1
|
Zhang Y, Li W, Zou L, Gong Y, Zhang P, Xing S, Yang H. Metabonomic study of the protective effect of Fukeqianjin formula on multi-pathogen induced pelvic inflammatory disease in rats. Chin Med 2018; 13:61. [PMID: 30555525 PMCID: PMC6288860 DOI: 10.1186/s13020-018-0217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
Background Fukeqianjin formula has been effectively used in the treatment of pelvic inflammatory disease (PID) and the related complications in clinic. Although there have been some studies about the underlying mechanism that focus on its anti-inflammatory and immunoregulatory activities. But the mechanism is still not fully understood. The aim of this study was to investigate the alteration of plasma metabolic profiles in PID rats and the regulatory effect of Fukeqianjin formula on potential biomarkers. Methods Pelvic inflammatory model was established by intrauterine inoculation of multiple pathogens combined with mechanical injury of endometrium. Rats were randomly divided into normal group, model group, azithromycin group, high-and low-dose of Fukeqianjin formula treatment group (FF-H, and FF-L, respectively). After 14 days of intragastric administration, the plasm levels of interleukin-1β (IL-1β) and nitric oxide (NO) were measured. To further recognize and identify potential biomarkers and metabolic pathways, an ultra-performance liquid chromatography-quadrupole-Exactive Orbitrap-mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) metabonomic method combined with multivariate analyses including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA), was employed to analyze the metabolic profiling. Results Compared with normal group, the plasma levels of IL-1β and NO were significantly increased in the PID model group (P < 0. 05), and obviously decreased after high-dose intervention of Fukeqianjin formula (P < 0. 01). The PCA, PLS-DA and OPLS-DA analysis showed that PID rats were clearly separated from normal rats. Compared with the PID model group, the metabolite profiles of Fukeqianjin formula treatment group was gradually restored to normal. Meanwhile, 14 potential metabolite biomarkers, which were mainly related to the metabolic pathways of intervening glycerophospholipid metabolism, linoleic acid metabolism/alpha-linolenic acid metabolism, amino acid metabolism, arachidonic acid metabolism, and unsaturated fatty acids biosynthesis, have been identified. Fukeqianjin formula exerts good regulatory effect on the abnormal metabolism of PID rats. Conclusions Intrauterine inoculation of multiple pathogens combined with mechanical injury of endometrium could significantly disturb the plasma metabolic profiles of rats. Fukeqianjin formula has potential therapeutic effect on multi-pathogen-induced PID by ameliorating metabolism disorders and alleviating the inflammatory response. Electronic supplementary material The online version of this article (10.1186/s13020-018-0217-6) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
18 |
2
|
Chang GH, Bo YY, Cui J, Xu LL, Zhao ZH, Wang WQ, Hou JL. [Main chemical constituents in aerial parts of Glycyrrhiza uralensis by UPLC-Q-Exactive Orbitrap-MS]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2021; 46:1449-1459. [PMID: 33787143 DOI: 10.19540/j.cnki.cjcmm.20201225.301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chemical constituents from aerial parts of Glycyrrhiza uralensis were analyzed and identified using ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The chromatographic column of Waters Acquity UPLC BEH-C_(18)(2.1 mm×100 mm, 1.7 μm) was adopted, with acetonitrile-water(0.5% formic acid) as mobile phase at a flow rate of 0.2 mL·min~(-1). Data was collected in positive and negative modes of electrospray ionization(ESI). A total of 55 compounds, including 42 flavonoids, 9 stilbenes, 2 coumarins, 1 lignin and 1 phenolic acid, which were characterized in the aerial parts of G. uralensis based on accurate molecular mass information of molecular and product ions provided by UPLC-Q-Exactive Orbitrap-MS based on comparison with standard substances and references. It is an effective and accurate method to provide chemical information of constituents in aerial parts of G. uralensis, and can provide a reference for further study on pharmacodynamic material basis and resources development and utilization.
Collapse
|
|
4 |
4 |
3
|
Yang KN, Guan YX, Fan JW, Yuan XM, Zhang LF, Liu Q, Li J. [Chemical constituents and mechanism of Chuanzhi Tongluo Capsules based on UPLC-Q-Exactive Orbitrap-MS and network pharmacology]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2023; 48:5216-5234. [PMID: 38114111 DOI: 10.19540/j.cnki.cjcmm.20230614.302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The chemical constituents of Chuanzhi Tongluo Capsules were analyzed and identified using ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) to clarify the pharmacological substance basis. In addition, network pharmacology was employed to explore the mechanism of Chuanzhi Tongluo Capsules in the treatment of cerebral infarction. Gradient elution was performed using acetonitrile and 1% acetic acid in water as the mobile phase. Mass spectrometry was performed in positive and negative ion modes. Xcalibur 4.2 software was used for compound analysis, including accurate mass-to-charge ratio and MS/MS fragment information, combined with the comparison of reference standards and literature data. A total of 152 compounds were identified, including 32 organic acids, 35 flavonoids and their glycosides, 33 diterpenes, 13 phthalides, 12 triterpenes and triterpene saponins, 23 nitrogen-containing compounds, and 4 other compounds, and their fragmentation patterns were analyzed. SwissTargetPrediction, GeneCards, DAVID, and other databases were used to predict and analyze the core targets and mechanism of Chuanzhi Tongluo Capsules. Protein-protein interaction(PPI) network topology analysis identified 10 core targets, including TNF, VEGFA, EGFR, IL1B, and CTNNB1. KEGG enrichment analysis showed that Chuanzhi Tongluo Capsules mainly exerted their effects through the regulation of lipid and atherosclerosis, glycoproteins in cancer, MicroRNAs in cancer, fluid shear stress, and atherosclerosis-related pathways. Molecular docking was performed between the key constituents and core targets, and the results demonstrated a strong binding affinity between the key constituents of Chuanzhi Tongluo Capsules and the core targets. This study comprehensively elucidated the chemical constituents of Chuanzhi Tongluo Capsules and explored the core targets and mechanism in the treatment of cerebral infarction based on network pharmacology, providing a scientific reference for the study of the pharmacological substance basis and formulation quality standards of Chuanzhi Tongluo Capsules.
Collapse
|
English Abstract |
2 |
1 |
4
|
Li X, Wen X, Luo Z, Wang X, Zhang Y, Wei J, Tian Y, Ling R, Duan Y. Simultaneous detection of volatile and non-volatile metabolites in urine using UPLC-Q-Exactive Orbitrap-MS and HS-SPME/GC-HRMS: A promising strategy for improving the breast cancer diagnosis accuracy. Talanta 2025; 291:127812. [PMID: 40023122 DOI: 10.1016/j.talanta.2025.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) is the primary cause of cancer-related deaths in women. Currently, the discovery of biomarkers primarily relies on single platform, which might overlook other potential biomarkers and lead to inaccurate diagnoses. This study aims to: (1) expand the detection range of biomarkers through multiple analytical techniques, thereby improving the accuracy of BC diagnosis, and (2) analyze the metabolic pathways of the biomarkers to explore the metabolic mechanisms underlying BC. Urine samples from BC patients and healthy controls were analyzed using two techniques: Ultra-high performance liquid chromatography combined with Quadrupole-Exactive-Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS), and headspace solid-phase microextraction combined with gas chromatography-high resolution mass spectrometry (HS-SPME/GC-HRMS). Data from each platform was analyzed independently using both univariate and multivariate statistical approaches to identify candidate biomarkers. Subsequently, a mid-level data fusion approach was applied to integrate the candidate biomarkers identified by each platform. The fused data were used to construct orthogonal partial least squares discriminant analysis (OPLS-DA) models and random forest (RF) models, which were then compared against models based on individual platform. The fused RF and OPLS-DA models demonstrated enhanced diagnostic accuracy compared to the individual model. Integrating GC-HRMS and UPLC-Q-Exactive Orbitrap-MS achieved the best performance, with an AUC value of 0.967, sensitivity of 86.37 %, and specificity of 89.19 %. Metabolic pathway analysis revealed that 10 metabolic pathways exert an impact on BC. Four pathways-pyruvate metabolism, sulfur metabolism, taurine and hypotaurine metabolism, and tyrosine metabolism-were found to be associated with BC in both metabolomics and volatolomics studies, indicating that these pathways play pivotal roles in BC. This study confirmed the potential of merging multi-platforms to enhance the accuracy of BC diagnosis, offering new avenues for understanding the metabolic mechanisms of BC.
Collapse
|
|
1 |
|
5
|
Chang G, Liu H, Cui J, Wang Z, Wang W, Hou J. Enrichment and qualitative analysis of flavonoid glycosides from the aerial parts of Glycyrrhiza uralensis Fisch. Nat Prod Res 2024; 38:3275-3281. [PMID: 37431638 DOI: 10.1080/14786419.2023.2226296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Our previous study found that the aerial parts of Chinese liquorice (Glycyrrhiza uralensis Fisch.) had pharmacological effects against chronic non-bacterial prostatitis in rats, however the pharmacologically active compounds remain unclear. Here, a method based on UPLC-Q-Exactive Orbitrap-MS was established to qualitatively analyse the flavonoid glycosides rich fraction extracted from the aerial part of G. uralensis Fisch., after pretreatment with n-butanol and enrichment using AB-8 macroporous resin. Using both positive and negative ion modes, 52 compounds were identified or tentatively characterised by comparison with standards and the literature: 40 flavonoids, 8 organic acids, 2 chromones, 1 coumarin, and 1 phenylethanoid glycoside. This study provides not only an approach to enrich flavonoid glycosides but also a methodology for quickly determining the relevant bioactive components in the aerial parts of G. uralensis Fisch.
Collapse
|
|
1 |
|
6
|
Wen Y, Liu C, Yuan Q, Wang R, Li XQ, Yuan D, Yuan CF, He YM. [Serum pharmacochemistry of Panacis Japonici Rhizoma extract based on UPLC-Q-Exactive Orbitrap-MS]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2024; 49:6490-6499. [PMID: 39805795 DOI: 10.19540/j.cnki.cjcmm.20240910.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) with the mobile phase of water and acetonitrile containing 0.1% formic acid. High resolution multistage mass spectrometry data were collected by electrospray ionization in positive and negative ion modes. The chemical components of Panacis Japonici Rhizoma extract were identified by comparing with the retention time, high resolution precise molecular weight, and secondary fragment ions of reference substances and related literature. After intragastric administration of Panacis Japonici Rhizoma extract, blood was collected from the abdominal aorta of rats for separation of the serum, and the absorbed components were scanned and identified. The results showed that 43 chemical components were detected in the Panacis Japonici Rhizoma extract, including 22 saponins, 9 amino acids, 5 polysaccharides, 2 volatile oils, and 5 nucleosides. In the serum, 18 components were detected, including 10 prototype components, 6 metabolites, and 2 unknown components. This study analyzed the chemical components and absorbed components of Panacis Japonici Rhizoma extract, providing clues for clarifying the pharmacological basis of Panacis Japonici Rhizoma.
Collapse
|
English Abstract |
1 |
|
7
|
He F, Zhou Y, Peng Y, Zheng L, Wang L, Huang Y, Chi MY. [Comparative study on metabolites in rat liver microsomes, urine, feces and bile between Shuganning Injection and Scutellariae Radix extract]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2024; 49:6500-6511. [PMID: 39805796 DOI: 10.19540/j.cnki.cjcmm.20241011.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study aims to compare the metabolic differences of baicalin and its analogues between Shuganning Injection and Scutellariae Radix extract. Twelve SD rats were randomly divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. Their liver microsomes were incubated with the drugs, and then the samples were collected. Ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was used to analyze the prototype components and metabolites of the drugs in liver microsomes of each group. Another 12 SD rats were also divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. The rats were administrated with 4.2 mL·kg~(-1) Shuganning Injection or Scutellariae Radix extract by tail vein injection. After 48 h, the rat urine, feces, and bile were collected, and UPLC-Q-Exactive Orbitrap-MS was used to analyze the prototype components and metabolites in each biological sample. The results showed that 5 prototype components and 8 metabolites of Shuganning Injection and Scutellariae Radix extract were identified in liver microsomes. A total of 5 prototype components were identified in rat urine, feces, and bile separately. Fifteen metabolites were identified in the urine, 9 metabolites in the feces, and 12 metabolites in the bile. The differences of metabolic pathways and number of metabolites of baicalin were compared between Shuganning Injection and Scutellariae Radix extract. For both Shuganning Injection and Scutellariae Radix extract, the metabolites of baicalin or baicalein in rat liver microsomes, urine, bile, and feces were mainly formed glucuronic acid conjugates, and there were a small amount of glucose conjugates and methylation products. Differences were found in the number and types of metabolites of baicalin in urine samples between Shuganning Injection and Scutellariae Radix extract, indicating that differences existed in metabolism between the two. This suggests that the other components in the formula lead to changes of metabolites in vivo.
Collapse
|
Comparative Study |
1 |
|
8
|
Qi JC, Chen J, Li W, Li GP, Chen HS, Pi WM, Gao F, Wang PL, Mi M, Lei HM. [Explore antioxidant quality markers of Hippophae tibetana based on "dry-method + wet-method" technology]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2021; 46:2699-2709. [PMID: 34296566 DOI: 10.19540/j.cnki.cjcmm.20210122.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cross combination of dry-method(network pharmacology analysis) and wet-method(high-resolution mass spectro-metry with antioxidation experiment) was used to predict antioxidant quality markers(Q-markers) of Hippophae tibetana. Ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was developed to rapidly separate and identify the chemical constituents in H. tibetana. Then in DPPH free radicals and superoxide anion scavenging experiment, the antioxidant activity of the four different polar parts with extracts of petroleumether, ethyl acetate, n-butanol and water was evaluated. Network pharmacology method was used for functional enrichment and pathway analysis to screen antioxidant-related components and preliminarily explain the mechanism of action. On this basis, multi-source information was integrated to predict the antioxidant Q-markers. The results showed that 51 components in H. tibetana were identified, including 18 flavonoids, 14 terpenoids, 6 alkaloids, 4 coumarins and phenylpropanoids, 3 volatile components and 2 polyphenols. The antioxidant capacity of different fractions: ethyl acetate > n-butanol > water > petroleum ether. The medicine mainly acted on PI3 K-Akt and FoxO signaling pathways to perform antioxidant effects through flavonoids such as quercetin, luteolin and kaempferol. According to the results of dry-method and wet-method, quercetin, luteolin and kaempferol, the representatives of poly-hydroxy flavone, may be the antioxidant Q-markers of H. tibetana. In this study, with the antioxidant Q-markers of H. tibetana as an example, an investigation model of predicting Q-marker was discussed based on the ternary system of composition, function and informatics, providing a scientific basis for the establishment of quality evaluation standards for H. tibetana.
Collapse
|
|
4 |
|
9
|
Niu T, Wang J, Xun L, Zheng B, Deng Z, Chen Z, Jia K, Zhao P, Zhao Q. Deciphering the impact and mechanism of total flavonoids from Cortex Juglandis Mandshuricae on alcoholic fatty liver employing LC-MS/MS, network pharmacology analysis and in vitro validation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124334. [PMID: 39514994 DOI: 10.1016/j.jchromb.2024.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
The Cortex Juglandis Mandshuricae (CJM) has the efficacy of penetrating the liver meridian, removing heat and dampness, and alleviating the liver, which corresponds to the pathogenesis of alcoholic fatty liver disease (AFLD) with damp heat accumulation. Modern research has shown that total flavonoids from Cortex Juglandis Mandshuricae (TFC) have hepatoprotective, antioxidant and antitumour pharmacological effects. However, there is no any investigation on the mechanism of TFC improving AFLD. In this work, a valid strategy combining UPLC-Q-Exactive Orbitrap-MS, network pharmacology and in vitro cellular experimental validation is proposed to predict the targets and pathways of TFC to ameliorate AFLD and to explore its mechanism of action. As a result, 26 flavonoids and 182 targets linked to TFC and AFLD were identified. These compounds realize their critical targets via various signaling pathways and perform multiple biological functions on the basis of the constructed compound-disease target networks. In vitro experiments demonstrated TFC had a protective impact on ethanol-treated L02 cells to a certain extent and could diminished lipid accretion. In addition, RT-qPCR and western blot results illustrated that TFC could regulate the expression of PPARα, CPT-1, SREBP-1c and FAS, and inhibit alcohol-induced lipid accumulation in L02 cells thereby alleviating AFLD. The present study further provides experimental justification for TFC to ameliorate AFLD in practical applications.
Collapse
|
|
1 |
|
10
|
Yuwen S, Zheng Q, Liao C, Wei L, Yang S, Li N. Therapeutic effects and mechanisms of alcohol extracts from Polygala fallax Hemsl on endometriosis in rats. Arch Biochem Biophys 2025; 768:110393. [PMID: 40090438 DOI: 10.1016/j.abb.2025.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Endometriosis is a chronic estrogen-dependent inflammatory disease that significantly affects women's health. Polygala fallax Hemsl. (PFH), a traditional Zhuang medicine, has been frequently used for gynecological disorders. This study investigated the therapeutic effects and mechanisms of the alcohol extract of Polygala fallax Hemsl. (ae-PFH) in a rat model of endometriosis, as well as its potential for combination therapy. SD rats were divided into seven groups: control, model, PFH, mifepristone, PFH combined with mifepristone, exosomes, and PFH combined with exosomes. After 21 days of treatment, body weight, organ coefficients, and histopathological changes in uterine and ovarian tissues were analyzed. UPLC-Q-Exactive Orbitrap-MS identified active components in ae-PFH and serum samples, followed by molecular docking with key disease target proteins. Serum levels of inflammatory cytokines and hormones were measured using ELISA, while protein and mRNA expression of key regulatory factors were assessed via Western blot and q-PCR. Ae-PFH reduced lesion size and suppressed inflammation, angiogenesis, and pain by inhibitied the PI3K/AKT pathway. Additionally, in combination therapy, ae-PFH significantly enhanced therapeutic effects of mifepristone or exosomes derived from umbilical cord mesenchymal stem cells. These findings indicated that ae-PFH presentd a promising medical method for the treatment of endometriosis, exhibiting innovative potentiality for combination therapy.
Collapse
|
|
1 |
|