector.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
40 |
5
|
Deng JJ, Huang WQ, Li ZW, Lu DL, Zhang Y, Luo XC. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb Technol 2018; 112:35-42. [PMID: 29499778 DOI: 10.1016/j.enzmictec.2018.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022]
Abstract
The use of cell wall degrading enzymes of Trichoderma is a promising alternative for improving food storage. The aspartic protease P6281 secreted by the fungus Trichoderma harzianum plays an important role in mycoparasitism on phytopathogenic fungi. In this study, recombinant P6281 (rP6281) expressed in Pichia pastoris showed high activity of 321.8 U/mL. Maximum activity was observed at pH 2.5 and 40 °C, and the enzyme was stable in the pH range of 2.5-6.0. rP6281 significantly inhibited spore germination and growth of plant and animal pathogenic fungi such as Botrytis cinerea, Mucor circinelloides, Aspergillus fumigatus, Aspergillus flavus, Rhizoctonia solani, and Candida albicans. Transmission electron microscopy revealed that rP6281 efficiently damages the cell wall of Botrytis cinerea. In addition, the protease significantly inhibited the development of grey mold that causes rotting of apple, orange, and cucumber, indicating that rP6281 may be developed as an effective anti-mold agent for fruit storage.
Collapse
|
Journal Article |
7 |
40 |
6
|
Singh UB, Malviya D, Singh S, Kumar M, Sahu PK, Singh HV, Kumar S, Roy M, Imran M, Rai JP, Sharma AK, Saxena AK. Trichoderma harzianum- and Methyl Jasmonate-Induced Resistance to Bipolaris sorokiniana Through Enhanced Phenylpropanoid Activities in Bread Wheat ( Triticum aestivum L.). Front Microbiol 2019; 10:1697. [PMID: 31417511 PMCID: PMC6685482 DOI: 10.3389/fmicb.2019.01697] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to evaluate the impact of Trichoderma harzianum UBSTH-501- and methyl jasmonate-induced systemic resistance and their integration on the spot blotch pathogen, Bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). It was found that the application of MeJA (>100 mg L-1) inhibits the germination of B. sorokiniana spores under controlled laboratory conditions. To assess the effect of MeJA (150 mg L-1) in combination with the biocontrol agent T. harzianum UBSTH-501 in vivo, a green house experiment was conducted. For this, biocontrol agent T. harzianum UBSTH-501 was applied as seed treatment, whereas MeJA (150 mg L-1) was applied 5 days prior to pathogen inoculation. Results indicated that application of MeJA (150 mg L-1) did not affect the root colonization of wheat by T. harzianum UBSTH-501 in the rhizosphere. The combined application of T. harzianum UBSTH-501 and MeJA also enhanced indole acetic acid production in the rhizosphere (4.92 μg g-1 of soil) which in turn helps in plant growth and development. Further, the combined application found to enhance the activities of defense related enzymes viz. catalase (5.92 EU min-1 g-1 fresh wt.), ascorbate peroxidase [μmol ascorbate oxidized (mg prot)-1 min-1], phenylalanine ammonia lyase (102.25 μmol cinnamic acid h-1 mg-1 fresh wt.) and peroxidase (6.95 Unit mg-1 min-1 fresh wt.) significantly in the plants under treatment which was further confirmed by assessing the transcript level of PAL and peroxidase genes using semi-quantitative PCR approach. The results showed manifold increase in salicylic acid (SA) along with enhanced accumulation of total free phenolics, ferulic acid, caffeic acid, coumaric acid, and chlorogenic acid in the leaves of the plants treated with the biocontrol agent alone or in combination with MeJA. A significant decrease in the disease severity (17.46%) and area under disease progress curve (630.32) were also observed in the treatments with biocontrol agent and MeJA in combination as compared to B. sorokiniana alone treated plant (56.95% and 945.50, respectively). Up-regulation of phenylpropanoid cascades in response to exogenous application of MeJA and the biocontrol agent was observed. It was depicted from the results that PAL is the primary route for lignin production in wheat which reduces cell wall disruption and tissue disintegration and increases suberization and lignification of the plant cell as seen by Scanning Electron microphotographs. These results clearly indicated that exogenous application of MeJA with T. harzianum inducing JA- and/or SA-dependent defense signaling after pathogen challenge may increase the resistance to spot blotch by stimulating enzymatic activities and the accumulation of phenolic compounds in a cooperative manner. This study apparently provides the evidence of biochemical cross-talk and physiological responses in wheat following MeJA and biocontrol agent treatment during the bio-trophic infection.
Collapse
|
Journal Article |
6 |
40 |
7
|
A Rhizosphere-Derived Consortium of Bacillus subtilis and Trichoderma harzianum Suppresses Common Scab of Potato and Increases Yield. Comput Struct Biotechnol J 2019; 17:645-653. [PMID: 31193738 PMCID: PMC6538968 DOI: 10.1016/j.csbj.2019.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 11/24/2022] Open
Abstract
The ability of a rhizosphere-derived microbial product (composed of a consortium of a strain of Bacillus subtilis and a strain of Trichoderma harzianum) to suppress common scab disease in potato caused by Streptomyces spp. was examined over a two-year period. Relative to the condition in which 0 kg·ha-1 of the designated microbial product was applied (control), the disease index decreased by 30.6%-46.1%, and yield increased by 23.0%-32.2% in treatments in which 225 or 300 kg·ha-1 of the microbial product was administered, respectively. The bacterial communities present in the rhizosphere were assessed at an early stage of tuber formation, a time at which tubers are susceptible to common scab. Potato plants in which soils were treated with 225 or 300 kg·ha-1 of the microbial product harbored rhizospheric microbiota with lower α-diversity and an increased relative abundance of taxa representing the beneficial bacteria. In summary, a select microbial product composed of a consortium of Bacillus subtilis and Trichoderma harzianum effectively suppressed common scab disease and increased tuber yield by establishing a high relative abundance of beneficial bacteria in the rhizosphere.
Collapse
|
Journal Article |
6 |
39 |
8
|
Buchicchio A, Bianco G, Sofo A, Masi S, Caniani D. Biodegradation of carbamazepine and clarithromycin by Trichoderma harzianum and Pleurotus ostreatus investigated by liquid chromatography - high-resolution tandem mass spectrometry (FTICR MS-IRMPD). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:733-739. [PMID: 27039063 DOI: 10.1016/j.scitotenv.2016.03.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
In this study, the capability of pharmaceutical biodegradation of fungus Trichoderma harzianum was evaluated through the comparison with the well-known biodegradation capability of white-rot fungus Pleurotus ostreatus. The study was performed in aqueous phase under aerobic conditions, using two of the most frequently detected drugs in water bodies: carbamazepine and clarithromycin, with concentrations commonly found in treated wastewater (4μg/l and 0.03μg/l respectively). For the first time, we demonstrated that T. harzianum is able to remove carbamazepine and clarithromycin. The analyses were performed by reversed-phase liquid chromatography/mass spectrometry, using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry upon electrospray ionization in positive ion mode. The high selectivity and mass accuracy provided by high-resolution mass spectrometry, allowed us to identify some unknown metabolites. On the basis of our study, the major metabolites detected in liquid culture treated by T. harzianum were: 14-hydroxy-descladinosyl- and descladinosyl-clarithromycin, which are pharmacologically inactive products not dangerous for the environment.
Collapse
|
|
9 |
39 |
9
|
Harwoko H, Daletos G, Stuhldreier F, Lee J, Wesselborg S, Feldbrügge M, Müller WEG, Kalscheuer R, Ancheeva E, Proksch P. Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum and Epicoccum nigrum. Nat Prod Res 2019; 35:257-265. [PMID: 31210064 DOI: 10.1080/14786419.2019.1627348] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new epidithiodiketopiperazine (ETP), pretrichodermamide G (1), along with three known (epi)dithiodiketopiparazines (2-4) were isolated from cultures of Trichoderma harzianum and Epicoccum nigrum, endophytic fungi associated with medicinal plants Zingiber officinale and Salix sp., respectively. The structure of the new compound (1) was established on the basis of spectroscopic data, including 1D/2D NMR and HRESIMS. The isolated compounds were investigated for their antifungal, antibacterial and cytotoxic potential against a panel of microorganisms and cell lines. Pretrichodermamide A (2) displayed antimicrobial activity towards the plant pathogenic fungus Ustilago maydis and the human pathogenic bacterium Mycobacterium tuberculosis with MIC values of 1 mg/mL (2 mM) and 25 µg/mL (50 µM), respectively. Meanwhile, epicorazine A (3) exhibited strong to moderate cytotoxicity against L5178Y, Ramos, and Jurkat J16 cell lines with IC50 values ranging from 1.3 to 28 µM. Further mechanistic studies indicated that 3 induces apoptotic cell death.
Collapse
|
Journal Article |
6 |
38 |
10
|
Guilger-Casagrande M, Germano-Costa T, Bilesky-José N, Pasquoto-Stigliani T, Carvalho L, Fraceto LF, de Lima R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J Nanobiotechnology 2021; 19:53. [PMID: 33627148 PMCID: PMC7903788 DOI: 10.1186/s12951-021-00797-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biogenic nanoparticles possess a capping of biomolecules derived from the organism employed in the synthesis, which contributes to their stability and biological activity. These nanoparticles have been highlighted for the control of phytopathogens, so there is a need to understand their composition, mechanisms of action, and toxicity. This study aimed to investigate the importance of the capping and compare the effects of capped and uncapped biogenic silver nanoparticles synthesized using the filtrate of Trichoderma harzianum against the phytopathogenic fungus Sclerotinia sclerotiorum. Capping removal, investigation of the composition of the capping and physico-chemical characterization of the capped and uncapped nanoparticles were performed. The effects of the nanoparticles on S. sclerotiorum were evaluated in vitro. Cytotoxicity and genotoxicity of the nanoparticles on different cell lines and its effects on nontarget microorganisms were also investigated. RESULTS The capped and uncapped nanoparticles showed spherical morphology, with greater diameter of the uncapped ones. Functional groups of biomolecules, protein bands and the hydrolytic enzymes NAGase, β-1,3-glucanase, chitinase and acid protease from T. harzianum were detected in the capping. The capped nanoparticles showed great inhibitory potential against S. sclerotiorum, while the uncapped nanoparticles were ineffective. There was no difference in cytotoxicity comparing capped and uncapped nanoparticles, however higher genotoxicity of the uncapped nanoparticles was observed towards the cell lines. Regarding the effects on nontarget microorganisms, in the minimal inhibitory concentration assay only the capped nanoparticles inhibited microorganisms of agricultural importance, while in the molecular analysis of the soil microbiota there were major changes in the soils exposed to the uncapped nanoparticles. CONCLUSIONS The results suggest that the capping played an important role in controlling nanoparticle size and contributed to the biological activity of the nanoparticles against S. sclerotiorum. This study opens perspectives for investigations concerning the application of these nanoparticles for the control of phytopathogens.
Collapse
|
research-article |
4 |
37 |
11
|
Maruyama CR, Bilesky-José N, de Lima R, Fraceto LF. Encapsulation of Trichoderma harzianum Preserves Enzymatic Activity and Enhances the Potential for Biological Control. Front Bioeng Biotechnol 2020; 8:225. [PMID: 32269991 PMCID: PMC7110528 DOI: 10.3389/fbioe.2020.00225] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/05/2020] [Indexed: 11/13/2022] Open
Abstract
Trichoderma harzianum is a biological control agent used against phytopathogens and biostimulation in agriculture. However, its efficacy can be affected by biotic and abiotic factors, and microencapsulation has been used to maximize the efficacy. The objective was to develop polymeric microparticles to encapsulate T. harzianum, to perform physicochemical characterization to evaluate its stability, to evaluate effects on the soil microbiota, antifungal activity in vitro and enzymatic activity. Size distribution of wet and dry microparticles was 2000 and 800 μm, respectively. Scanning electron microscopy showed spherical morphology and encapsulation of T. harzianum. Photostability assays showed that encapsulation protected the fungus against ultraviolet radiation. The evaluation of the microbiota showed that the proportion of denitrifying bacteria increased when compared to the control. The T. harzianum encapsulation showed an improvement in the chitinolytic and cellulosic activity. In vitro tests showed that encapsulated fungus were able to provide a greater control of S. sclerotiorum.
Collapse
|
|
5 |
36 |
12
|
Benoliel B, Torres FAG, de Moraes LMP. A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. SPRINGERPLUS 2013; 2:656. [PMID: 24349958 PMCID: PMC3862859 DOI: 10.1186/2193-1801-2-656] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/27/2013] [Indexed: 12/02/2022]
Abstract
Brazil is a major producer of agro-industrial residues, such as sugarcane bagasse, which could be used as raw material for microbial production of cellulases as an important strategy for the development of sustainable processes of second generation ethanol production. For this purpose, this work aimed at screening for glycosyl hydrolase activities of fungal strains isolated from the Brazilian Cerrado. Among 13 isolates, a Trichoderma harzianum strain (L04) was identified as a promising candidate for cellulase production when cultured on in natura sugarcane bagasse. Strain L04 revealed a well-balanced cellulolytic complex, presenting fast kinetic production of endoglucanases, exoglucanases and β-glucosidases, achieving 4,022, U.L-1 (72 h), 1,228 U.L-1 (120 h) and 1,968 U.L-1 (48 h) as the highest activities, respectively. About 60% glucose yields were obtained from sugarcane bagasse after 18 hours hydrolysis. This new strain represents a potential candidate for on-site enzyme production using sugarcane bagasse as carbon source.
Collapse
|
Journal Article |
12 |
35 |
13
|
Ferreira Filho JA, Horta MAC, Beloti LL, Dos Santos CA, de Souza AP. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry. BMC Genomics 2017; 18:779. [PMID: 29025413 PMCID: PMC5639747 DOI: 10.1186/s12864-017-4181-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. RESULTS In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. CONCLUSIONS Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.
Collapse
|
Journal Article |
8 |
33 |
14
|
Braun H, Woitsch L, Hetzer B, Geisen R, Zange B, Schmidt-Heydt M. Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis. Int J Food Microbiol 2018; 280:10-16. [PMID: 29754002 DOI: 10.1016/j.ijfoodmicro.2018.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
A quarter of the world-wide crop is spoiled by filamentous fungi and their mycotoxins and weather extremes associated with the climate change lead to further deterioration of the situation. The ingestion of mycotoxins causes several health issues leading in the worst case to cancer in humans and animals. Common intervention strategies against mycotoxin producing fungi, such as the application of fungicides, may result in undesirable residues and in some cases to a stress induction of mycotoxin biosynthesis. Moreover, development of fungicide resistances has greatly impacted pre- and postharvest fungal diseases. Hence there is the need to develop alternative strategies to reduce fungal infestation and thus mycotoxin contamination in the food chain. Such a strategy for natural competition of important plant-pathogenic and mycotoxin producing fungi could be Trichoderma harzianum, a mycoparasitic fungus. Especially in direct comparison to certain tested fungicides, the inhibition of different tested fungal species by T. harzianum was comparable, more sustainable and in some cases more effective, too. Besides substantially reduced growth rates, a transcriptional based inhibition of mycotoxin biosynthesis in the competed Aspergillus species could be shown. Furthermore it could be clearly observed by high-resolution Scanning Electron Microscopy (SEM) that T. harzianum actively attaches to the competitor species followed by subsequent enzymatic lysis of those mycelial filaments. The analyzed isolate of T. harzianum MRI349 is not known to produce mycotoxins. In this study it could be successfully proven that T. harzianum as a biological competitor is an effective complement to the use of fungicides.
Collapse
|
Journal Article |
7 |
31 |
15
|
Shi T, Shao CL, Liu Y, Zhao DL, Cao F, Fu XM, Yu JY, Wu JS, Zhang ZK, Wang CY. Terpenoids From the Coral-Derived Fungus Trichoderma harzianum (XS-20090075) Induced by Chemical Epigenetic Manipulation. Front Microbiol 2020; 11:572. [PMID: 32318046 PMCID: PMC7147461 DOI: 10.3389/fmicb.2020.00572] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
The soft coral-derived fungus Trichoderma harzianum (XS-20090075) was found to be a potential strain to produce substantial new compounds in our previous study. In order to explore its potential to produce more metabolites, chemical epigenetic manipulation was used on this fungus to wake its sleeping genes, leading to the significant changes of its secondary metabolites by using a histone deacetylase (HDAC) inhibitor. The most obvious difference was the original main products harziane diterpenoids were changed into cyclonerane sesquiterpenoids. Three new terpenoids were isolated from the fungal culture treated with 10 μM sodium butyrate, including cleistanthane diterpenoid, harzianolic acid A (1), harziane diterpenoid, harzianone E (2), and cyclonerane sesquiterpenoid, 3,7,11-trihydroxy-cycloneran (3), together with 11 known sesquiterpenoids (4-14). The absolute configurations of 1-3 were determined by single-crystal X-ray diffraction, ECD and OR calculations, and biogenetic considerations. This was the first time to obtain cleistanthane diterpenoid and africane sesquiterpenoid from genus Trichoderma, and this was the first chlorinated cleistanthane diterpenoid. These results demonstrated that the chemical epigenetic manipulation should be an efficient technique for the discovery of new secondary metabolites from marine-derived fungi.
Collapse
|
research-article |
5 |
28 |
16
|
Chun J, Yang HE, Kim DH. Identification of a Novel Partitivirus of Trichoderma harzianum NFCF319 and Evidence for the Related Antifungal Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:1699. [PMID: 30515186 PMCID: PMC6255973 DOI: 10.3389/fpls.2018.01699] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/31/2018] [Indexed: 06/01/2023]
Abstract
We have reported 15 agarose gel band patterns of double-stranded RNA (dsRNA) from Trichoderma spp. We describe herein that band pattern IX in Trichoderma harzianum NFCF319, which appeared to be a single band but consisted of two dsRNAs of similar size, was identified as a novel mycovirus, designated Trichoderma harzianum partitivirus 1 (ThPV1). The larger segment (dsRNA1) of the ThPV1 genome comprised 2,289 bp and contained a single open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp). The smaller segment (dsRNA2) consisted of 2,245 bp with a single ORF encoding a capsid protein (CP). Evaluation of the deduced amino acid sequence and phylogenetic analysis indicated that ThPV1 is a new member of the genus Betapartitivirus in the family Partitiviridae. Curing of virus infection by single-sporing generated 31 virus-free single-spore clones. No significant differences in growth rate, conidia production, or pigmentation were observed between ThPV1-infected and -cured isogenic strains. In addition, comparison of the newly ThPV1-transmitted isolates with their ThPV1-cured parental strain showed no significant difference in colony morphology or pigmentation. However, inhibition of growth in co-cultured Pleurotus ostreatus and Rhizoctonia solani by T. harzianum was increased in ThPV1-containing strains compared with ThPV1-cured isogenic strains. Moreover, β-1,3-glucanase activity was significantly increased in the ThPV1-containing strains. However, no difference in chitinase activity was observed, suggesting that ThPV1 regulates the activity of a specific fungal enzyme.
Collapse
|
research-article |
7 |
27 |
17
|
Hultberg M, Bodin H. Fungi-based treatment of brewery wastewater-biomass production and nutrient reduction. Appl Microbiol Biotechnol 2017; 101:4791-4798. [PMID: 28213731 PMCID: PMC5442259 DOI: 10.1007/s00253-017-8185-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 11/23/2022]
Abstract
The beer-brewing process produces high amounts of nutrient-rich wastewater, and the increasing number of microbreweries worldwide has created a need for innovative solutions to deal with this waste. In the present study, fungal biomass production and the removal of organic carbon, phosphorus and nitrogen from synthetic brewery wastewater were studied. Different filamentous fungi with a record of safe use were screened for growth, and Trametes versicolor, Pleurotus ostreatus and Trichoderma harzianum were selected for further work. The highest biomass production, 1.78 ± 0.31 g L−1 of dry weight, was observed when P. ostreatus was used for the treatment, while T. harzianum demonstrated the best capability for removing nutrients. The maximum reduction of chemical oxygen demand, 89% of the initial value, was observed with this species. In the removal of total nitrogen and phosphorus, no significant difference was observed between the species, while removal of ammonium varied between the strains. The maximum reduction of ammonium, 66.1% of the initial value, was also found in the T. harzianum treatment. It can be concluded that all treatments provided significant reductions in all water-quality parameters after 3 days of growth and that the utilisation of filamentous fungi to treat brewery wastewater, linked to a deliberate strategy to use the biomass produced, has future potential in a bio-based society.
Collapse
|
Journal Article |
8 |
26 |
18
|
Gomes EV, Ulhoa CJ, Cardoza RE, Silva RN, Gutiérrez S. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:880. [PMID: 28611802 PMCID: PMC5446994 DOI: 10.3389/fpls.2017.00880] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/10/2017] [Indexed: 05/26/2023]
Abstract
Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.
Collapse
|
research-article |
8 |
25 |
19
|
Li J, Philp J, Li J, Wei Y, Li H, Yang K, Ryder M, Toh R, Zhou Y, Denton MD, Hu J, Wang Y. Trichoderma harzianum Inoculation Reduces the Incidence of Clubroot Disease in Chinese Cabbage by Regulating the Rhizosphere Microbial Community. Microorganisms 2020; 8:microorganisms8091325. [PMID: 32878079 PMCID: PMC7563613 DOI: 10.3390/microorganisms8091325] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Clubroot is a disease of cruciferous crops that causes significant economic losses to vegetable production worldwide. We applied high-throughput amplicon sequencing technology to quantify the effect of Trichodermaharzianum LTR-2 inoculation on the rhizosphere community of Chinese cabbage (Brassica rapa subsp. pekinensis cv. Jiaozhou) in a commercial production area. T. harzianum inoculation of cabbage reduced the incidence of clubroot disease by 45.4% (p < 0.05). The disease control efficacy (PDIDS) was 63%. This reduction in disease incidence and severity coincided with a drastic reduction in both the relative abundance of Plasmodiaphora brassicae, the causative pathogen of cabbage clubroot disease, and its copy number in rhizosphere soil. Pathogenic fungi Alternaria and Fusarium were also negatively associated with Trichoderma inoculation according to co-occurrence network analysis. Inoculation drastically reduced the relative abundance of the dominant bacterial genera Delftia and Pseudomonas, whilst increasing others including Bacillus. Our results demonstrate that T. harzianum LTR-2 is an effective biological control agent for cabbage clubroot, which acts through modulation of the soil and rhizosphere microbial community.
Collapse
|
Journal Article |
5 |
25 |
20
|
Ramada MHS, Steindorff AS, Bloch C, Ulhoa CJ. Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose. Proteomics 2016; 16:477-90. [PMID: 26631988 DOI: 10.1002/pmic.201400546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 08/20/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2023]
Abstract
Trichoderma harzianum is a fungus well known for its potential as a biocontrol agent against many fungal phytopathogens. The aim of this study was to characterize the proteins secreted by T. harzianum ALL42 when its spores were inoculated and incubated for 48 h in culture media supplemented with glucose (GLU) or with cell walls from Fusarium solani (FSCW), a phytopathogen that causes severe losses in common bean and soy crops in Brazil, as well as other crop diseases around the world. Trichoderma harzianum was able to grow in Trichoderma Liquid Enzyme Production medium (TLE) and Minimal medium (MM) supplemented with FSCW and in TLE+GLU, but was unable to grow in MM+GLU medium. Protein quantification showed that TLE+FSCW and MM+FSCW had 45- and 30- fold, respectively, higher protein concentration on supernatant when compared to TLE+GLU, and this difference was observable on 2D gel electrophoresis (2DE). A total of 94 out of 105 proteins excised from 2DE maps were identified. The only protein observed in all three conditions was epl1. In the media supplemented with FSCW, different hydrolases such as chitinases, β-1,3-glucanases, glucoamylases, α-1,3-glucanases and proteases were identified, along with other proteins with no known functions in mycoparasitism, such as npp1 and cys. Trichoderma harzianum showed a complex and diverse arsenal of proteins that are secreted in response to the presence of FSCW, with novel proteins not previously described in mycoparasitic-related studies.
Collapse
|
|
9 |
24 |
21
|
Santos CA, Zanphorlin LM, Crucello A, Tonoli CCC, Ruller R, Horta MAC, Murakami MT, de Souza AP. Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:71. [PMID: 27006690 PMCID: PMC4802607 DOI: 10.1186/s13068-016-0487-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/14/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND The conversion of biomass-derived sugars via enzymatic hydrolysis for biofuel production is a challenge. Therefore, the search for microorganisms and key enzymes that increase the efficiency of the saccharification of cellulosic substrates remains an important and high-priority area of study. Trichoderma harzianum is an important fungus known for producing high levels of cellulolytic enzymes that can be used for cellulosic ethanol production. In this context, β-glucosidases, which act synergistically with cellobiohydrolases and endo-β-1,4-glucanases in the saccharification process, are potential biocatalysts for the conversion of plant biomass to free glucose residues. RESULTS In the present study, we used RNA-Seq and genomic data to identify the major β-glucosidase expressed by T. harzianum under biomass degradation conditions. We mapped and quantified the expression of all of the β-glucosidases from glycoside hydrolase families 1 and 3, and we identified the enzyme with the highest expression under these conditions. The target gene was cloned and heterologously expressed in Escherichia coli, and the recombinant protein (rThBgl) was purified with high yields. rThBgl was characterized using a comprehensive set of biochemical, spectroscopic, and hydrodynamic techniques. Finally, we determined the crystallographic structure of the recombinant protein at a resolution of 2.6 Å. CONCLUSIONS Using a rational approach, we investigated the biochemical characteristics and determined the three-dimensional protein structure of a β-glucosidase that is highly expressed by T. harzianum under biomass degradation conditions. The methodology described in this manuscript will be useful for the bio-prospection of key enzymes, including cellulases and other accessory enzymes, for the development and/or improvement of enzymatic cocktails designed to produce ethanol from plant biomass.
Collapse
|
research-article |
9 |
24 |
22
|
Zhang Y, Yang J, Luo L, Wang E, Wang R, Liu L, Liu J, Yuan H. Low-Cost Cellulase-Hemicellulase Mixture Secreted by Trichoderma harzianum EM0925 with Complete Saccharification Efficacy of Lignocellulose. Int J Mol Sci 2020; 21:E371. [PMID: 31936000 PMCID: PMC7014229 DOI: 10.3390/ijms21020371] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023] Open
Abstract
Fermentable sugars are important intermediate products in the conversion of lignocellulosic biomass to biofuels and other value-added bio-products. The main bottlenecks limiting the production of fermentable sugars from lignocellulosic biomass are the high cost and the low saccharification efficiency of degradation enzymes. Herein, we report the secretome of Trichoderma harzianum EM0925 under induction of lignocellulose. Numerously and quantitatively balanced cellulases and hemicellulases, especially high levels of glycosidases, could be secreted by T. harzianum EM0925. Compared with the commercial enzyme preparations, the T. harzianum EM0925 enzyme cocktail presented significantly higher lignocellulolytic enzyme activities and hydrolysis efficiency against lignocellulosic biomass. Moreover, 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding and alkali pretreated corn stover. These findings demonstrate a natural cellulases and hemicellulases mixture for complete conversion of biomass polysaccharide, suggesting T. harzianum EM0925 enzymes have great potential for industrial applications.
Collapse
|
research-article |
5 |
23 |
23
|
Abeed AHA, Mahdy RE, Alshehri D, Hammami I, Eissa MA, Abdel Latef AAH, Mahmoud GAE. Induction of resilience strategies against biochemical deteriorations prompted by severe cadmium stress in sunflower plant when Trichoderma and bacterial inoculation were used as biofertilizers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004173. [PMID: 36340332 PMCID: PMC9631322 DOI: 10.3389/fpls.2022.1004173] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 05/28/2023]
Abstract
Background Cadmium (Cd) is a highly toxic heavy metal. Its emission is suspected to be further increased due to the dramatic application of ash to agricultural soils and newly reclaimed ones. Thereby, Cd stress encountered by plants will exacerbate. Acute and chronic exposure to Cd can upset plant growth and development and ultimately causes plant death. Microorganisms as agriculturally important biofertilizers have constantly been arising as eco-friendly practices owing to their ability to built-in durability and adaptability mechanisms of plants. However, applying microbes as a biofertilizer agent necessitates the elucidation of the different mechanisms of microbe protection and stabilization of plants against toxic elements in the soil. A greenhouse experiment was performed using Trichoderma harzianum and plant growth-promoting (PGP) bacteria (Azotobacter chroococcum and Bacillus subtilis) individually and integrally to differentiate their potentiality in underpinning various resilience mechanisms versus various Cd levels (0, 50, 100, and 150 mg/kg of soil). Microorganisms were analyzed for Cd tolerance and biosorption capacity, indoleacetic acid production, and phosphate and potassium solubilization in vitro. Plant growth parameters, water relations, physiological and biochemical analysis, stress markers and membrane damage traits, and nutritional composition were estimated. Results Unequivocal inversion from a state of downregulation to upregulation was distinct under microbial inoculations. Inoculating soil with T. harzianum and PGPB markedly enhanced the plant parameters under Cd stress (150 mg/kg) compared with control plants by 4.9% and 13.9%, 5.6% and 11.1%, 55.6% and 5.7%, and 9.1% and 4.6% for plant fresh weight, dry weight, net assimilation rate, and transpiration rate, respectively; by 2.3% and 34.9%, 26.3% and 69.0%, 26.3% and 232.4%, 135.3% and 446.2%, 500% and 95.6%, and 60% and 300% for some metabolites such as starch, amino acids, phenolics, flavonoids, anthocyanin, and proline, respectively; by 134.0% and 604.6% for antioxidants including reduced glutathione; and by 64.8% and 91.2%, 21.9% and 72.7%, and 76.7% and 166.7% for enzymes activity including ascorbate peroxidase, glutathione peroxidase, and phenylalanine ammonia-lyase, respectively. Whereas a hampering effect mediated by PGP bacterial inoculation was registered on levels of superoxide anion, hydroxyl radical, electrolyte leakage, and polyphenol oxidase activity, with a decrease of 0.53%, 14.12%, 2.70%, and 5.70%, respectively, under a highest Cd level (150 mg/kg) compared with control plants. The available soil and plant Cd concentrations were decreased by 11.5% and 47.5%, and 3.8% and 45.0% with T. harzianum and PGP bacterial inoculation, respectively, compared with non-inoculated Cd-stressed plants. Whereas, non-significant alternation in antioxidant capacity of sunflower mediated by T. harzianum action even with elevated soil Cd concentrations indicates stable oxidative status. The uptake of nutrients, viz., K, Ca, Mg, Fe, nitrate, and phosphorus, was interestingly increased (34.0, 4.4, 3.3, 9.2, 30.0, and 1.0 mg/g dry weight, respectively) owing to the synergic inoculation in the presence of 150 mg of Cd/kg. Conclusions However, strategies of microbe-induced resilience are largely exclusive and divergent. Biofertilizing potential of T. harzianum showed that, owing to its Cd biosorption capability, a resilience strategy was induced via reducing Cd bioavailability to be in the range that turned its effect from toxicity to essentiality posing well-known low-dose stimulation phenomena (hormetic effect), whereas using Azotobacter chroococcum and Bacillus subtilis, owing to their PGP traits, manifested a resilience strategy by neutralizing the potential side effects of Cd toxicity. The synergistic use of fungi and bacteria proved the highest efficiency in imparting sunflower adaptability under Cd stress.
Collapse
|
research-article |
3 |
21 |
24
|
Vrabl P, Schinagl CW, Artmann DJ, Heiss B, Burgstaller W. Fungal Growth in Batch Culture - What We Could Benefit If We Start Looking Closer. Front Microbiol 2019; 10:2391. [PMID: 31681243 PMCID: PMC6805767 DOI: 10.3389/fmicb.2019.02391] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022] Open
Abstract
Since filamentous fungi rapidly adjust their metabolic properties to environmental changes, a rigorous standardization and characterization of cultivation conditions is necessary to obtain meaningful and reproducible results. In batch cultures, which are commonly characterized according to the classical growth curve in textbooks (i.e., lag, exponential, stationary, and declining phase), this is of special difficulty. Although various studies in literature report atypically shaped growth curves of filamentous fungi in batch culture, systematic investigations on this topic are scarce and deviations are barely mentioned in textbooks. Summarizing approximately a decade of observations of growth characteristics from bioreactor batch grown filamentous fungi - in particular two strains (CBS123.823 and CBS123.824) of Penicillium ochrochloron - we demonstrate with a series of highly standardized bioreactor batch culture experiments that the classical growth curve failed to describe growth dynamics of the studied fungi in this work. The nature of the first exhausted nutrient was of remarkable importance for the resulting shape of the growth curve. In all experiments, online respirometry proved to be a powerful tool to distinguish growth phases and revealed more physiological states than expected from the mere biomass curve. In this respect we discuss why "atypical" shaped growth curves often remain unrecognized and that they might be the rule rather than the exception. Acknowledging the importance of the correct presentation of this complex topic in textbooks, we also propose a modified growth curve scheme to sensitize students for potential alternative shaped growth curves.
Collapse
|
research-article |
6 |
21 |
25
|
Jain A, Singh A, Singh S, Sarma BK, Singh HB. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction. J Basic Microbiol 2015; 55:601-6. [PMID: 24920251 DOI: 10.1002/jobm.201400156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/11/2014] [Indexed: 11/07/2022]
Abstract
Oxalic acid (OA) is an important pathogenic factor during early Sclerotinia sclerotiorum-host interaction and might work by reducing hydrogen peroxide production (H2 O2 ). In the present investigation, oxalic acid-induced cell death in pea was studied. Pea plants treated with biocontrol agents (BCAs) viz., Pseudomonas aeruginosa PJHU15, Bacillus subtilis BHHU100, and Trichoderma harzianum TNHU27 either singly and/or in consortium acted on S. sclerotiorum indirectly by enabling plants to inhibit the OA-mediated suppression of oxidative burst via induction of H2 O2 . Our results showed that BCA treated plants upon treatment with culture filtrate of the pathogen, conferred the resistance via. significantly decreasing relative cell death of pea against S. sclerotiorum compared to control plants without BCA treatment but treated with the culture filtrate of the pathogen. The results obtained from the present study indicate that the microbes especially in consortia play significant role in protection against S. sclerotiorum by modulating oxidative burst and partially enhancing tolerance by increasing the H2 O2 generation, which is otherwise suppressed by OA produced by the pathogen.
Collapse
|
|
10 |
20 |