1
|
Ferry L, Fournier A, Tsusaka T, Adelmant G, Shimazu T, Matano S, Kirsh O, Amouroux R, Dohmae N, Suzuki T, Filion GJ, Deng W, de Dieuleveult M, Fritsch L, Kudithipudi S, Jeltsch A, Leonhardt H, Hajkova P, Marto JA, Arita K, Shinkai Y, Defossez PA. Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Mol Cell 2017; 67:550-565.e5. [PMID: 28803780 DOI: 10.1016/j.molcel.2017.07.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 07/10/2017] [Indexed: 01/02/2023]
Abstract
DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance.
Collapse
|
Journal Article |
8 |
133 |
2
|
Rothbart SB, Dickson BM, Ong MS, Krajewski K, Houliston S, Kireev DB, Arrowsmith CH, Strahl BD. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev 2013; 27:1288-98. [PMID: 23752590 DOI: 10.1101/gad.220467.113] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Histone post-translational modifications regulate chromatin structure and function largely through interactions with effector proteins that often contain multiple histone-binding domains. While significant progress has been made characterizing individual effector domains, the role of paired domains and how they function in a combinatorial fashion within chromatin are poorly defined. Here we show that the linked tandem Tudor and plant homeodomain (PHD) of UHRF1 (ubiquitin-like PHD and RING finger domain-containing protein 1) operates as a functional unit in cells, providing a defined combinatorial readout of a heterochromatin signature within a single histone H3 tail that is essential for UHRF1-directed epigenetic inheritance of DNA methylation. These findings provide critical support for the "histone code" hypothesis, demonstrating that multivalent histone engagement plays a key role in driving a fundamental downstream biological event in chromatin.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
129 |
3
|
Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A 2016; 113:1273-8. [PMID: 26768845 DOI: 10.1073/pnas.1500992113] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many long noncoding RNAs (lncRNAs) are reported to be dysregulated in human cancers and play critical roles in tumor development and progression. Furthermore, it has been reported that many lncRNAs regulate gene expression by recruiting chromatin remodeling complexes to specific genomic loci or by controlling transcriptional or posttranscriptional processes. Here we show that an lncRNA termed UPAT [ubiquitin-like plant homeodomain (PHD) and really interesting new gene (RING) finger domain-containing protein 1 (UHRF1) Protein Associated Transcript] is required for the survival and tumorigenicity of colorectal cancer cells. UPAT interacts with and stabilizes the epigenetic factor UHRF1 by interfering with its β-transducin repeat-containing protein (TrCP)-mediated ubiquitination. Furthermore, we demonstrate that UHRF1 up-regulates Stearoyl-CoA desaturase 1 and Sprouty 4, which are required for the survival of colon tumor cells. Our study provides evidence for an lncRNA that regulates protein ubiquitination and degradation and thereby plays a critical role in the survival and tumorigenicity of tumor cells. Our results suggest that UPAT and UHRF1 may be promising molecular targets for the therapy of colon cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
126 |
4
|
Lu R, Wang GG. Tudor: a versatile family of histone methylation 'readers'. Trends Biochem Sci 2013; 38:546-55. [PMID: 24035451 DOI: 10.1016/j.tibs.2013.08.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/28/2022]
Abstract
The Tudor domain comprises a family of motifs that mediate protein-protein interactions required for various DNA-templated biological processes. Emerging evidence demonstrates a versatility of the Tudor family domains by identifying their specific interactions to a wide variety of histone methylation marks. Here, we discuss novel functions of a number of Tudor-containing proteins [including Jumonji domain-containing 2A (JMJD2A), p53-binding protein 1 (53BP1), SAGA-associated factor 29 (SGF29), Spindlin1, ubiquitin-like with PHD and RING finger domains 1 (UHRF1), PHD finger protein 1 (PHF1), PHD finger protein 19 (PHF19), and SAWADEE homeodomain homolog 1 (SHH1)] in 'reading' unique methylation events on histones in order to facilitate DNA damage repair or regulate transcription. This review covers our recent understanding of the molecular bases for histone-Tudor interactions and their biological outcomes. As deregulation of Tudor-containing proteins is associated with certain human disorders, pharmacological targeting of Tudor interactions could provide new avenues for therapeutic intervention.
Collapse
|
Review |
12 |
114 |
5
|
Lopez-Martinez D, Liang CC, Cohn MA. Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cell Mol Life Sci 2016; 73:3097-114. [PMID: 27094386 PMCID: PMC4951507 DOI: 10.1007/s00018-016-2218-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Interstrand crosslinks (ICLs) are a highly toxic form of DNA damage. ICLs can interfere with vital biological processes requiring separation of the two DNA strands, such as replication and transcription. If ICLs are left unrepaired, it can lead to mutations, chromosome breakage and mitotic catastrophe. The Fanconi anemia (FA) pathway can repair this type of DNA lesion, ensuring genomic stability. In this review, we will provide an overview of the cellular response to ICLs. First, we will discuss the origin of ICLs, comparing various endogenous and exogenous sources. Second, we will describe FA proteins as well as FA-related proteins involved in ICL repair, and the post-translational modifications that regulate these proteins. Finally, we will review the process of how ICLs are repaired by both replication-dependent and replication-independent mechanisms.
Collapse
|
Review |
9 |
96 |
6
|
Harrison JS, Cornett EM, Goldfarb D, DaRosa PA, Li ZM, Yan F, Dickson BM, Guo AH, Cantu DV, Kaustov L, Brown PJ, Arrowsmith CH, Erie DA, Major MB, Klevit RE, Krajewski K, Kuhlman B, Strahl BD, Rothbart SB. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. eLife 2016; 5. [PMID: 27595565 PMCID: PMC5012860 DOI: 10.7554/elife.17101] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022] Open
Abstract
The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance. DOI:http://dx.doi.org/10.7554/eLife.17101.001 Cells are able to regulate the activity of their genes in response to different cues. Genetic information is encoded in DNA and one way to regulate gene activity is to modify the DNA by attaching chemical “epigenetic” markers to it. When a cell divides, these epigenetic markers can be inherited by the daughter cells so that they share the same patterns of gene activity as the parent cell. When the DNA of the parent cell is copied prior to cell division, the epigenetic markers are also copied onto the new DNA. Mistakes in this process are linked to a wide range of diseases in humans, such as cancer and neurological disorders. One type of epigenetic marker is known as a methyl tag and it is added to DNA by certain enzymes in a process called DNA methylation. A protein called UHRF1 is required for human cells to inherit patterns of DNA methylation through cell division. This protein binds to newly copied DNA that lacks some methyl tags as well as to another protein associated with DNA called histone H3. UHRF1 modifies histone H3 by attaching a small protein molecule called ubiquitin to it. This helps to recruit a DNA methylation enzyme to place methyl tags on the newly copied DNA. However, it was not clear how the various properties of UHRF1 allow it to control how DNA methylation is inherited. Harrison et al. addressed this question by studying purified proteins and DNA fragments outside of living cells. The results show that UHRF1 binding to DNA and histone H3 work together to bring UHRF1 to the sites on DNA that require methylation. Further experiments revealed that the methylation pattern on newly copied DNA is able to activate the ability of UHRF1 to place ubiquitin on histone H3. The findings of Harrison et al. reveal a new mechanism by which dividing cells control how DNA methylation is inherited by their daughter cells. A future challenge will be to find out how attaching ubiquitin to histone H3 activates DNA methylation. DOI:http://dx.doi.org/10.7554/eLife.17101.002
Collapse
|
Journal Article |
9 |
96 |
7
|
Kong X, Chen J, Xie W, Brown SM, Cai Y, Wu K, Fan D, Nie Y, Yegnasubramanian S, Tiedemann RL, Tao Y, Chiu Yen RW, Topper MJ, Zahnow CA, Easwaran H, Rothbart SB, Xia L, Baylin SB. Defining UHRF1 Domains that Support Maintenance of Human Colon Cancer DNA Methylation and Oncogenic Properties. Cancer Cell 2019; 35:633-648.e7. [PMID: 30956060 PMCID: PMC6521721 DOI: 10.1016/j.ccell.2019.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/22/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
UHRF1 facilitates the establishment and maintenance of DNA methylation patterns in mammalian cells. The establishment domains are defined, including E3 ligase function, but the maintenance domains are poorly characterized. Here, we demonstrate that UHRF1 histone- and hemimethylated DNA binding functions, but not E3 ligase activity, maintain cancer-specific DNA methylation in human colorectal cancer (CRC) cells. Disrupting either chromatin reader activity reverses DNA hypermethylation, reactivates epigenetically silenced tumor suppressor genes (TSGs), and reduces CRC oncogenic properties. Moreover, an inverse correlation between high UHRF1 and low TSG expression tracks with CRC progression and reduced patient survival. Defining critical UHRF1 domain functions and its relationship with CRC prognosis suggests directions for, and value of, targeting this protein to develop therapeutic DNA demethylating agents.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
96 |
8
|
Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness. Oncotarget 2017; 7:28460-87. [PMID: 27072587 PMCID: PMC5053739 DOI: 10.18632/oncotarget.8668] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
In microRNA (miRNA) biogenesis, the guide-strand of miRNA integrates into the RNA induced silencing complex (RISC), whereas the passenger-strand is inactivated through degradation. Analysis of our miRNA expression signature of bladder cancer (BC) by deep-sequencing revealed that microRNA (miR)-145-5p (guide-strand) and miR-145-3p (passenger-strand) were significantly downregulated in BC tissues. It is well known that miR-145-5p functions as a tumor suppressor in several types of cancer. However, the impact of miR-145-3p on cancer cells is still ambiguous. The aim of the present study was to investigate the functional significance of miR-145-3p and BC oncogenic pathways and targets regulated by miR-145-5p/miR-145-3p. Ectopic expression of either miR-145-5p or miR-145-3p in BC cells significantly suppressed cancer cell growth, migration and invasion and it also induced apoptosis. The gene encoding ubiquitin-like with PHD and ring finger domains 1 (UHRF1) was a direct target of these miRNAs. Silencing of UHRF1 induced apoptosis and inhibited cancer cell proliferation, migration, and invasion in BC cells. In addition, overexpressed UHRF1 was confirmed in BC clinical specimens, and the high UHRF1 expression group showed a significantly poorer cause specific survival rate in comparison with the low expression group. Taken together, our present data demonstrated that both strands of miR-145 (miR-145-5p: guide-strand and miR-145-3p: passenger-strand) play pivotal roles in BC cells by regulating UHRF1. The identification of the molecular target of a tumor suppressive miRNAs provides novel insights into the potential mechanisms of BC oncogenesis and suggests novel therapeutic strategies.
Collapse
|
Journal Article |
8 |
92 |
9
|
Bronner C, Krifa M, Mousli M. Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem Pharmacol 2013; 86:1643-9. [PMID: 24134914 DOI: 10.1016/j.bcp.2013.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms such as DNA methylation and histone posttranslational modifications, allow cells to maintain the phenotype throughout successive mitosis. UHRF1 plays a major role in the inheritance of some epigenetic marks from mother cells to daughter cells due to its particular structural domains. The originality of UHRF1 lies in the fact that it can read epigenetic marks and recruit the enzymes that catalyze the same epigenetic mark. The SRA domain senses the presence of a methylated cytosine on one DNA strand allowing the recruitment of DNMT1, which methylates the cytosine on the newly synthesized DNA. The recently identified tudor domain of UHRF1 senses the presence of methylated histone H3 conducting UHRF1 to recruit histone methyltransferases. Recent studies deciphering the relationships between some of the structural domains of UHRF1 provides new insights on the reading of the epigenetic code over a larger portion of histone tail than usually expected. Furthermore, latest developments highlights that UHRF1 is one of the proteins which is able to directly connect DNA methylation to histone epigenetic marks. This paper reviews the principles how UHRF1 acts as an epigenetic reader and discusses the properties of UHRF1 to be a biomarker as well as a therapeutic target.
Collapse
|
Review |
12 |
86 |
10
|
Alhosin M, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mousli M, Bronner C. Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:174. [PMID: 27839516 PMCID: PMC5108085 DOI: 10.1186/s13046-016-0453-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) through DNA methylation and histone changes is a main hallmark of cancer. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a potent oncogene overexpressed in various solid and haematological tumors and its high expression levels are associated with decreased expression of several TSGs including p16INK4A, BRCA1, PPARG and KiSS1. Using its several functional domains, UHRF1 creates a strong coordinated dialogue between DNA methylation and histone post-translation modification changes causing the epigenetic silencing of TSGs which allows cancer cells to escape apoptosis. To ensure the silencing of TSGs during cell division, UHRF1 recruits several enzymes including histone deacetylase 1 (HDAC1), DNA methyltransferase 1 (DNMT1) and histone lysine methyltransferases G9a and Suv39H1 to the right place at the right moment. Several in vitro and in vivo works have reported the direct implication of the epigenetic player UHRF1 in tumorigenesis through the repression of TSGs expression and suggested UHRF1 as a promising target for cancer treatment. This review describes the molecular mechanisms underlying UHRF1 regulation in cancer and discusses its importance as a therapeutic target to induce the reactivation of TSGs and subsequent apoptosis.
Collapse
|
Review |
9 |
81 |
11
|
Ashraf W, Ibrahim A, Alhosin M, Zaayter L, Ouararhni K, Papin C, Ahmad T, Hamiche A, Mély Y, Bronner C, Mousli M. The epigenetic integrator UHRF1: on the road to become a universal biomarker for cancer. Oncotarget 2017; 8:51946-51962. [PMID: 28881702 PMCID: PMC5584303 DOI: 10.18632/oncotarget.17393] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the deadliest diseases in the world causing record number of mortalities in both developed and undeveloped countries. Despite a lot of advances and breakthroughs in the field of oncology still, it is very hard to diagnose and treat the cancers at early stages. Here in this review we analyze the potential of Ubiquitin-like containing PHD and Ring Finger domain 1 (UHRF1) as a universal biomarker for cancers. UHRF1 is an important epigenetic regulator maintaining DNA methylation and histone code in the cell. It is highly expressed in a variety of cancers and is a well-known oncogene that can disrupt the epigenetic code and override the senescence machinery. Many studies have validated UHRF1 as a powerful diagnostic and prognostic tool to differentially diagnose cancer, predict the therapeutic response and assess the risk of tumor progression and recurrence. Highly sensitive, non-invasive and cost effective approaches are therefore needed to assess the level of UHRF1 in patients, which can be deployed in diagnostic laboratories to detect cancer and monitor disease progression.
Collapse
|
Review |
8 |
78 |
12
|
Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns. Genes (Basel) 2019; 10:genes10010065. [PMID: 30669400 PMCID: PMC6360023 DOI: 10.3390/genes10010065] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5′-carbon of the cytosine mainly within cytosine–phosphate–guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.
Collapse
|
Review |
6 |
73 |
13
|
Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discov 2016; 2:16007. [PMID: 27462454 PMCID: PMC4849474 DOI: 10.1038/celldisc.2016.7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Global DNA hypomethylation is a most common epigenetic alteration in cancer, but the mechanism remains elusive. Previous studies demonstrate that UHRF1 but not UHRF2 is required for mediating DNA maintenance methylation by DNMT1. Here we report unexpectedly a conserved function for UHRF1 and UHRF2: inhibiting de novo DNA methylation by functioning as E3 ligases promoting DNMT3A degradation. UHRF1/2 are frequently overexpressed in cancers and we present evidence that UHRF1/2 overexpression downregulates DNMT3A proteins and consequently leads to DNA hypomethylation. Abrogating this negative regulation on DNMT3A or overexpression of DNMT3A leads to increased DNA methylation and impaired tumor growth. We propose a working model that UHRF1/2 safeguards the fidelity of DNA methylation and suggests that UHRF1/2 overexpression is likely a causal factor for widespread DNA hypomethylation in cancer via suppressing DNMT3A.
Collapse
|
Journal Article |
9 |
69 |
14
|
Wang X, Wu Q, Xu B, Wang P, Fan W, Cai Y, Gu X, Meng F. MiR-124 exerts tumor suppressive functions on the cell proliferation, motility and angiogenesis of bladder cancer by fine-tuning UHRF1. FEBS J 2015; 282:4376-88. [PMID: 26310391 DOI: 10.1111/febs.13502] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/28/2015] [Accepted: 08/22/2015] [Indexed: 12/13/2022]
Abstract
UHRF1, an epigenetic factor, is implicated in various cellular processes of tumorigenesis. However, the modulation of UHRF1 expression in human bladder cancer at post-transcriptional levels remains unclear. Here, we report that miR-124 suppresses expression of UHRF1 to affect the progression of human bladder cancer through competitive binding of the same region of its 3'-UTR. We show that compared with corresponding normal tissues, UHRF1 is upregulated and miR-124 is downregulated in bladder cancer tissues, demonstrating an inverse correlation of miR-124 and UHRF1. Quantitative PCR and western blot assay demonstrated that over-expression of miR-124 resulted in the suppression of UHRF1. Furthermore, luciferase assay revealed that miR-124 could control the fate of target gene UHRF1 mRNA by binding 3'-UTR. The rescue experiment confirmed that miR-124 exerted its biological functions by targeting UHRF1. miR-124 over-expression significantly attenuated cellular proliferation, migration, invasion and vasculogenic mimicry in vitro, and tumor growth in vivo. UHRF1 siRNA showed significant inhibitory effects on bladder cancer cells. Collectively, our study demonstrates that miR-124 can impair the proliferation or metastasis of human bladder cancer cells by down-regulation of UHRF1.
Collapse
|
Journal Article |
10 |
65 |
15
|
Foster BM, Stolz P, Mulholland CB, Montoya A, Kramer H, Bultmann S, Bartke T. Critical Role of the UBL Domain in Stimulating the E3 Ubiquitin Ligase Activity of UHRF1 toward Chromatin. Mol Cell 2018; 72:739-752.e9. [PMID: 30392929 PMCID: PMC6242706 DOI: 10.1016/j.molcel.2018.09.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
The RING E3 ubiquitin ligase UHRF1 controls DNA methylation through its ability to target the maintenance DNA methyltransferase DNMT1 to newly replicated chromatin. DNMT1 recruitment relies on ubiquitylation of histone H3 by UHRF1; however, how UHRF1 deposits ubiquitin onto the histone is unknown. Here, we demonstrate that the ubiquitin-like domain (UBL) of UHRF1 is essential for RING-mediated H3 ubiquitylation. Using chemical crosslinking and mass spectrometry, biochemical assays, and recombinant chromatin substrates, we show that the UBL participates in structural rearrangements of UHRF1 upon binding to chromatin and the E2 ubiquitin conjugating enzyme UbcH5a/UBE2D1. Similar to ubiquitin, the UBL exerts its effects through a hydrophobic patch that contacts a regulatory surface on the “backside” of the E2 to stabilize the E2-E3-chromatin complex. Our analysis of the enzymatic mechanism of UHRF1 uncovers an unexpected function of the UBL domain and defines a new role for this domain in DNMT1-dependent inheritance of DNA methylation.
The UBL domain of UHRF1 is required for its E3 ubiquitin ligase activity A hydrophobic patch on the UBL is required to form a stable E2/E3/chromatin complex The UHRF1 N terminus and UBL hydrophobic patch control targeted H3 ubiquitylation DNMT1-mediated maintenance DNA methylation requires the UBL hydrophobic patch
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
63 |
16
|
The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget 2018; 7:59070-59086. [PMID: 27487138 PMCID: PMC5312296 DOI: 10.18632/oncotarget.10887] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular targeted therapy is a standard treatment for patients with advanced renal cell carcinoma (RCC). Sunitinib is one of the most common molecular-targeted drugs for metastatic RCC. Molecular mechanisms of sunitinib resistance in RCC cells is still ambiguous. The microRNA (miRNA) expression signature of patients with sunitinib failure in RCC was constructed using a polymerase chain reaction (PCR)-based array. Several miRNAs that were aberrantly expressed in RCC tissues from patients treated with sunitinib were identified in this analysis. MicroRNA-101 (miR- 101) was markedly suppressed in sunitinib treated RCC tissues. Restoration of miR-101 significantly inhibited cell migration and invasion in Caki-1 and 786-O cells. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) was directly suppressed by miR-101 in RCC cells, and overexpression of UHRF1 was confirmed in sunitinib-treated RCC tissues. The pathways of nucleotide excision repair and mismatch repair were significantly suppressed by knockdown of UHRF1. Our findings showed that antitumor miR-101- mediated UHRF1 pathways may be suppressed by sunitinib treatment.
Collapse
|
Journal Article |
7 |
61 |
17
|
Sidhu H, Capalash N. UHRF1: The key regulator of epigenetics and molecular target for cancer therapeutics. Tumour Biol 2017; 39:1010428317692205. [PMID: 28218043 DOI: 10.1177/1010428317692205] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UHRF1 is a master regulator of epigenome as it coordinates DNA methylation and histone modifications. Compelling evidence suggests a strong link between UHRF1 overexpression and tumorigenesis, substantiating its ability to act as a potential biomarker for cancer diagnosis and prognosis. UHRF1 also mediates repair of damaged DNA that makes cancer cells resistant toward cytocidal drugs. Hence, understanding the molecular mechanism of UHRF1 regulation would help in developing cancer therapeutics. Natural compounds have shown applicability to downregulate UHRF1 leading to growth arrest and apoptosis in cancer cells.
Collapse
|
Review |
8 |
59 |
18
|
DaRosa PA, Harrison JS, Zelter A, Davis TN, Brzovic P, Kuhlman B, Klevit RE. A Bifunctional Role for the UHRF1 UBL Domain in the Control of Hemi-methylated DNA-Dependent Histone Ubiquitylation. Mol Cell 2018; 72:753-765.e6. [PMID: 30392931 DOI: 10.1016/j.molcel.2018.09.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/27/2022]
Abstract
DNA methylation patterns regulate gene expression programs and are maintained through a highly coordinated process orchestrated by the RING E3 ubiquitin ligase UHRF1. UHRF1 controls DNA methylation inheritance by reading epigenetic modifications to histones and DNA to activate histone H3 ubiquitylation. Here, we find that all five domains of UHRF1, including the previously uncharacterized ubiquitin-like domain (UBL), cooperate for hemi-methylated DNA-dependent H3 ubiquitin ligation. Our structural and biochemical studies, including mutations found in cancer genomes, reveal a bifunctional requirement for the UBL in histone modification: (1) the UBL makes an essential interaction with the backside of the E2 and (2) the UBL coordinates with other UHRF1 domains that recognize epigenetic marks on DNA and histone H3 to direct ubiquitin to H3. Finally, we show UBLs from other E3s also have a conserved interaction with the E2, Ube2D, highlighting a potential prevalence of interactions between UBLs and E2s.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
59 |
19
|
Zhu M, Xu Y, Ge M, Gui Z, Yan F. Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis. Cancer Sci 2015; 106:833-9. [PMID: 25940709 PMCID: PMC4520634 DOI: 10.1111/cas.12689] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/11/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
Abstract
The UHRF1 protein is pivotal for DNA methylation and heterochromatin formation, leading to decreased expressions of tumor suppressor genes and contributing to tumorigenesis. However, the factors that modulate UHRF1 expression in colorectal cancer (CRC) remain unclear. Here we showed that, compared with corresponding normal tissues, UHRF1 was upregulated and microRNA-9 (miR-9) was downregulated in CRC tissues. The expression of UHRF1 was inversely correlated with overall survival rates of patients with CRC. Overexpression of miR-9 in CRC cell lines significantly attenuated CRC cell proliferation and promoted cell apoptosis. The expression of UHRF1 was markedly reduced in pre-miR-9 transfected CRC cells. Using luciferase reporter assay, we confirmed that miR-9 was a direct upstream regulator of UHRF1. Finally, analysis of miR-9 and UHRF1 levels in human CRC tissues revealed that expression of miR-9 was inversely correlated with UHRF1 expression. Collectively, our results offer in vitro validation of the concept that miR-9 could repress the expression of UHRF1, and function as a tumor-suppressive microRNA in CRC. It may serve as a prognostic and therapeutic marker for CRC.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
56 |
20
|
The Arginine Methyltransferase PRMT6 Regulates DNA Methylation and Contributes to Global DNA Hypomethylation in Cancer. Cell Rep 2018; 21:3390-3397. [PMID: 29262320 DOI: 10.1016/j.celrep.2017.11.082] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/27/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
DNA methylation plays crucial roles in chromatin structure and gene expression. Aberrant DNA methylation patterns, including global hypomethylation and regional hypermethylation, are associated with cancer and implicated in oncogenic events. How DNA methylation is regulated in developmental and cellular processes and dysregulated in cancer is poorly understood. Here, we show that PRMT6, a protein arginine methyltransferase responsible for asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a), negatively regulates DNA methylation and that PRMT6 upregulation contributes to global DNA hypomethylation in cancer. Mechanistically, PRMT6 overexpression impairs chromatin association of UHRF1, an accessory factor of DNMT1, resulting in passive DNA demethylation. The effect is likely due to elevated H3R2me2a, which inhibits the interaction between UHRF1 and histone H3. Our work identifies a mechanistic link between protein arginine methylation and DNA methylation, which is disrupted in cancer.
Collapse
|
Journal Article |
7 |
52 |
21
|
Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc Natl Acad Sci U S A 2018; 115:E12417-E12426. [PMID: 30530687 DOI: 10.1073/pnas.1812518115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injured peripheral sensory neurons switch to a regenerative state after axon injury, which requires transcriptional and epigenetic changes. However, the roles and mechanisms of gene inactivation after injury are poorly understood. Here, we show that DNA methylation, which generally leads to gene silencing, is required for robust axon regeneration after peripheral nerve lesion. Ubiquitin-like containing PHD ring finger 1 (UHRF1), a critical epigenetic regulator involved in DNA methylation, increases upon axon injury and is required for robust axon regeneration. The increased level of UHRF1 results from a decrease in miR-9. The level of another target of miR-9, the transcriptional regulator RE1 silencing transcription factor (REST), transiently increases after injury and is required for axon regeneration. Mechanistically, UHRF1 interacts with DNA methyltransferases (DNMTs) and H3K9me3 at the promoter region to repress the expression of the tumor suppressor gene phosphatase and tensin homolog (PTEN) and REST. Our study reveals an epigenetic mechanism that silences tumor suppressor genes and restricts REST expression in time after injury to promote axon regeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
50 |
22
|
Milagre I, Stubbs TM, King MR, Spindel J, Santos F, Krueger F, Bachman M, Segonds-Pichon A, Balasubramanian S, Andrews SR, Dean W, Reik W. Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming. Cell Rep 2017; 18:1079-1089. [PMID: 28147265 PMCID: PMC5300890 DOI: 10.1016/j.celrep.2017.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.
Collapse
|
brief-report |
8 |
48 |
23
|
Wang S, Zhang C, Hasson D, Desai A, SenBanerjee S, Magnani E, Ukomadu C, Lujambio A, Bernstein E, Sadler KC. Epigenetic Compensation Promotes Liver Regeneration. Dev Cell 2019; 50:43-56.e6. [PMID: 31231040 PMCID: PMC6615735 DOI: 10.1016/j.devcel.2019.05.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Two major functions of the epigenome are to regulate gene expression and to suppress transposons. It is unclear how these functions are balanced during physiological challenges requiring tissue regeneration, where exquisite coordination of gene expression is essential. Transcriptomic analysis of seven time points following partial hepatectomy identified the epigenetic regulator UHRF1, which is essential for DNA methylation, as dynamically expressed during liver regeneration in mice. UHRF1 deletion in hepatocytes (Uhrf1HepKO) caused genome-wide DNA hypomethylation but, surprisingly, had no measurable effect on gene or transposon expression or liver homeostasis. Partial hepatectomy of Uhrf1HepKO livers resulted in early and sustained activation of proregenerative genes and enhanced liver regeneration. This was attributed to redistribution of H3K27me3 from promoters to transposons, effectively silencing them and, consequently, alleviating repression of liver regeneration genes, priming them for expression in Uhrf1HepKO livers. Thus, epigenetic compensation safeguards the genome against transposon activation, indirectly affecting gene regulation.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
47 |
24
|
Abu-Alainin W, Gana T, Liloglou T, Olayanju A, Barrera LN, Ferguson R, Campbell F, Andrews T, Goldring C, Kitteringham N, Park BK, Nedjadi T, Schmid MC, Slupsky JR, Greenhalf W, Neoptolemos JP, Costello E. UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. J Pathol 2016; 238:423-33. [PMID: 26497117 PMCID: PMC4738372 DOI: 10.1002/path.4665] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022]
Abstract
The cellular defence protein Nrf2 is a mediator of oncogenesis in pancreatic ductal adenocarcinoma (PDAC) and other cancers. However, the control of Nrf2 expression and activity in cancer is not fully understood. We previously reported the absence of Keap1, a pivotal regulator of Nrf2, in ∼70% of PDAC cases. Here we describe a novel mechanism whereby the epigenetic regulator UHRF1 suppresses Keap1 protein levels. UHRF1 expression was observed in 20% (5 of 25) of benign pancreatic ducts compared to 86% (114 of 132) of pancreatic tumours, and an inverse relationship between UHRF1 and Keap1 levels in PDAC tumours (n = 124) was apparent (p = 0.002). We also provide evidence that UHRF1-mediated regulation of the Nrf2 pathway contributes to the aggressive behaviour of PDAC. Depletion of UHRF1 from PDAC cells decreased growth and enhanced apoptosis and cell cycle arrest. UHRF1 depletion also led to reduced levels of Nrf2-regulated downstream proteins and was accompanied by heightened oxidative stress, in the form of lower glutathione levels and increased reactive oxygen species. Concomitant depletion of Keap1 and UHRF1 restored Nrf2 levels and reversed cell cycle arrest and the increase in reactive oxygen species. Mechanistically, depletion of UHRF1 reduced global and tumour suppressor promoter methylation in pancreatic cancer cell lines, and KEAP1 gene promoter methylation was reduced in one of three cell lines examined. Thus, methylation of the KEAP1 gene promoter may contribute to the suppression of Keap1 protein levels by UHRF1, although our data suggest that additional mechanisms need to be explored. Finally, we demonstrate that K-Ras drives UHRF1 expression, establishing a novel link between this oncogene and Nrf2-mediated cellular protection. Since UHRF1 over-expression occurs in other cancers, its ability to regulate the Keap1-Nrf2 pathway may be critically important to the malignant behaviour of these cancers.
Collapse
|
research-article |
9 |
46 |
25
|
Zhou L, Shang Y, Jin Z, Zhang W, Lv C, Zhao X, Liu Y, Li N, Liang J. UHRF1 promotes proliferation of gastric cancer via mediating tumor suppressor gene hypermethylation. Cancer Biol Ther 2015; 16:1241-51. [PMID: 26147747 DOI: 10.1080/15384047.2015.1056411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic changes play significant roles in cancer development. UHRF1, an epigenetic regulator, has been shown to be overexpressed and to coordinate tumor suppressor gene (TSG) silencing in several cancers. In a previous study, we found that UHRF1 promoted gastric cancer (GC) invasion and metastasis. However, the role and underlying mechanism of UHRF1 in GC carcinogenesis remain largely unknown. In the present study, we investigated UHRF1 expression and function in GC proliferation and explored its downstream regulatory mechanism. The results demonstrated that UHRF1 overexpression was an independent and significant predictor of GC prognosis. Downregulation of UHRF1 suppressed GC proliferation and growth in vitro and in vivo, and UHRF1 upregulation showed opposite effects. Furthermore, downregulation of UHRF1 reactivated 7 TSGs, including CDX2, CDKN2A, RUNX3, FOXO4, PPARG, BRCA1 and PML, via promoter demethylation. These results provide insight into the GC proliferation process, and suggest that targeting UHRF1 represents a new therapeutic approach to block GC development.
Collapse
Key Words
- BRCA, breast cancer
- CDH4, cadherin 4
- CDKN2A, cyclin-dependent kinase inhibitor 2A
- CDX2, caudal type homeobox 2
- DNA methylation
- DNMT, DNA methyltransferase
- FOXO, forkhead box O
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GC, gastric cancer
- GO, gene ontology
- MSP, methylation-specific PCR
- NC, negative control
- PBS, phosphate buffered saline
- PI, propidium iodide
- PLA, Chinese People's Liberation Army
- PML, promyelocytic leukemia
- PPARG,peroxisome proliferator-activated receptor gamma
- RB, retinoblastoma protein
- RUNX3, runt-related transcription factor 3
- TSG, tumor suppressor gene
- UHRF1
- UHRF1, ubiquitin-like containing PHD ring finger 1
- gastric cancer
- mRNA, messenger RNA
- proliferation
- qRT-PCR, quantitative reverse transcription–polymerase chain reaction
- shRNA, short hairpin RNA
- tumor suppressor gene
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
46 |