Zhang L, Yin X, Wan X, Sun Y, Cao M, Ouyang S. Rapid screening of active components group with Topoisomerase I inhibitory activity in Sophora alopecuroides L. based on ultrafiltration coupled with UPLC-QTOF-MS.
Curr Pharm Biotechnol 2021;
23:998-1008. [PMID:
34080963 DOI:
10.2174/1389201022666210602105609]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND
Topoisomerase I (Topo I) is a key target of many antitumor drugs in vivo. Alkaloids in Sophora alopecuroides L. can reportedly inhibit Topo I activity, but the pharmacodynamic material basis has not yet been determined.
OBJECTIVE
The objective of this study is to rapidly identify active components group which inhibit Topo I in S. alopecuroides L.
METHODS
Affinity ultrafiltration-ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UF-UPLC-QTOF-MS) screening system based on Topo I protein was established to screen and isolate a total alkaloid fraction in S. alopecuroides L. Topo I inhibitory activity and anti-tuomor proliferation activity of the screened components were evaluated, and their molecular mechanisms were studied.
RESULTS
Six compounds bound specifically to Topo I were obtained. Further screening showed that matrine, cytisine, and sophoridine presented higher inhibitory activity on Topo I and were able to inhibit the proliferation of breast cancer MDA-MB-468 cells with IC50 values of 9.40 ± 1.12 mM, 17.4 ± 2.20 mM and 10.4 ± 1.37 mM, respectively. To the best of our knowledge, their dual molecular mechanisms against Topo I have been discussed here for the first time: (1) stabilization of Topo I-DNA complex and (2) inhibition or blocking of Topo I binding to DNA.
CONCLUSION
Matrine, cytisine, and sophoridine from S. alopecuroides L. were defined as the active components group with Topo I inhibitory activity and their pharmacological mechanism was confirmed, which provided an important base for further research and development of antitumor components fromS. alopecuroides L.
Collapse