1
|
He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on Immunogenomic profiling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:327. [PMID: 30594216 PMCID: PMC6310928 DOI: 10.1186/s13046-018-1002-1] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
Background Abundant evidence shows that triple-negative breast cancer (TNBC) is heterogeneous, and many efforts have been devoted to identifying TNBC subtypes on the basis of genomic profiling. However, few studies have explored the classification of TNBC specifically based on immune signatures that may facilitate the optimal stratification of TNBC patients responsive to immunotherapy. Methods Using four publicly available TNBC genomics datasets, we classified TNBC on the basis of the immunogenomic profiling of 29 immune signatures. Unsupervised and supervised machine learning methods were used to perform the classification. Results We identified three TNBC subtypes that we named Immunity High (Immunity_H), Immunity Medium (Immunity_M), and Immunity Low (Immunity_L) and demonstrated that this classification was reliable and predictable by analyzing multiple different datasets. Immunity_H was characterized by greater immune cell infiltration and anti-tumor immune activities, as well as better survival prognosis compared to the other subtypes. Besides the immune signatures, some cancer-associated pathways were hyperactivated in Immunity_H, including apoptosis, calcium signaling, MAPK signaling, PI3K–Akt signaling, and RAS signaling. In contrast, Immunity_L presented depressed immune signatures and increased activation of cell cycle, Hippo signaling, DNA replication, mismatch repair, cell adhesion molecule binding, spliceosome, adherens junction function, pyrimidine metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and RNA polymerase pathways. Furthermore, we identified a gene co-expression subnetwork centered around five transcription factor (TF) genes (CORO1A, STAT4, BCL11B, ZNF831, and EOMES) specifically significant in the Immunity_H subtype and a subnetwork centered around two TF genes (IRF8 and SPI1) characteristic of the Immunity_L subtype. Conclusions The identification of TNBC subtypes based on immune signatures has potential clinical implications for TNBC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-1002-1) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
350 |
2
|
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J, Du G. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B 2021; 11:2783-2797. [PMID: 34589397 PMCID: PMC8463268 DOI: 10.1016/j.apsb.2021.01.001] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial-mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.
Collapse
Key Words
- ABCA3, ATP-binding cassette transporter A3
- APCs, antigen-presenting cells
- Biomarkers
- CAFs, cancer-associated fibroblasts
- CCRCC, clear-cell renal cell carcinoma
- CD-UPRT, cytosine deaminase-uracil phosphoribosyltransferase
- CDH3, cadherin 3
- CRC, colorectal cancer
- DC, dendritic cells
- DEXs, DC-derived exosomes
- DLBCL, diffuse large B-cell lymphoma
- DNM3, dynamin 3
- Del-1, developmental endothelial locus-1
- Drug delivery
- Drug resistance
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- ESCRT, endosomal sorting complex required for transport
- Exosomes
- GPC1, glypican-1
- HA, hyaluronic acid
- HCC, hepatocellular carcinoma
- HIF1, hypoxia-inducible factor 1
- HTR, hormone therapy-resistant
- HUVECs, human umbilical vein endothelial cells
- ILVs, intraluminal vesicles
- MDSCs, myeloid-derived suppressor cells
- MIF, migration inhibitory factor
- MSC, mesenchymal stem cells
- MVB, multivesicular body
- NKEXOs, natural killer cell-derived exosomes
- NNs, nanoparticles
- NSCLC, non-small cell lung cancer
- PA, phosphatidic acid
- PCC, pheochromocytoma
- PD-L1, programmed cell death receptor ligand 1
- PDAC, pancreatic ductal adenocarcinoma
- PGL, paraganglioma
- PI, phosphatidylinositol
- PS, phosphatidylserine
- PTRF, polymerase I and transcript release factor
- RCC, renal cell carcinoma
- SM, sphingomyelin
- SNARE, soluble NSF-attachment protein receptor
- TEX, tumor-derived exosomes
- TSG101, tumor susceptibility gene 101
- Tumor immunity
- Tumor metastasis
- circRNAs, circular RNAs
- dsDNA, double stranded DNA
- hTERT, human telomerase reverse transcriptase
- lamp2b, lysosome-associated membrane glycoprotein 2b
- lncRNAs, long non-coding RNAs
- miRNA, microRNA
- mtDNA, mitochondrial DNA
- ncRNA, non-coding RNAs
Collapse
|
Review |
4 |
288 |
3
|
Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, Peng Q. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater 2019; 86:1-14. [PMID: 30597259 DOI: 10.1016/j.actbio.2018.12.045] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023]
Abstract
Development of functional nanomaterials is of great importance and significance for advanced drug delivery and therapy. Nevertheless, exogenous nanomaterials have a great ability to induce undesired immune responses and nano-protein interactions, which may result in toxicity and failure of therapy. Exosomes, a kind of endogenous extracellular vesicle (40-100 nm in diameter), are considered as a new generation of a natural nanoscale delivery system. Exosomes secreted by different types of cells carry different signal molecules (such as RNAs and proteins) and thus have a great potential for targeted drug delivery and therapy. Herein, we provide comprehensive understanding of the properties and applications of exosomes, including their biogenesis, biofunctions, isolation, purification, and drug loading, and typical examples in drug delivery and therapy. Furthermore, their advantages compared to other nanoparticles and potential in tumor immunotherapy are also discussed. STATEMENT OF SIGNIFICANCE: Exosomes, a kind of endogenous extracellular vesicle, have emerged as a novel and attractive endogenous nanomaterial for advanced drug delivery and targeted therapy. Exosomes are secreted by many types of cells and carry some unique signals obtained from their parental cells. Furthermore, the liposome-like structure allows exosomes to load various drugs. Hence, the potential of exosomes in drug delivery, tumor targeted therapy, and immunotherapy has been investigated in recent years. On the basis of their endogenous features and multifunctional properties, exosomes are of great significance and interest for the development of future medicine and pharmaceuticals.
Collapse
|
Review |
6 |
281 |
4
|
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, Shao ZM. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol 2021; 14:98. [PMID: 34172088 PMCID: PMC8234625 DOI: 10.1186/s13045-021-01103-4] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tumors are not only aggregates of malignant cells but also well-organized complex ecosystems. The immunological components within tumors, termed the tumor immune microenvironment (TIME), have long been shown to be strongly related to tumor development, recurrence and metastasis. However, conventional studies that underestimate the potential value of the spatial architecture of the TIME are unable to completely elucidate its complexity. As innovative high-flux and high-dimensional technologies emerge, researchers can more feasibly and accurately detect and depict the spatial architecture of the TIME. These findings have improved our understanding of the complexity and role of the TIME in tumor biology. In this review, we first epitomized some representative emerging technologies in the study of the spatial architecture of the TIME and categorized the description methods used to characterize these structures. Then, we determined the functions of the spatial architecture of the TIME in tumor biology and the effects of the gradient of extracellular nonspecific chemicals (ENSCs) on the TIME. We also discussed the potential clinical value of our understanding of the spatial architectures of the TIME, as well as current limitations and future prospects in this novel field. This review will bring spatial architectures of the TIME, an emerging dimension of tumor ecosystem research, to the attention of more researchers and promote its application in tumor research and clinical practice.
Collapse
|
Review |
4 |
255 |
5
|
Xie F, Xu M, Lu J, Mao L, Wang S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer 2019; 18:146. [PMID: 31647023 PMCID: PMC6813045 DOI: 10.1186/s12943-019-1074-3] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1), a type I transmembrane protein, binds to its receptor PD-1 to suppress the activation of T cells, thereby maintaining immunological homeostasis. In contrast, tumor cells highly express PD-L1, which binds to receptor PD-1 expressed on activated T cells, leading to immune escape. Anti-PD-1/PD-L1 immune checkpoint therapy blocks the binding of PD-1/PD-L1 to reinvigorate the exhausted T cells, thereby inhibiting tumor growth. Exosomes are biologically active lipid-bilayer nanovesicles secreted by various cell types that mediate intercellular signal communication. Numerous studies have shown that tumor cells are able to promote tumor epithelial-mesenchymal transition, angiogenesis, and immune escape by releasing exosomes. Recent studies imply that tumor-derived exosomes could carry PD-L1 in the same membrane topology as the cell surface, thereby resisting immune checkpoint therapy. In this review, we mainly discuss the role of exosomes in the regulation of tumor progression and the potential resistance mechanism to immunotherapy via exosomal PD-L1. In addition, we propose that exosomal PD-L1 may have the potential to be a target to overcome resistance to anti-PD-1/PD-L1 antibody therapy.
Collapse
|
Review |
6 |
239 |
6
|
Wang X, He Q, Shen H, Xia A, Tian W, Yu W, Sun B. TOX promotes the exhaustion of antitumor CD8 + T cells by preventing PD1 degradation in hepatocellular carcinoma. J Hepatol 2019; 71:731-741. [PMID: 31173813 DOI: 10.1016/j.jhep.2019.05.015] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS The thymocyte selection-associated high mobility group box protein (TOX) plays a vital role in T cell development and differentiation, however, its role in T cell exhaustion was unexplored. Here, we aim to investigate the role of TOX in regulating the antitumor effect of CD8+ T cells in hepatocellular carcinoma. METHODS Fully functional, partially and severely exhausted tumor-infiltrating CD8+ T cells were sorted by flow cytometry and subjected to transcriptome sequencing analysis. Upregulated TOX expression was validated by flow cytometry. The antitumor function of CD8+ T cells with TOX downregulation or overexpression was studied in a mouse HCC model and HCC patient-derived xenograft mouse model. Transcriptome sequencing analysis was performed in TOX-overexpressing and control CD8+ T cells. The mechanism underlying the TOX-mediated regulation of PD1 expression was studied by laser confocal detection, immune co-precipitation and flow cytometer. RESULTS TOX was upregulated in exhausted CD8+ T cells in hepatocellular carcinoma. TOX downregulation in CD8+ T cells inhibited tumor growth, increased CD8+ T cell infiltration, alleviated CD8+ T cell exhaustion and improved the anti-PD1 response of CD8+ T cells. The mechanism behind this involved the binding of TOX to PD1 in the cytoplasm, which facilitated the endocytic recycling of PD1, thus maintaining abundant PD1 expression at the cell surface. High expression of TOX in peripheral CD8+ T cells correlated with poorer anti-PD1 responses and prognosis. CONCLUSIONS TOX promotes CD8+ T cell exhaustion in hepatocellular carcinoma by regulating endocytic recycling of PD1. Downregulating TOX expression in CD8+ T cells exerts synergistic effects with anti-PD1 therapy, highlighting a promising strategy for cancer immunotherapy. LAY SUMMARY Abundant TOX expression in CD8+ T cells impairs their antitumor function in hepatocellular carcinoma. Mechanically, TOX reduces PD1 degradation and promotes PD1 translocation to the cell surface in CD8+ T cells, thus maintaining high PD1 expression at the cell surface. Downregulating TOX expression improves the antitumor function of CD8+ T cells, which shows the synergetic role of anti-PD1 therapy, highlighting a promising strategy for enhancement of cancer immunotherapy.
Collapse
|
|
6 |
195 |
7
|
Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol Immunother 2017; 66:1037-1048. [PMID: 28451791 DOI: 10.1007/s00262-017-2003-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Abstract
Tumor-associated fibrosis is characterized by unchecked pro-fibrotic and pro-inflammatory signaling. The components of fibrosis including significant numbers of cancer-associated fibroblasts, dense collagen deposition, and extracellular matrix stiffness, are well appreciated regulators of tumor progression but may also be critical regulators of immune surveillance. While this suggests that the efficacy of immunotherapy may be limited in highly fibrotic cancers like pancreas, it also suggests a therapeutic opportunity to target fibrosis in these tumor types to reawaken anti-tumor immunity. This review discusses the mechanisms by which fibrosis might subvert tumor immunity and how to overcome these mechanisms.
Collapse
|
Review |
8 |
166 |
8
|
Yu R, Zhu B, Chen D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell Mol Life Sci 2022; 79:191. [PMID: 35292881 PMCID: PMC8924142 DOI: 10.1007/s00018-022-04219-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockade (ICB) therapies have achieved remarkable clinical responses in patients with many different types of cancer; however, most patients who receive ICB monotherapy fail to achieve long-term responses, and some tumors become immunotherapy-resistant and even hyperprogressive. Type I interferons (IFNs) have been demonstrated to inhibit tumor growth directly and indirectly by acting upon tumor and immune cells, respectively. Furthermore, accumulating evidence indicates that endo- and exogenously enhancing type I IFNs have a synergistic effect on anti-tumor immunity. Therefore, clinical trials studying new treatment strategies that combine type I IFN inducers with ICB are currently in progress. Here, we review the cellular sources of type I IFNs and their roles in the immune regulation of the tumor microenvironment. In addition, we highlight immunotherapies based on type I IFNs and combination therapy between type I IFN inducers and ICBs.
Collapse
|
Review |
3 |
143 |
9
|
Zhou X, Su YX, Lao XM, Liang YJ, Liao GQ. CD19(+)IL-10(+) regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4(+) T cells to CD4(+)Foxp3(+) regulatory T cells. Oral Oncol 2015; 53:27-35. [PMID: 26631955 DOI: 10.1016/j.oraloncology.2015.11.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Increase of regulatory T cells (Tregs) in the tumor microenvironment predicts worse survival of patients with various types of cancer including tongue squamous cell carcinoma (TSCC). Recently, the cross-talk between Tregs and regulatory B cells (Bregs) has been shown in several tumor models. However the relevance of Bregs to tumor immunity in humans remains elusive. Our objective was to investigate the distribution and function of Bregs in TSCC microenvironment. MATERIALS AND METHODS Double staining (Bregs: IL10/CD19 and Tregs: Foxp3/CD4) was performed on tissue sections of 46 TSCC, 20 metastasis lymph nodes, and tumor adjacent normal tissue. Flow cytometry analysis was used to detect the Bregs from magnetic bead-sorted B cells after co-culture with TSCC cell lines, and Tregs from sorted CD4(+)CD25(-) T cells after co-culture with stimulated B cells. RESULTS The immunohistochemical (IHC) results showed that the frequency of Bregs/CD19(+) B in TSCC (0.80±0.08%) was significantly higher than adjacent normal tissue (0.52±0.04% p<0.01). And the increase of Bregs in TSCC microenvironment was related to Tregs and predicts worse survival in patients. Cytological experiments indicated that frequency of Bregs increased after co-culture with TSCC cell line and that the induced B cells converted CD4(+)CD25(-) T cells into Tregs. CONCLUSION The increased expression of Bregs in the TSCC microenvironment plays a significant role in the differentiation of resting CD4(+) T cells and influenced the prognosis of TSCC patients.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
119 |
10
|
Kunisada Y, Eikawa S, Tomonobu N, Domae S, Uehara T, Hori S, Furusawa Y, Hase K, Sasaki A, Udono H. Attenuation of CD4 +CD25 + Regulatory T Cells in the Tumor Microenvironment by Metformin, a Type 2 Diabetes Drug. EBioMedicine 2017; 25:154-164. [PMID: 29066174 PMCID: PMC5704053 DOI: 10.1016/j.ebiom.2017.10.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
CD4+ CD25+ regulatory T cells (Treg), an essential subset for preventing autoimmune diseases, is implicated as a negative regulator in anti-tumor immunity. We found that metformin (Met) reduced tumor-infiltrating Treg (Ti-Treg), particularly the terminally-differentiated CD103+ KLRG1+ population, and also decreased effector molecules such as CTLA4 and IL-10. Met inhibits the differentiation of naïve CD4+ T cells into inducible Treg (iTreg) by reducing forkhead box P3 (Foxp3) protein, caused by mTORC1 activation that was determined by the elevation of phosphorylated S6 (pS6), a downstream molecule of mTORC1. Rapamycin and compound C, an inhibitor of AMP-activated protein kinase (AMPK) restored the iTreg generation, further indicating the involvement of mTORC1 and AMPK. The metabolic profile of iTreg, increased Glut1-expression, and reduced mitochondrial membrane-potential and ROS production of Ti-Treg aided in identifying enhanced glycolysis upon Met-treatment. The negative impact of Met on Ti-Treg may help generation of the sustained antitumor immunity.
Metformin downregulates CD4+ CD25+ regulatory T cells (Treg) in tumors but not in peripheral lymphoid tissues. Metformin administration results in activation of mTORC1 in Treg in tumors. Metformin administration results in elevation of glycolysis, while suppressing oxidative phosphorylation in Treg in tumors. CD4+ CD25+ regulatory T cells (Treg) is a negative regulator that inhibits T cell mediated anti-tumor immunity. Therefore, targeting Treg is one of the important therapeutic intervention in cancers. We found that metformin reduces Treg in the number and the function in tumors. Metabolism of Treg is usually dependent on oxidative phosphorylation through fatty acid oxidation (FAO). However, metformin treatment causes metabolic reprogramming of Treg toward the glycolysis, resulting in the failure in survival in tumors. Metformin as a metabolic modifier for Treg may contribute to generation of sustained anti-tumor immunity, combined with currently emerging cancer immunotherapy.
Collapse
|
Journal Article |
8 |
116 |
11
|
Increased glycolysis correlates with elevated immune activity in tumor immune microenvironment. EBioMedicine 2019; 42:431-442. [PMID: 30935888 PMCID: PMC6491961 DOI: 10.1016/j.ebiom.2019.03.068] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
Background Prior studies showed that tumor glycolysis and tumor immune evasion are interdependent. However, a systematic investigation of the association between tumor glycolysis and tumor immunity in various cancers remains lacking. Methods Using the Cancer Genome Atlas (TCGA) datasets, we explored the association between glycolytic activity and immune signatures in 14 cancer types. We also explored the associations between glycolytic activity and tumor immunity associated genetic features, including PD-L1 expression, tumor mutation burden (TMB), and tumor aneuploidy. Moreover, we performed in vitro experiments to verify some findings from bioinformatics analysis. Furthermore, we explored the association between tumor glycolytic activity and immunotherapy response. Findings Glycolytic activity was likely correlated with active immune signatures in various cancers and highly glycolytic tumors presented an immune-stimulatory tumor microenvironment. Compared to TMB and aneuploidy, glycolytic activity was a stronger and more consistent predictor for immune signatures in diverse cancers. Both computational and experimental analyses showed that glycolysis could increase PD-L1 expression in tumor. Glycolytic activity had a strong correlation with apoptosis which was a strong positive predictor for immune signatures, suggesting that apoptosis could be an important medium connecting glycolytic activity with immune activity in cancer. Finally, highly glycolytic tumors exhibited a better immunotherapy response and a favorable survival in the immunotherapy setting. Interpretation Tumor glycolysis may increase tumor immunity in diverse cancers. Glycolytic activity enhances PD-L1 expression on tumor cells and thus promotes anti-PD-1/PD-L1 immunotherapy response. Thus, the tumor glycolytic activity could be a predictive biomarker for immunotherapy response in diverse cancers. Fund This work was supported by the China Pharmaceutical University (grant numbers 3150120001, 2632018YX01 to XW).
Collapse
|
Journal Article |
6 |
115 |
12
|
Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W, Cao H. Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Lett 2022; 526:225-235. [PMID: 34843863 DOI: 10.1016/j.canlet.2021.11.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. It involves the complex interactions between genetic factors, environmental exposure, and gut microbiota. Specific changes in the gut microbiome and metabolome have been described in CRC, supporting the critical role of gut microbiota dysbiosis and microbiota-related metabolites in the tumorigenesis process. Short-chain fatty acids (SCFAs), the principal metabolites generated from the gut microbial fermentation of insoluble dietary fiber, can directly activate G-protein-coupled receptors (GPCRs), inhibit histone deacetylases (HDACs), and serve as energy substrates to connect dietary patterns and gut microbiota, thereby improving the intestinal health. A significantly lower abundance of SCFAs and SCFA-producing bacteria has been demonstrated in CRC, and the supplementation of SCFA-producing probiotics can inhibit intestinal tumor development. SCFAs-guided modulation in both mouse and human CRC models augmented their responses to chemotherapy and immunotherapy. This review briefly summarizes the complex crosstalk between SCFAs and CRC, which might inspire new approaches for the diagnosis, treatment and prevention of CRC on the basis of gut microbiota-derived metabolites SCFAs.
Collapse
|
|
3 |
111 |
13
|
Shen DD, Pang JR, Bi YP, Zhao LF, Li YR, Zhao LJ, Gao Y, Wang B, Wang N, Wei L, Guo H, Liu HM, Zheng YC. LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in gastric cancer. Mol Cancer 2022; 21:75. [PMID: 35296335 PMCID: PMC8925194 DOI: 10.1186/s12943-022-01557-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Background Histone lysine-specific demethylase 1 (LSD1) expression has been shown to be significantly elevated in gastric cancer (GC) and may be associated with the proliferation and metastasis of GC. It has been reported that LSD1 repressed tumor immunity through programmed cell death 1 ligand 1 (PD-L1) in melanoma and breast cancer. The role of LSD1 in the immune microenvironment of GC is unknown. Methods Expression LSD1 and PD-L1 in GC patients was analyzed by immunohistochemical (IHC) and Western blotting. Exosomes were isolated from the culture medium of GC cells using an ultracentrifugation method and characterized by transmission electronic microscopy (TEM), nanoparticle tracking analysis (NTA), sucrose gradient centrifugation, and Western blotting. The role of exosomal PD-L1 in T-cell dysfunction was assessed by flow cytometry, T-cell killing and enzyme-linked immunosorbent assay (ELISA). Results Through in vivo exploration, mouse forestomach carcinoma (MFC) cells with LSD1 knockout (KO) showed significantly slow growth in 615 mice than T-cell-deficient BALB/c nude mice. Meanwhile, in GC specimens, expression of LSD1 was negatively correlated with that of CD8 and positively correlated with that of PD-L1. Further study showed that LSD1 inhibited the response of T cells in the microenvironment of GC by inducing the accumulation of PD-L1 in exosomes, while the membrane PD-L1 stayed constant in GC cells. Using exosomes as vehicles, LSD1 also obstructed T-cell response of other cancer cells while LSD1 deletion rescued T-cell function. It was found that while relying on the existence of LSD1 in donor cells, exosomes can regulate MFC cells proliferation with distinct roles depending on exosomal PD-L1-mediated T-cell immunity in vivo. Conclusion LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in GC; this finding indicates a new mechanism with which LSD1 may regulate cancer immunity in GC and provides a new target for immunotherapy against GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01557-1.
Collapse
|
|
3 |
108 |
14
|
Han J, Khatwani N, Searles TG, Turk MJ, Angeles CV. Memory CD8 + T cell responses to cancer. Semin Immunol 2020; 49:101435. [PMID: 33272898 PMCID: PMC7738415 DOI: 10.1016/j.smim.2020.101435] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Long-lived memory CD8+ T cells play important roles in tumor immunity. Studies over the past two decades have identified four subsets of memory CD8+ T cells - central, effector, stem-like, and tissue resident memory - that either circulate through blood, lymphoid and peripheral organs, or reside in tissues where cancers develop. In this article, we will review studies from both pre-clinical mouse models and human patients to summarize the phenotype, distribution and unique features of each memory subset, and highlight specific roles of each subset in anti-tumor immunity. Moreover, we will discuss how stem-cell like and resident memory CD8+ T cell subsets relate to exhausted tumor-infiltrating lymphocytes (TIL) populations. These studies reveal how memory CD8+ T cell subsets together orchestrate durable immunity to cancer.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
104 |
15
|
Chen X, Du Y, Lin X, Qian Y, Zhou T, Huang Z. CD4+CD25+ regulatory T cells in tumor immunity. Int Immunopharmacol 2016; 34:244-249. [PMID: 26994448 DOI: 10.1016/j.intimp.2016.03.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 01/11/2023]
Abstract
Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Depletion of Tregs results in the onset of a variety of autoimmune diseases. Tregs are defined based on expression of CD4, CD25, and the transcription factor, FoxP3. It is now clear that three inhibitory cytokines, IL-10, IL-35 and TGF-β, are key mediators of Tregs function. Tregs have been shown to be important contributors to the development of immune tolerance toward tumors and play a critical role in the induction of tolerance to tumor associated antigens and suppression of anti-tumor immunity. Increasing researches support the existence of elevated numbers of regulatory T cells in cancer patients. Poor prognosis and decreased survival rates are closely correlated with higher Treg cell frequencies. Depletion of Tregs or blockade of their immune inhibitory role can enhance anti-tumor effects. Recent evidence suggests that Tregs may be responsible for the failure of host anti-tumor immunity by suppressing cytotoxic T-cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of Tregs in tumor immunity.
Collapse
|
Review |
9 |
100 |
16
|
Qian X, Chen H, Wu X, Hu L, Huang Q, Jin Y. Interleukin-17 acts as double-edged sword in anti- tumor immunity and tumorigenesis. Cytokine 2016; 89:34-44. [PMID: 26883678 DOI: 10.1016/j.cyto.2015.09.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
Interleukin-17 (IL-17), a proinflammatory cytokine, mainly produced by Th17 cells, participates in both innate and adaptive immune responses and is involved in various diseases, including infectious diseases, autoimmune disorders and cancer. Emerging evidence indicates that IL-17 not only has an oncogenic role in tumorigenesis by regulating tumor angiogenesis and enhancing tumor immune evasion but also exerts anti-tumor functions by enhancing natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) activation and through the recruitment of neutrophils, NK cells and CD4+ and CD8+ T cells to tumor tissue. In this review, we provide an overview on the basic biology of IL-17 and recent findings regarding its enigmatic double-edged features in tumorigenesis, with special attention to the roles of IL-17 produced by tumor cells interacting with other factors in the tumor microenvironment.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
100 |
17
|
Zlobec I, Lugli A. Invasive front of colorectal cancer: Dynamic interface of pro-/anti-tumor factors. World J Gastroenterol 2009; 15:5898-906. [PMID: 20014453 PMCID: PMC2795176 DOI: 10.3748/wjg.15.5898] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor-host interaction at the invasive front of colorectal cancer represents a critical interface encompassing a dynamic process of de-differentiation of colorectal carcinoma cells known as epithelial mesenchymal transition (EMT). EMT can be identified histologically by the presence of “tumor budding”, a feature which can be highly specific for tumors showing an infiltrating tumor growth pattern. Importantly, tumor budding and tumor border configuration have generated considerable interest as additional prognostic factors and are also recognized as such by the International Union Against Cancer. Evidence seems to suggest that the presence of tumor budding or an infiltrating growth pattern is inversely correlated with the presence of immune and inflammatory responses at the invasive tumor front. In fact, several tumor-associated antigens such as CD3, CD4, CD8, CD20, Granzyme B, FOXP3 and other immunological or inflammatory cell types have been identified as potentially prognostic in patients with this disease. Evidence seems to suggest that the balance between pro-tumor (including budding and infiltrating growth pattern) and anti-tumor (immune response or certain inflammatory cell types) factors at the invasive front of colorectal cancer may be decisive in determining tumor progression and the clinical outcome of patients with colorectal cancer. On one hand, the infiltrating tumor border configuration and tumor budding promote progression and dissemination of tumor cells by penetrating the vascular and lymphatic vessels. On the other, the host attempts to fend off this attack by mounting an immune response to protect vascular and lymphatic channels from invasion by tumor buds. Whereas standard pathology reporting of breast and prostate cancer involves additional prognostic features, such as the BRE and Gleason scores, the ratio of pro- and anti-tumor factors could be a promising approach for the future development of a prognostic score for patients with colorectal cancer which could complement tumor node metastasis staging to improve the clinical management of patients with this disease.
Collapse
|
Editorial |
16 |
100 |
18
|
Hussain M, Adah D, Tariq M, Lu Y, Zhang J, Liu J. CXCL13/CXCR5 signaling axis in cancer. Life Sci 2019; 227:175-186. [PMID: 31026453 DOI: 10.1016/j.lfs.2019.04.053] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment comprises stromal and tumor cells which interact with each other through complex cross-talks that are mediated by a variety of growth factors, cytokines, and chemokines. The chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are among the key chemotactic factors which play crucial roles in deriving cancer cell biology. CXCL13/CXCR5 signaling axis makes pivotal contributions to the development and progression of several human cancers. In this review, we discuss how CXCL13/CXCR5 signaling modulates cancer cell ability to grow, proliferate, invade, and metastasize. Furthermore, we also discuss the preliminary evidence on context-dependent functioning of this axis within the tumor-immune microenvironment, thus, highlighting its potential dichotomy with respect to anticancer immunity and cancer immune-evasion mechanisms. At the end, we briefly shed light on the therapeutic potential or implications of targeting CXCL13/CXCR5 axis within the tumor microenvironment.
Collapse
|
Review |
6 |
95 |
19
|
Vatner RE, Janssen EM. STING, DCs and the link between innate and adaptive tumor immunity. Mol Immunol 2017; 110:13-23. [PMID: 29273394 PMCID: PMC6768428 DOI: 10.1016/j.molimm.2017.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Cancer and the immune system are intimately related. Much of the bulk of tumors is comprised of stromal leukocytes with immune functions, which serve to both promote and inhibit tumor growth, invasion and metastasis. The T lymphocytes of the adaptive immune system are essential for tumor immunity, and these T cells are generated by cross-priming against tumor associated antigens. Dendritic cells (DCs) are essential in this process, serving as the cellular link between innate and adaptive immunity. As a prerequisite for priming of adaptive immune responses, DCs must take up tumor antigens, process them and present them in the context of the major histocompatibility complex (MHC). DCs also serve as sensors of innate activation signals from cancer that are necessary for their activation and effective priming of cancer specific T cells. Here we discuss the role of DCs in the sensing of cancer and in priming the adaptive response against tumors. Furthermore, we present the essential role of the Stimulator of Interferon Genes (STING) signaling pathway in producing type I interferons (IFNs) that are essential in this process.
Collapse
|
Review |
8 |
85 |
20
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
83 |
21
|
Lyu H, Li M, Jiang Z, Liu Z, Wang X. Correlate the TP53 Mutation and the HRAS Mutation with Immune Signatures in Head and Neck Squamous Cell Cancer. Comput Struct Biotechnol J 2019; 17:1020-1030. [PMID: 31428295 PMCID: PMC6695281 DOI: 10.1016/j.csbj.2019.07.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Although immunotherapy has emerged as an effective therapeutic strategy for various cancers including head and neck squamous cell carcinomas (HNSCCs), only a subset of patients can benefit from such therapy. Hence, it is pressing to discover predictive biomarkers for cancer immunotherapy response. TP53 and HRAS mutations frequently occur in HNSCC and correlate with a worse prognosis in HNSCC. We extensively characterized the associations of TP53 mutations and HRAS mutations with HNSCC immunity based on multiple cancer genomics datasets. We compared the enrichment levels of 20 immune signatures between TP53-mutated and TP53-wildtype HNSCCs, and between HRAS-mutated and HRAS-wildtype HNSCCs, and found that TP53 mutations were associated with depressed immune signatures while HRAS mutations were associated with enhanced immune signatures in HNSCC. Moreover, we found multiple p53- and RAS-mediated pathways showing significant correlations with HNSCC immunity. Furthermore, we demonstrated that the association between TP53 mutation and tumor immunity was independent of the human papillomavirus (HPV) infection and smoking status in HNSCC. These data suggest that p53 and RAS may play important roles in regulating HNSCC immunity and that the TP53 and HRAS mutation status could be useful biomarkers for stratifying HNSCC patients responsive to immunotherapy.
Collapse
Key Words
- APC, Antigen-Presenting Cell
- BH, Benjami and Hochberg
- Cancer genomics
- DFS, Disease Free Survival
- EMT, Epithelial-Mesenchymal Transition
- FDR, False Discovery Rate
- GSEA, Gene-Set Enrichment Analysis
- HLA, Human Leukocyte Antigen
- HNSCC, Head and Neck Squamous Cell Carcinomas
- HPV, Human Papilloma Virus
- HRAS mutations
- Head and neck squamous cell carcinomas
- MHC, Major Histocompatibility Complex
- NK, Natural Killer
- OR, Odds Ratio
- OS, Overall Survival
- TILs, Tumor-Infiltrating Lymphocytes
- TIM, Tumor Immune Microenvironment
- TMB, Tumor Mutation Burden
- TP53 mutations
- Tumor immunity
- dMMR, Deficient Mismatch-Repair
- pDCs, Plasmacytoid Dendritic Cells
- ssGSEA, single-sample Gene-Set Enrichment Analysis
Collapse
|
Journal Article |
6 |
81 |
22
|
Cao Y, Feng Y, Zhang Y, Zhu X, Jin F. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer 2016; 16:343. [PMID: 27246354 PMCID: PMC4888479 DOI: 10.1186/s12885-016-2376-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/20/2016] [Indexed: 12/29/2022] Open
Abstract
Background L-Arg is involved in many biological activities, including the activation of T cells. In breast cancer patients, L-Arg is depleted by nitric oxide synthase 2 (NOS2) and arginase 1 (ARG-1) produced by myeloid-derived suppressor cells (MDSCs). Our aim was to test whether L-Arg supplementation could enhance antitumor immune response and improve survivorship in a rodent model of mammary tumor. Methods Tumor volumes in control and L-Arg treated 4 T1 tumor bearing (TB) BALB/c mice were measured and survival rates were recorded. The percentages of MDSCs, dendritic cells (DCs), regulatory T cells (Tregs), macrophages, CD4+ T cells, and CD8+ T cells were examined by flow cytometry. Additionally, levels of IL-10, TNF-α, and IFN-γ were measured by enzyme-linked immunosorbent assay (ELISA) and nitric oxide (NO) levels were measured by the Griess reaction. IFN-γ, T-bet, Granzyme B, ARG-1 and iNOS mRNA levels were examined by real-time RT-PCR. Results L-Arg treatment inhibited tumor growth and prolonged the survival time of 4 T1 TB mice. The frequency of MDSCs was significantly suppressed in L-Arg treated TB mice. In contrast, the numbers and function of macrophages, CD4+ T cells, and CD8+ T cells were significantly enhanced. The IFN-γ, TNF-α, NO levels in splenocytes supernatant, as well as iNOS, IFN-γ, Granzyme B mRNA levels in splenocytes and tumor blocks were significantly increased. The ARG-1 mRNA level in tumor blocks, the frequency of Tregs, and IL-10 level were not affected. Conclusion L-Arg supplementation significantly inhibited tumor growth and prolonged the survival time of 4 T1 TB mice, which was associated with the reduction of MDSCs, and enhanced innate and adaptive immune responses.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
79 |
23
|
Billottet C, Quemener C, Bikfalvi A. CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta Rev Cancer 2013; 1836:287-95. [PMID: 23994549 DOI: 10.1016/j.bbcan.2013.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/19/2022]
Abstract
CXC chemokines are involved in chemotaxis, regulation of cell growth, induction of apoptosis and modulation of angiostatic effects. CXCL9, CXCL10, CXCL11, CXCL4 and its variant CXCL4L1 are members of the CXC chemokine family, which bind to the CXCR3 receptor to exert their biological effects. These chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer and metastasis. In this review, we focus on accumulating evidence demonstrating the pivotal role of CXCR3 in tumor progression. Its effects are mediated directly in tumor cells or indirectly through the regulation of angiogenesis and tumor immunity. Understanding the emerging role of CXCR3 and its signaling mechanisms further validates this receptor as a biomarker and therapeutic target for tumor progression and tumor angiogenesis.
Collapse
|
Review |
12 |
77 |
24
|
Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H, Dong C, Yang Z, Ni L. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother 2018; 67:1685-1694. [PMID: 30128738 PMCID: PMC11028359 DOI: 10.1007/s00262-018-2227-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies in the world. PD-1/PD-L1 inhibitors have benefited cancer patients with multiple tumor types. However, their efficacy for CRC is low and this treatment in melanoma patients results in adaptive resistance through upregulation of VISTA, another checkpoint inhibitory pathway. Thus, there is an urgent need to explore additional co-inhibitory molecular pathways such as VISTA for CRC treatment. In this study, C10orf54 (encoding VISTA) expression was analyzed by RNA-seq data from 367 CRC patients in human cancer datasets. Moreover, 28 clinical CRC specimens were used to assess VISTA protein expression. Human cancer datasets showed that CRC tumors expressed higher levels of C10orf54 than CD274 (encoding PD-L1). Moreover, C10orf54 mRNA expression was significantly correlated with genes responsible for tumor immune evasion. VISTA protein expression was high in tumors compared with para-tumors and normal tissues, which is similar to PD-L1 expression. However, in contrast to PD-L1, VISTA was mainly expressed by tumor-infiltrating lymphocytes. This study is the first investigation of VISTA expression in human resected CRC tumors, and the results justify the need for future studies on the role of VISTA in anti-CRC immunity in clinical samples.
Collapse
|
research-article |
7 |
73 |
25
|
Tang M, Diao J, Cattral MS. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell Mol Life Sci 2017; 74:761-776. [PMID: 27491428 PMCID: PMC11107728 DOI: 10.1007/s00018-016-2317-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DC) play a pivotal role in the tumor microenvironment (TME). As the primary antigen-presenting cells in the tumor, DCs modulate anti-tumor responses by regulating the magnitude and duration of infiltrating cytotoxic T lymphocyte responses. Unfortunately, due to the immunosuppressive nature of the TME, as well as the inherent plasticity of DCs, tumor DCs are often dysfunctional, a phenomenon that contributes to immune evasion. Recent progresses in our understanding of tumor DC biology have revealed potential molecular targets that allow us to improve tumor DC immunogenicity and cancer immunotherapy. Here, we review the molecular mechanisms that drive tumor DC dysfunction. We discuss recent advances in our understanding of tumor DC ontogeny, tumor DC subset heterogeneity, and factors in the tumor microenvironment that affect DC recruitment, differentiation, and function. Finally, we describe potential strategies to optimize tumor DC function in the context of cancer therapy.
Collapse
|
Review |
8 |
71 |