1
|
Wang Q, Chen M, Shan G, Chen P, Cui S, Yi S, Zhu L. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:814-820. [PMID: 28458198 DOI: 10.1016/j.scitotenv.2017.04.167] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 05/26/2023]
Abstract
Due to regulations on bisphenol A (BPA) in many countries, a variety of bisphenol analogues are being widely manufactured and applied. However, there is a big knowledge gap on bioaccumulation and biomagnification of these emerging bisphenols in aquatic organisms. The bioaccumulation and magnification of nine bisphenol analogues in aquatic organisms at different trophic levels collected from Taihu Lake, China, were evaluated. The total concentrations of the nine bisphenols in the lake waters were in the range of 49.7-3480ng/L (mean, 389ng/L). BPA, bisphenol AF (BPAF) and bisphenol S (BPS) were the most predominant analogues in the water. The mean natural logarithm bioaccumulation factor (log BAFs) of BPAF, bisphenol C (BPC), bisphenol Z (BPZ) and bisphenol E (BPE) were greater than BPA, and there was a significantly positive correlation between log BAFs of the biphenols and their octanol-water partition coefficients (log Kow). The trophic magnification factors of BPAF, BPC and BPZ were 2.52, 2.69 and 1.71, respectively, suggesting that they had the potential to biomagnify in the food web. The results of this study call for further investigations on risk assessment of these emerging pollutants in the environment.
Collapse
|
|
8 |
145 |
2
|
Cao L, Liu J, Dou S, Huang W. Biomagnification of methylmercury in a marine food web in Laizhou Bay (North China) and associated potential risks to public health. MARINE POLLUTION BULLETIN 2020; 150:110762. [PMID: 31784261 DOI: 10.1016/j.marpolbul.2019.110762] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The concentrations of total mercury (THg) and methylmercury (MeHg) were assessed in water, sediment and biota (54 species) samples from the coast of Laizhou Bay, to evaluate MeHg biomagnification in Laizhou Bay food web. The trophic web structure was determined with stable isotope ratios. The MeHg concentrations were highly variable among species ranged from 4.8 ng g-1 in primary producers to 411.2 ng g-1 in spotted sea bass. Weight and ecotype were the principal parameters related to the mercury concentrations for most species. The trophic magnification factors (TMFs) for MeHg and THg were 2.09 and 1.69, respectively, indicating that mercury biomagnification is occurring in this marine food web. The estimated weekly intake (EWI) and target hazard quotient (THQ) values demonstrated that consuming predatory fishes from the bay could cause potential health risks to humans.
Collapse
|
|
5 |
42 |
3
|
Haddad SP, Luek A, Scott WC, Saari GN, Burket SR, Kristofco LA, Corrales J, Rasmussen JB, Chambliss CK, Luers M, Rogers C, Brooks BW. Spatio-temporal bioaccumulation and trophic transfer of ionizable pharmaceuticals in a semi-arid urban river influenced by snowmelt. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:231-240. [PMID: 30036753 DOI: 10.1016/j.jhazmat.2018.07.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/20/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Bioaccumulation of pharmaceuticals in aquatic organisms is increasingly reported in the peer-reviewed literature. However, seasonal instream dynamics including occurrence and bioaccumulation across trophic positions are rarely studied, particularly in semiarid streams with flows influenced by seasonal snowmelt and municipal effluent discharges. Thus, we selected East Canyon Creek in Park City, Utah, USA to examine spatio-temporal bioaccumulation of select ionizable pharmaceuticals across trophic positions using trophic magnification factors calculated at incremental distances (0.15, 1.4, 13 miles) downstream from a municipal effluent discharge during spring (May), Summer (August), and fall (October). Nine target analytes were detected in all species during all sampling events. Trophic dilution was consistently observed for amitriptyline, caffeine, diphenhydramine, diltiazem, fluoxetine, and sertraline, regardless of seasonal instream flows or distance from effluent discharge. Calculated TMFs ranged from 0.01-0.71 with negative slopes observed for all regressions of chemical residue in tissue and trophic position. We further presents the first empirical investigation of normalizing pharmaceutical concentrations to lipid, phospholipid or protein fractions using pair matched fish samples. Empirical results identify that normalization of ionizable pharmaceutical residues in aquatic tissues to neutral lipids, polar lipids, or the total protein fraction is inappropriate, though bioaccumulation studies examining influences of internal partitioning (e.g., plasma proteins) are needed.
Collapse
|
|
7 |
41 |
4
|
Kidd KA, Burkhard LP, Babut M, Borgå K, Muir DCG, Perceval O, Ruedel H, Woodburn K, Embry MR. Practical advice for selecting or determining trophic magnification factors for application under the European Union Water Framework Directive. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:266-277. [PMID: 30298984 PMCID: PMC6719707 DOI: 10.1002/ieam.4102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 05/23/2023]
Abstract
European Union Directive 2013/39/EU, which amended and updated the Water Framework Directive (WFD; 2000/60/EC) and its daughter directive (2008/105/EC), sets Environmental Quality Standards for biota (EQSbiota ) for a number of bioaccumulative chemicals. These chemicals pose a threat to both aquatic wildlife and human health via the consumption of contaminated prey or the intake of contaminated food originating from the aquatic environment. EU member states will need to establish programs to monitor the concentration of 11 priority substances in biota and assess compliance against these new standards for the classification of surface water bodies. An EU-wide guidance effectively addresses the implementation of EQSbiota . Flexibility is allowed in the choice of target species used for monitoring to account for both diversity of habitats and aquatic community composition across Europe. According to that guidance, the consistency and comparability of monitoring data across member states should be enhanced by adjusting the data on biota contaminant concentrations to a standard trophic level by use of the appropriate trophic magnification factor (TMF), a metric of contaminant biomagnification through the food web. In this context, the selection of a TMF value for a given substance is a critical issue, because this field-derived measure of trophic magnification can show variability related to the characteristics of ecosystems, the biology and ecology of organisms, the experimental design, and the statistical methods used for TMF calculation. This paper provides general practical advice and guidance for the selection or determination of TMFs for reliable application within the context of the WFD (i.e., adjustment of monitoring data and EQS derivation). Based on a series of quality attributes for TMFs, a decision tree is presented to help end users select a reasonable and relevant TMF. Integr Environ Assess Manag 2019;15:266-277. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
|
research-article |
6 |
35 |
5
|
McLeod AM, Arnot JA, Borgå K, Selck H, Kashian DR, Krause A, Paterson G, Haffner GD, Drouillard KG. Quantifying uncertainty in the trophic magnification factor related to spatial movements of organisms in a food web. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2015; 11:306-318. [PMID: 25376874 DOI: 10.1002/ieam.1599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/08/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Trophic magnification factors (TMFs) provide a method of assessing chemical biomagnification in food webs and are increasingly being used by policy makers to screen emerging chemicals. Recent reviews have encouraged the use of bioaccumulation models as screening tools for assessing TMFs for emerging chemicals of concern. The present study used a food web bioaccumulation model to estimate TMFs for polychlorinated biphenyls (PCBs) in a riverine system. The uncertainty associated with model predicted TMFs was evaluated against realistic ranges for model inputs (water and sediment PCB contamination) and variation in environmental, physiological, and ecological parameters included within the model. Finally, the model was used to explore interactions between spatial heterogeneity in water and sediment contaminant concentrations and theoretical movement profiles of different fish species included in the model. The model predictions of magnitude of TMFs conformed to empirical studies. There were differences in the relationship between the TMF and the octanol-water partitioning coefficient (KOW ) depending on the modeling approach used; a parabolic relationship was predicted under deterministic scenarios, whereas a linear TMF-KOW relationship was predicted when the model was run stochastically. Incorporating spatial movements by fish had a major influence on the magnitude and variation of TMFs. Under conditions where organisms are collected exclusively from clean locations in highly heterogeneous systems, the results showed bias toward higher TMF estimates, for example the TMF for PCB 153 increased from 2.7 to 5.6 when fish movement was included. Small underestimations of TMFs were found where organisms were exclusively sampled in contaminated regions, although the model was found to be more robust to this sampling condition than the former for this system.
Collapse
|
|
10 |
34 |
6
|
Liu Y, Luo X, Zeng Y, Tu W, Deng M, Wu Y, Mai B. Species-specific biomagnification and habitat-dependent trophic transfer of halogenated organic pollutants in insect-dominated food webs from an e-waste recycling site. ENVIRONMENT INTERNATIONAL 2020; 138:105674. [PMID: 32234680 DOI: 10.1016/j.envint.2020.105674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Aquatic, amphibious, and terrestrial organisms in or around a pond that was contaminated by e-waste were collected and persistent halogenated organic pollutants (HOPs) for these species were analyzed. Based on the stable isotope and dietary composition, the aquatic and terrestrial food webs and several insect-dominated food chains including insects - toads, insects - lizards, and insects - birds were constructed. Biomagnification factors (BMFs) for insect-dominated food chains and trophic magnification factors (TMFs) in aquatic and terrestrial food webs were calculated. The BMFs of HOPs (except DBDPE) in insect - bird food chains were significantly higher than those in insect - toad and insect - lizard food chains, indicating that HOPs accumulated more easily in homeotherms than in poikilotherms. Trophic magnification was present for most of the PCB congeners in both aquatic and terrestrial food webs. Differences between the trophic transfer of halogenated flame retardant in terrestrial and aquatic food webs were observed, with trophic magnification in the terrestrial food web but trophic dilution in the aquatic food web for most of chemicals (except for lower brominated PBDE congeners). Meanwhile, the contour plots of TMFs across combinations of log KOW and log KOA for terrestrial food web were distinct from those for aquatic food web. These results indicate that the biomagnification mechanisms of HOPs in aquatic food webs are different from those in terrestrial food webs, and further suggest that the bioaccumulation of contaminants in terrestrial ecosystems cannot be directly deduced from aquatic ecosystems.
Collapse
|
|
5 |
28 |
7
|
Miranda DDA, Peaslee GF, Zachritz AM, Lamberti GA. A worldwide evaluation of trophic magnification of per- and polyfluoroalkyl substances in aquatic ecosystems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1500-1512. [PMID: 35029321 DOI: 10.1002/ieam.4579] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
A review of the published literature on the trophic magnification factor (TMF) for per- and polyfluoroalkyl substances (PFAS) was conducted to assess how biomagnification varies across aquatic systems worldwide. Although the TMF has been recognized as the most reliable tool for assessing the biomagnification of organic contaminants, peer-reviewed studies reporting TMFs for PFAS are few and with limited geographical distribution. We found 25 published studies of the biomagnification of 35 specific PFAS, for which the TMF was generated through linear regression of individual log-PFAS concentration and the δ15 N-based trophic position of each organism in the food webs. Studies were concentrated mainly in China, North America, and Europe, and the most investigated compound was perfluorooctane sulfonate (PFOS), which was frequently shown to be biomagnified in the food web (TMFs ranging from 0.8 to 20). Other long-chain carboxylates displayed substantial variation in trophic magnification. Observed differences in the TMF were associated with length of the food web, geographic location, sampling methodologies, tissue analyzed, and distance from known direct PFAS inputs. In addition to biomagnification of legacy PFAS, precursor substances were observed to bioaccumulate in the food web, which suggests they may biotransform to more persistent PFAS compounds in upper trophic levels. This review discusses the variability of environmental characteristics driving PFAS biomagnification in natural ecosystems and highlights the different approaches used by each study, which can make comparisons among studies challenging. Suggestions on how to standardize TMFs for PFAS are also provided in this review. Integr Environ Assess Manag 2022;18:1500-1512. © 2022 SETAC.
Collapse
|
Review |
3 |
27 |
8
|
Liu Y, Cui S, Ma Y, Jiang Q, Zhao X, Cheng Q, Guo L, Jia H, Lin L. Brominated flame retardants (BFRs) in marine food webs from Bohai Sea, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145036. [PMID: 33578148 DOI: 10.1016/j.scitotenv.2021.145036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
In this study, brominated flame retardants (BFRs), including 13 polybrominated diphenyl ethers (PBDEs) and 17 novel brominated flame retardants (NBFRs) are determined in 18 species (including plankton, invertebrate, and fish) from Bohai Sea, China. Trophic transfer of these compounds is also assessed in the marine food web. Significant trophic magnification (p < 0.01) for 11 PBDE congeners (BDE-17, BDE-28, BDE-47, BDE-49, BDE-66, BDE-85, BDE-99, BDE-100, BDE-153, BDE154 and BDE-183) is observed. No significant correlation is observed for BDE-138 (p = 0.06), and significant trophic dilution is observed for BDE-209 (p < 0.0001). In PBDEs, BDE-66 has the highest TMF value of 3.9 (95% confidence interval (CI): 3.2-4.7), followed by BDE-47 (TMF: 3.8, 95% CI: 2.6-5.4) and BDE-28 (3.0, 2.2-4.1). For NBFRs, ATE, TBECH (include α- and β-isomer), PBBZ, TBCO (include α- and β-isomer), PBT, DPTE, HBBZ, PBBA, BTBPE, PBEB and HCDBCO are observed significant trophic magnification (p < 0.01), significant trophic dilution is observed for BATE (p < 0.01), DBDPE (p < 0.001) and OBIND (p < 0.0001), no significant correlation is observed for p-TBX (p = 0.77). In NBFRs, PBT has the highest TMF value of 4.5 (95% CI: 3.1-6.3), followed by PBEB (TMF: 4.0, 95% CI: 2.1-7.6) and HCDBCO (3.9, 3.1-5.0). Regression analysis between KOW and TMF values of BFRs suggest that TMF values have a trend of first rising and then falling against the values of log KOW. Generally, chemicals with higher KOW value have stronger trophic magnification capacity than those with lower ones, but due to the influence of bioavailability, the trophic magnification ability of the superhydrophobic compounds may be inhibited. To our best knowledge, this is the first report of trophic transfer of NBFRs in marine food web and trophic transfer of 9 NBFRs (α-TBECH, p-TBX, BATE, PBBZ, α-TBCO, β-TBCO, DPTE, OBIND, and HCDBCO) in aquatic food web.
Collapse
|
|
4 |
27 |
9
|
Cui L, Wang S, Gao L, Huang H, Xia D, Qiao L, Liu W. Concentrations and trophic magnification of polychlorinated naphthalenes (PCNs) in marine fish from the Bohai coastal area, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:876-884. [PMID: 29248855 DOI: 10.1016/j.envpol.2017.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated naphthalenes (PCNs) have been found widely in the aquatic environment and can be transferred through food chains, which can magnify or dilute their toxic effects on humans. In this study, PCNs were analyzed in samples of 17 species of fish with different dietary habits collected in the Bohai coastal area in China. Dichloronaphthalenes, which have rarely been quantified in previous studies, were determined. The total PCN concentrations were from 7.3 to 214 pg/g wet weight, and the highest concentration was found in ditrema. The trichloronaphthalenes were the most abundant PCNs, followed by the dichloronaphthalenes and pentachloronaphthalenes. The relatively high contributions of the less-chlorinated homologs to the total PCN concentrations indicated that the main PCN sources around the Bohai were industrial thermal process emissions rather than technical PCN formulations. The trophic magnification factors of the PCN homologs were from 3.1 to 9.9, indicating that PCNs were biomagnified by fish. The trophic magnification factor of dichloronaphthalene and trichloronaphthalenes was 5.8 and 6.4, respectively, indicating for the first time that dichloronaphthalene and trichloronaphthalenes can undergo trophic magnification by fish. The two highest trophic magnification factors were for the pentachloronaphthalenes and hexachloronaphthalenes, probably because these PCNs having fewer vicinal carbon atoms without chlorine atoms attached are less easily biotransformed than the other homologs. The dioxin-like toxicities of the PCNs in the samples, expressed as potential toxic equivalences (TEQs), were assessed. The highest total TEQ was 0.0090 pg/g ww, in Pacific herring, and the hexachloronaphthalenes were the dominant contributors to the total TEQs in the fish samples. The PCN TEQs were much lower than the polychlorinated dibenzo-p-dioxin and dibenzofuran and dioxin-like polychlorinated biphenyl TEQs found in fish from the Bohai in previous studies, and made marginal contributions to overall human exposure to dioxin-like TEQs, suggesting that PCNs pose no toxicological concerns.
Collapse
|
|
7 |
25 |
10
|
Kim JT, Choi YJ, Barghi M, Kim JH, Jung JW, Kim K, Kang JH, Lammel G, Chang YS. Occurrence, distribution, and bioaccumulation of new and legacy persistent organic pollutants in an ecosystem on King George Island, maritime Antarctica. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124141. [PMID: 33087285 DOI: 10.1016/j.jhazmat.2020.124141] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and bioaccumulation of new and legacy persistent organic pollutants (POPs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), hexabromocyclododecanes (HBCDs), and Dechlorane Plus (DPs) and their related compounds (Dechloranes) in an ecosystem on King George Island, Antarctica are investigated. The new and legacy POPs were widely detected in the animal samples collected from Antarctica, which included Limpet, Antarctic cod, Amphipods, Antarctic icefish, Gentoo and Chinstrap penguins, Kelp gull, and South polar skua. The trophic magnification factors indicated that the levels of PCNs and HBCDs, as well as the legacy POPs, were magnified through the food web, whereas DPs might be diluted through the trophic levels contradicting the classification of Dechloranes as POPs. This is one of the first extensive surveys on PCNs, HBCDs, and Dechloranes, which provides unique information on the distribution and trophic biomagnification potential of the new and legacy POPs in the Antarctic region.
Collapse
|
|
4 |
23 |
11
|
Madgett AS, Yates K, Webster L, McKenzie C, Brownlow A, Moffat CF. The concentration and biomagnification of PCBs and PBDEs across four trophic levels in a marine food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119752. [PMID: 35841989 DOI: 10.1016/j.envpol.2022.119752] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Contracting Parties to the OSPAR Convention for the Protection of the Maine Environment of the North-East Atlantic are required to undertake monitoring and assessment of both inorganic and organic contaminants. There is a requirement to assess contaminants across different trophic levels on an ecosystem-specific basis. However, this is currently constrained by the availability of relevant samples to cover the full range of trophic levels. This study investigates the variability (inter- and intra-species variation) of the concentrations and distributions of thirty-two polychlorinated biphenyl (PCB) congeners and nine polybrominated diphenyl ether (PBDE) congeners in twenty-six species covering four trophic levels from different geographic locations around Scotland. Trophic magnification factors (TMFs) were calculated using a traditional method and a balanced method for both the ICES-7 PCBs and BDE47, to refine and improve the application of TMFs to assess and predict biomagnification risk to biota in the marine environment. There were clear differences in congener percentage distribution between sample categories and species, with differences influenced by physiological processes and eco-biological parameters. Trophic magnification was found to occur for the ICES-7 PCBs and BDE47 using the traditional method, with the highest degree of trophic magnification reported for CB52. An unbalanced dataset was found to influence the calculated TMF and in some cases, the overall conclusion of the trophic transfer of PCB and PBDE congeners. The balanced method is highly recommended for calculating TMFs to ensure that the TMF is a true indication of the biomagnification potential, particularly when conducting regional comparisons for which sampling requirements are difficult to achieve.
Collapse
|
|
3 |
22 |
12
|
Kim D, Cho HE, Won EJ, Kim HJ, Lee S, An KG, Moon HB, Shin KH. Environmental fate and trophic transfer of synthetic musk compounds and siloxanes in Geum River, Korea: Compound-specific nitrogen isotope analysis of amino acids for accurate trophic position estimation. ENVIRONMENT INTERNATIONAL 2022; 161:107123. [PMID: 35147083 DOI: 10.1016/j.envint.2022.107123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Despite the extensive usage of synthetic musk compounds (SMCs) and siloxanes in various personal care products (PCPs), trophic magnification of such chemicals in aquatic environments remains unexplored. In June and September 2020, eleven SMCs and nineteen siloxanes were measured in water, sediments, and biota. Samples were collected from two sites where levels were expected to be influenced by the distance from the wastewater treatment plant (WWTP) in the Geum River, Republic of Korea, were expected. High concentrations of SMCs and siloxanes entered through WWTP were measured in water, sediment, and biota at the both sites and both seasons. The δ15N of amino acids provided a high-resolution food web and accurate trophic position (TP), which is an important factor for determining the trophic magnification factor (TMF). Among 24 TMFs, 19 of them were <1, ranging 0.7-0.8 for 1,3,4,6,7,8‑hexahydro‑4,6,6,7,8,8‑hexamethyl‑cyclopenta‑γ‑2‑benzopyran (HHCB), 0.6-0.8 for 6-Acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN), 0.7-0.8 for 4-tert-Butyl-3,5-dinitro-2,6-dimethylacetophenone (MK), 0.7-0.9 for octamethylcyclotetrasiloxane (D4), 0.1-0.4 for decamethylcyclopentasiloxane (D5), and 0.04-0.8 for dodecamethylcyclohexasiloxane (D6), and the remaining ones including HHCB, AHTN, MK, and D4 showed values close to 1 or slightly higher (TMF range: 1.0-2.3) indicating no or a little trophic magnification. The TMFs of these compounds were constant across sites and seasons. The TMF values of PCPs might be affected by species specificity and food web structure rather than by chemical properties such as log Kow, which describes a wide range of TMF values in various environments. This study presents valuable implications for assessing risk and managing environmental fate and trophic transfer of SMCs and siloxanes in freshwater environments.
Collapse
|
|
3 |
16 |
13
|
Kurt-Karakus PB, Muir DCG, de Jourdan B, Teixeira C, Epp Martindale J, Embers H, Wang X, Keir M, Backus S. Bioaccumulation of Selected Halogenated Organic Flame Retardants in Lake Ontario. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1198-1210. [PMID: 30901092 DOI: 10.1002/etc.4413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The trophic magnification of polybrominated diphenyl ethers (PBDEs) and selected nonlegacy halogenated organic compounds (HOCs) was determined in the food web of Lake Ontario (ON, Canada). In all, 28 Br3 -Br8 -PBDEs and 24 HOCs (10 of which had not been targeted previously) were analyzed. Average concentrations of Σ28 PBDEs in fish ranged between 79.7 ± 54.2 ng/g lipid weight in alewife (Alosa pseudoharengus) and 815 ± 695 ng/g lipid weight in lake trout (Salvelinus namaycush). For invertebrates, concentrations were between 13.4 ng/g lipid weight (net plankton; >110 μm) and 41.9 ng/g lipid weight in Diaporeia (Diaporeia hoyi). Detection frequency (DF) for HOCs was highest for anti-Dechlorane Plus (anti-DDC-CO), 1,3-diiodobenzene (1,3-DiiB), tribromo-methoxy-methylbenzene (ME-TBP), allyl 2,4,6-tribromophenyl ether (TBP-AE), pentabromocyclododecene (PBCYD), α+β-tetrabromocylcooctane (TBCO), 2-bromoallyl 2,4,6-tribromophenyl ether (BATE), and pentabromotoluene (PBT; DF for all = 100% in lake trout). Tetrabromoxylene (TBX), dibromopropyl 2,4,6-tribromophenyl ether (TBP-DBPE), and syn-DDC-CO were also frequently detected in trout (DF = 70-78%), whereas 2,3,4,5,6-pentabromoethyl benzene (PBEB) was detected only in plankton. Several HOCs were reported in aquatic biota in the Great Lakes (USA/Canada) for the first time in the present study, including PBCYD, 1,3DiiB, BATE, TBP-DBPE, PBT, α + β-TBCO, and ME-TBP. The Br4-6 -BDEs (-47, -85, -99, -100, -153, and -154) all had prey-weighted biomagnification factors (BMFPW ) values >6, whereas BMFPW values for Br7-8 -BDEs were <1. The highest BMFPW values of non-PBDEs were for TBP-DBPE (10.6 ± 1.34) and ME-TBP (4.88 ± 0.60), whereas TBP-AE had a BMFPW value of <1. Significant (p ≤ 0.05) trophic magnification factors (TMFs), both positive and negative, were found for Br4-8- BDEs (BDE 196 = 0.4; BDE 154 = 9.5) and for bis(2,4,6-tribromophenoxy)ethane (BTBPE; 0.53), PBCYD (1.8), 1,3-DiiB (0.33), and pentabromobenzene (PBB; 0.25). Food chain length was found to have a significant influence on the TMF values. Environ Toxicol Chem 2019;38:1198-1210. © 2019 SETAC.
Collapse
|
|
6 |
13 |
14
|
Azevedo-Silva CE, Almeida R, Carvalho DP, Ometto JPHB, de Camargo PB, Dorneles PR, Azeredo A, Bastos WR, Malm O, Torres JPM. Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon. ENVIRONMENTAL RESEARCH 2016; 151:286-296. [PMID: 27517756 DOI: 10.1016/j.envres.2016.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
The present study assesses mercury biomagnification and the trophic structure of the ichthyofauna from the Puruzinho Lake, Brazilian Amazon. In addition to mercury determination, the investigation comprised the calculation of Trophic Magnification Factor (TMF) and Trophic Magnification Slope (TMS), through the measurements of stable isotopes of carbon (δ13C) and nitrogen (δ15N) in fish samples. These assessments were executed in two different scenarios, i.e., considering (1) all fish species or (2) only the resident fish (excluding the migratory species). Bottom litter, superficial sediment and seston were the sources used for generating the trophic position (TP) data used in the calculation of the TMF. Samples from 84 fish were analysed, comprising 13 species, which were categorized into four trophic guilds: iliophagous, planktivorous, omnivorous and piscivorous fish. The δ13C values pointed to the separation of the ichthyofauna into two groups. One group comprised iliophagous and planktivorous species, which are linked to the food chains of phytoplankton and detritus. The other group was composed by omnivorous and piscivorous fish, which are associated to the trophic webs of phytoplankton, bottom litter, detritus, periphyton, as well as to food chains of igapó (blackwater-flooded Amazonian forests). The TP values suggest that the ichthyofauna from the Puruzinho Lake is part of a short food web, with three well-characterized trophic levels. Mercury concentrations and δ13C values point to multiple sources for Hg input and transfer. The similarity in Hg levels and TP values between piscivorous and planktivorous fish suggests a comparable efficiency for the transfer of this metal through pelagic and littoral food chains. Regarding the two abovementioned scenarios, i.e., considering (1) the entire ichthyofauna and (2) only the resident species, the TMF values were 5.25 and 4.49, as well as the TMS values were 0.21 and 0.19, respectively. These findings confirm that Hg biomagnifies through the food web of Puruzinho Lake ichthyofauna. The migratory species did not significantly change mercury biomagnification rate in Puruzinho Lake; however, they may play a relevant role in Hg transport. The biomagnification rate (TMS value) in Puruzinho Lake was higher than the average values for its latitude, being comparable to TMS values of temperate and polar systems (marine and freshwater environments).
Collapse
|
|
9 |
12 |
15
|
Penland TN, Grieshaber CA, Kwak TJ, Cope WG, Heise RJ, Sessions FW. Food web contaminant dynamics of a large Atlantic Slope river: Implications for common and imperiled species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1062-1077. [PMID: 29758859 DOI: 10.1016/j.scitotenv.2018.03.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/06/2018] [Accepted: 03/21/2018] [Indexed: 05/23/2023]
Abstract
Persistent and bioaccumulative contaminants often reach concentrations that threaten aquatic life by causing alterations in organism behavior and development, disruption of biological processes, reproductive abnormalities, and mortality. The objectives of this research were to determine the aquatic food web structure and trophic transfer and accumulation of contaminants within a riverine ecosystem and identify potential stressors to the health of an imperiled fish, the robust redhorse (Moxostoma robustum) and other species of conservation concern in a large Atlantic Slope (USA) river. Trophic position was determined for food web taxa by stable isotope analyses of representative producers, consumers, and organic matter of the Yadkin-Pee Dee River of North Carolina and South Carolina. Contaminant analyses were performed on water, sediment, organic matter, and aquatic biota to assess the prevalence and accumulation of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), current use pesticides (CUPs), polycyclic aromatic hydrocarbons (PAHs), and selected metals. Contaminants were prevalent in the environment and food web components of the river. PCBs were detected in 32% of biotic samples (mean 0.24μg/g dry weight [DW], range 0.01-3.33μg/g DW), and DDTs (legacy OCPs and metabolites) were detected in 90% (mean 0.014μg/g DW, range 0.0004-0.29μg/g DW). The trace metals manganese and cadmium exceeded published threshold effect concentrations in sediment (460 and 0.99μg/g DW, respectively). Mercury was detected in all food web samples exhibiting a mean of 0.61μg/g DW and range 0.006-2.35μg/g DW (mean 0.13μg/g wet weight [WW], range 0.001-0.6μg/g WW). Concentrations exceeded the 0.2μg/g WW aquatic life criterion for mercury in 38% of fish samples. Fish trophic magnification factors (TMFs; range 0.33-3.75) indicated that contaminant accumulation occurred from both water and dietary sources. The combination of analytical approaches applied here provides new insight into contaminant dynamics with conservation implications.
Collapse
|
|
7 |
11 |
16
|
Valladolid-Garnica DE, Jara-Marini ME, Torres-Rojas YE, Soto-Jiménez MF. Distribution, bioaccumulation, and trace element transfer among trophic levels in the southeastern Gulf of California. MARINE POLLUTION BULLETIN 2023; 194:115290. [PMID: 37480802 DOI: 10.1016/j.marpolbul.2023.115290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Our understanding of the trophic transfer of pollutants in marine subtropical ecosystems remains limited due to the complexity of their food webs. Thus, we aimed to evaluate Cd, Cu, Mn, Pb, and Zn sources, incorporation, and trophodynamics throughout the food web of the southeastern Gulf of California by stomach content analysis, stable isotope analysis, isotope mixing models, and trace element analysis in biological and environmental matrices. The food web comprised three main trophic guilds (TG1, TG2, and TG3). The bioaccumulation of Cd and Zn from seawater was efficient (> 1000) in TG2 and TG3. Bioaccumulation factor from sediment (BSAF >1) evidenced of Cd in all trophic guilds. In addition, non-trophic Cd relationships were identified in the food web. Based on the trophic magnification factor (TMF), Mn and Pb showed biodilution (TMFMn = 0.38; TMFPb = 0.16), while Cu and Zn exhibited biomagnification (TMFCu = 2.08; TMFZn = 3.31).
Collapse
|
|
2 |
5 |
17
|
Tran-Lam TT, Thi Phung AT, Thi Pham P, Quang Bui M, Hai Dao Y, Truong Le G. Occurrence, biomagnification, and risk assessment of parabens and their metabolites in marine fish: The case study of Vietnam. CHEMOSPHERE 2023; 344:140221. [PMID: 37741370 DOI: 10.1016/j.chemosphere.2023.140221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Parabens have emerged as the primary preservative of choice in numerous consumer goods, prompting growing apprehension regarding their potential for human exposure. The study employed the optimized QuEChERs sample extraction method and the UHPLC-Q-Orbitrap HRMS system to generate the initial contamination profiles of seven parabens and their four metabolites in a total of 114 fish samples found along the coastline of Vietnam. The findings of the study indicated that methylparaben was the predominant substance detected, exhibiting the highest concentration in the largehead hairtail (Trichiurus lepturus) species at 32.8 ng g-1 dry weight (dw). Additionally, the metabolites with the highest detectable concentrations in the largehead hairtail were found to be 4-HB and 3,4-DHB, with levels of 8822.0 ng g-1 dw and 3490.8 ng g-1 dw, respectively. Besides, the study reveals notable variations in paraben concentrations across three distinct regions in Vietnam, namely the Central, North, and South (Mann-Whitney U test, p < 0.05). The trophic magnification factors (TMF) for methylparaben, ethylparaben, ethyl protocatechuate, and 4-hydroxybenzoic acid exhibited values exceeding 1, indicating substantial biomagnification of these substances within the marine food web of Vietnam. Additionally, noteworthy positive associations have been observed between methylparaben and ethylparaben, as well as their respective metabolites. Based on the findings of the study, it can be concluded that there is no direct impact of seafood consumption on human health in Vietnam.
Collapse
|
|
2 |
5 |
18
|
Zhang H, Teng Y, Doan TTT, Yat YW, Chan SH, Kelly BC. Stable nitrogen and carbon isotopes in sediments and biota from three tropical marine food webs: Application to chemical bioaccumulation assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2521-2532. [PMID: 28300282 DOI: 10.1002/etc.3796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/24/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Studies of trophodynamics and contaminant bioaccumulation in tropical marine ecosystems are limited. The present study employed stable isotope and trace contaminant analysis to assess sources of primary productivity, trophic interactions, and chemical bioaccumulation behavior in 2 mangrove food webs and 1 offshore coastal marine food web in Singapore. Samples of sediment, phytoplankton, mangrove leaves, clams, snails, crabs, worms, prawns, and fishes were analyzed for stable carbon and nitrogen isotope values, as well as concentrations of persistent organic pollutants. In the mangrove food webs, consumers exhibited similar δ13 C values, probably because of the well-mixed nature of these systems. However, the 2 primary consumers (common nerite and rodong snail) exhibited distinct δ13 C values (-21.6‰ vs -17.7‰), indicating different carbon sources. Fish from Singapore Strait exhibited similar δ13 C values, indicating common carbon sources in this offshore marine food web. The highest trophic level was found in glass perchlet (trophic level = 3.3) and tilapia (trophic level = 3.4) in the 2 mangrove food webs and grunter (trophic level = 3.7) in the Singapore Strait food web. Concentrations of polychlorinated biphenyl (PCB 153) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) concentrations ranged from 0.9 to 84.6 ng/g lipid weight and from <0.2 to 267.4 ng/g lipid weight, respectively. The trophic magnification factors of PCB 153 and p,p'-DDE ranged between 1.63 and 4.62, indicating biomagnification in these tropical marine food webs. The findings provide important information that will aid future chemical bioaccumulation assessment initiatives. Environ Toxicol Chem 2017;36:2521-2532. © 2017 SETAC.
Collapse
|
|
8 |
2 |
19
|
Kim SK, Kang CK. Temporal and spatial variations in hydrophobicity dependence of field-derived metrics to assess the biomagnification potential of hydrophobic organochlorine compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:300-312. [PMID: 31295584 DOI: 10.1016/j.scitotenv.2019.06.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
The bioaccumulation potential ("B") of compounds is one of the major considerations in assessing chemical hazards. A variety of metrics, including hydrophobicity (KOW), bioconcentration factor (BCF), bioaccumulation factor (BAF), and to an increasing degree biomagnification factor (BMF) and trophic magnification factor (TMF), are widely used to characterize "B". In the present study, the variation and hydrophobicity-dependence of each of these metrics for recalcitrant hydrophobic organochlorine compounds (HOCs) was determined from four food webs collected in two different seasons at two different sites of the Han River, Korea. Measured environmental parameters and stable isotopic ratios exhibited distinct seasonal and spatial shifts in the ecological condition of the river. The observed values of individual metrics were positively and linearly related with their log KOW values, but linearized slopes differed significantly among the four food webs, with the largest variation being exhibited by TMF and log fugacity ratio (log F) followed by log BMF > log BAF. When based on field-derived mean linear equations, different log KOW values were obtained for a critical point for the identification of biomagnification of HOCs. Consequently, the biomagnification potential of HOCs and its relationship with KOW can vary, being seriously affected by not only on the metrics used for its assessment but also on spatial and temporal variations in ecological conditions. Our results indicate that TMF for "B" might be more robust than the other metrics but the development of new methodologies to reduce uncertainty and to enhance the accuracy of TMFs by correcting for ecological variation, together with addition efforts to harmonize individual metrics for "B".
Collapse
|
|
6 |
|
20
|
Kumsopar S, Charoenpong C, He S, Bustamante P, Wee B, Wang X, Chinfak N, Kamdee K, Sompongchaiyakul P. Mercury trophic transfer and biomagnification in food webs within a tropical embayment as evidenced by nitrogen and carbon stable isotope analysis. ENVIRONMENTAL RESEARCH 2025; 278:121599. [PMID: 40252794 DOI: 10.1016/j.envres.2025.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Mercury (Hg) contamination in marine ecosystems poses a significant environmental threat due to its high toxicity, persistence in the environment, and tendency to bioaccumulate in organisms and biomagnify in food webs. Understanding how Hg moves through these food webs is essential for assessing its ecological and health impacts. To investigate the trophic dynamics of Hg in Rayong Bay, Gulf of Thailand, we collected marine organisms from the pelagic and benthic food webs during 2022-2023 and analyzed the total mercury content (THg) in plankton (phytoplankton, zooplankton, and fish larvae) and in 81 marine animal species. Furthermore, the stable nitrogen and carbon isotope values (δ15N and δ13C) were measured to establish their trophic levels (TLs) and potential food sources in the food web. Based on these analyses, we calculated the biomagnification factor using TL-adjusted ratios (BMFnorm) and trophic magnification factor (TMF) for the different TLs. BMFnorm values exceeded 1.0 in over 40 % of cases for both the pelagic and benthic food webs, indicating THg biomagnification from prey to predator. Notably, the pelagic food web exhibited a markedly higher TMF value (TMF = 6.68) compared to that of the benthic food web (TMF = 2.06), suggesting stronger Hg biomagnification within the pelagic food web. Our findings also highlight the consumption risk of Hg in some fish species in the Rayong Bay food webs, emphasizing the need for continued monitoring and mitigation strategies to safeguard both human and ecological health.
Collapse
|
|
1 |
|
21
|
Eduardo Azevedo-Silva C, Carolina Pizzochero A, Galvão PMA, Ometto JPHB, de Camargo PB, Azeredo A, Coelho-Souza SA, Das K, Bastos WR, Malm O, Dorneles PR. Trophic dynamics of methylmercury and trace elements in a remote Amazonian Lake. ENVIRONMENTAL RESEARCH 2023; 237:116889. [PMID: 37595826 DOI: 10.1016/j.envres.2023.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Information on pollutant trophodynamics can be crucial for public health, as contaminated food consumption may lead to deleterious effects. This study was performed in Puruzinho Lake, a remote body of water in the Brazilian Amazon from which a riparian human population obtains an important part of its animal protein intake. Samples from 92 individuals, comprising 13 species and four trophic guilds (iliophagous, planktivorous, omnivorous, and piscivorous fish) were analysed for the determination of trace elements (Fe, Cr, Mn, Ni, Zn, Ca, Sr, Cd, Sn, Tl and Pb) and methylmercury concentrations. Samples from the same individuals had already been analysed for stable isotope (SI) measurements (δ13C and δ15N) in a previous investigation and the SI data have been statistically treated with those generated in this study for the evaluation of trophic dynamics of contaminants. Methylmercury was the only analyte that biomagnified, presenting TMF values of 4.65 and 4.55 for total and resident ichthyofauna, respectively. Trace elements presented either trophic dilution or independence from the trophic position, constituting a behaviour that was coherent with that found in the scientific literature. The similarity between Ni behaviour through the trophic web to that of essential elements contributes to the discussion on the essentiality of this metal to fish. Considering the Non-cancer Risk Assessment, the calculated Target Hazard Quotient (THQ) values were higher than 1.0 for all analysed individuals for methylmercury, as well as for only one individual for nickel. No other analyte rendered THQ values higher than 1.0.
Collapse
|
|
2 |
|