1
|
Dulla K, Slijkerman R, van Diepen HC, Albert S, Dona M, Beumer W, Turunen JJ, Chan HL, Schulkens IA, Vorthoren L, den Besten C, Buil L, Schmidt I, Miao J, Venselaar H, Zang J, Neuhauss SCF, Peters T, Broekman S, Pennings R, Kremer H, Platenburg G, Adamson P, de Vrieze E, van Wijk E. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther 2021; 29:2441-2455. [PMID: 33895329 PMCID: PMC8353187 DOI: 10.1016/j.ymthe.2021.04.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.
Collapse
|
Journal Article |
4 |
77 |
2
|
Liquori A, Vaché C, Baux D, Blanchet C, Hamel C, Malcolm S, Koenig M, Claustres M, Roux AF. Whole USH2A Gene Sequencing Identifies Several New Deep Intronic Mutations. Hum Mutat 2015; 37:184-93. [PMID: 26629787 DOI: 10.1002/humu.22926] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023]
Abstract
Deep intronic mutations leading to pseudoexon (PE) insertions are underestimated and most of these splicing alterations have been identified by transcript analysis, for instance, the first deep intronic mutation in USH2A, the gene most frequently involved in Usher syndrome type II (USH2). Unfortunately, analyzing USH2A transcripts is challenging and for 1.8%-19% of USH2 individuals carrying a single USH2A recessive mutation, a second mutation is yet to be identified. We have developed and validated a DNA next-generation sequencing approach to identify deep intronic variants in USH2A and evaluated their consequences on splicing. Three distinct novel deep intronic mutations have been identified. All were predicted to affect splicing and resulted in the insertion of PEs, as shown by minigene assays. We present a new and attractive strategy to identify deep intronic mutations, when RNA analyses are not possible. Moreover, the bioinformatics pipeline developed is independent of the gene size, implying the possible application of this approach to any disease-linked gene. Finally, an antisense morpholino oligonucleotide tested in vitro for its ability to restore splicing caused by the c.9959-4159A>G mutation provided high inhibition rates, which are indicative of its potential for molecular therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
66 |
3
|
Toualbi L, Toms M, Moosajee M. USH2A-retinopathy: From genetics to therapeutics. Exp Eye Res 2020; 201:108330. [PMID: 33121974 PMCID: PMC8417766 DOI: 10.1016/j.exer.2020.108330] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023]
Abstract
Bilallelic variants in the USH2A gene can cause Usher syndrome type 2 and non-syndromic retinitis pigmentosa. In both disorders, the retinal phenotype involves progressive rod photoreceptor loss resulting in nyctalopia and a constricted visual field, followed by subsequent cone degeneration, leading to the loss of central vision and severe visual impairment. The USH2A gene raises many challenges for researchers and clinicians due to a broad spectrum of mutations, a large gene size hampering gene therapy development and limited knowledge on its pathogenicity. Patients with Usher type 2 may benefit from hearing aids or cochlear implants to correct their hearing defects, but there are currently no approved treatments available for the USH2A-retinopathy. Several treatment strategies, including antisense oligonucleotides and translational readthrough inducing drugs, have shown therapeutic promise in preclinical studies. Further understanding of the pathogenesis and natural history of USH2A-related disorders is required to develop innovative treatments and design clinical trials based on reliable outcome measures. The present review will discuss the current knowledge about USH2A, the emerging therapeutics and existing challenges.
Collapse
|
Review |
5 |
62 |
4
|
Guo Y, Wang P, Ma JH, Cui Z, Yu Q, Liu S, Xue Y, Zhu D, Cao J, Li Z, Tang S, Chen J. Modeling Retinitis Pigmentosa: Retinal Organoids Generated From the iPSCs of a Patient With the USH2A Mutation Show Early Developmental Abnormalities. Front Cell Neurosci 2019; 13:361. [PMID: 31481876 PMCID: PMC6709881 DOI: 10.3389/fncel.2019.00361] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) represents a group of inherited retinopathies with early-onset nyctalopia followed by progressive photoreceptor degeneration causing irreversible vision loss. Mutations in USH2A are the most common cause of non-syndromic RP. Here, we reprogrammed induced pluripotent stem cells (iPSCs) from a RP patient with a mutation in USH2A (c.8559-2A > G/c.9127_9129delTCC). Then, multilayer retinal organoids including neural retina (NR) and retinal pigment epithelium (RPE) were generated by three-step “induction-reversal culture.” The early retinal organoids derived from the RP patient with the USH2A mutation exhibited significant defects in terms of morphology, immunofluorescence staining and transcriptional profiling. To the best of our knowledge, the pathogenic mutation (c.9127_9129delTCC) in USH2A has not been reported previously among RP patients. Notably, the expression of laminin in the USH2A mutation organoids was significantly lower than in the iPSCs derived from healthy, age- and sex-matched controls during the retinal organogenesis. We also observed that abnormal retinal neuroepithelium differentiation and polarization caused defective retinal progenitor cell development and retinal layer formation, disordered organization of NRs in the presence of the USH2A mutation. Furthermore, the USH2A mutation bearing RPE cells presented abnormal morphology, lacking pigmented foci and showing an apoptotic trend and reduced expression of specific makers, such as MITF, PEDF, and RPE65. In addition, the USH2A mutation organoids had lower expression of cilium-associated (especially CFAP43, PIFO) and dopaminergic synapse-related genes (including DLGAP1, GRIK1, SLC17A7, and SLC17A8), while there was higher expression of neuron apoptotic process-related genes (especially HIF1A, ADARB1, and CASP3). This study may provide essential assistance in the molecular diagnosis and screening of RP. This work recapitulates the pathogenesis of USH2A using patient-specific organoids and demonstrated that alterations in USH2A function due to mutations may lead to cellular and molecular abnormalities.
Collapse
|
Journal Article |
6 |
51 |
5
|
Baux D, Blanchet C, Hamel C, Meunier I, Larrieu L, Faugère V, Vaché C, Castorina P, Puech B, Bonneau D, Malcolm S, Claustres M, Roux AF. Enrichment of LOVD-USHbases with 152 USH2A genotypes defines an extensive mutational spectrum and highlights missense hotspots. Hum Mutat 2014; 35:1179-86. [PMID: 24944099 DOI: 10.1002/humu.22608] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022]
Abstract
Alterations of USH2A, encoding usherin, are responsible for more than 70% of cases of Usher syndrome type II (USH2), a recessive disorder that combines moderate to severe hearing loss and retinal degeneration. The longest USH2A transcript encodes usherin isoform b, a 5,202-amino-acid transmembrane protein with an exceptionally large extracellular domain consisting notably of a Laminin N-terminal domain and numerous Laminin EGF-like (LE) and Fibronectin type III (FN3) repeats. Mutations of USH2A are scattered throughout the gene and mostly private. Annotating these variants is therefore of major importance to correctly assign pathogenicity. We have extensively genotyped a novel cohort of 152 Usher patients and identified 158 different mutations, of which 93 are newly described. Pooling this new data with the existing pathogenic variants already incorporated in USHbases reveals several previously unappreciated features of the mutational spectrum. We show that parts of the protein are more likely to tolerate single amino acid variations, whereas others constitute pathogenic missense hotspots. We have found, in repeated LE and FN3 domains, a nonequal distribution of the missense mutations that highlights some crucial positions in usherin with possible consequences for the assessment of the pathogenicity of the numerous missense variants identified in USH2A.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
49 |
6
|
Fuster-García C, García-García G, González-Romero E, Jaijo T, Sequedo MD, Ayuso C, Vázquez-Manrique RP, Millán JM, Aller E. USH2A Gene Editing Using the CRISPR System. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:529-541. [PMID: 28918053 PMCID: PMC5573797 DOI: 10.1016/j.omtn.2017.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023]
Abstract
Usher syndrome (USH) is a rare autosomal recessive disease and the most common inherited form of combined visual and hearing impairment. Up to 13 genes are associated with this disorder, with USH2A being the most prevalent, due partially to the recurrence rate of the c.2299delG mutation. Excluding hearing aids or cochlear implants for hearing impairment, there are no medical solutions available to treat USH patients. The repair of specific mutations by gene editing is, therefore, an interesting strategy that can be explored using the CRISPR/Cas9 system. In this study, this method of gene editing is used to target the c.2299delG mutation on fibroblasts from an USH patient carrying the mutation in homozygosis. Successful in vitro mutation repair was demonstrated using locus-specific RNA-Cas9 ribonucleoproteins with subsequent homologous recombination repair induced by an engineered template supply. Effects on predicted off-target sites in the CRISPR-treated cells were discarded after a targeted deep-sequencing screen. The proven effectiveness and specificity of these correction tools, applied to the c.2299delG pathogenic variant of USH2A, indicates that the CRISPR system should be considered to further explore a potential treatment of USH.
Collapse
|
Journal Article |
8 |
45 |
7
|
Chen Q, Zou J, Shen Z, Zhang W, Yang J. Whirlin and PDZ domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2. J Biol Chem 2014; 289:36070-88. [PMID: 25406310 DOI: 10.1074/jbc.m114.610535] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome (USH) is the leading genetic cause of combined hearing and vision loss. Among the three USH clinical types, type 2 (USH2) occurs most commonly. USH2A, GPR98, and WHRN are three known causative genes of USH2, whereas PDZD7 is a modifier gene found in USH2 patients. The proteins encoded by these four USH genes have been proposed to form a multiprotein complex, the USH2 complex, due to interactions found among some of these proteins in vitro, their colocalization in vivo, and mutual dependence of some of these proteins for their normal in vivo localizations. However, evidence showing the formation of the USH2 complex is missing, and details on how this complex is formed remain elusive. Here, we systematically investigated interactions among the intracellular regions of the four USH proteins using colocalization, yeast two-hybrid, and pull-down assays. We show that multiple domains of the four USH proteins interact among one another. Importantly, both WHRN and PDZD7 are required for the complex formation with USH2A and GPR98. In this USH2 quaternary complex, WHRN prefers to bind to USH2A, whereas PDZD7 prefers to bind to GPR98. Interaction between WHRN and PDZD7 is the bridge between USH2A and GPR98. Additionally, the USH2 quaternary complex has a variable stoichiometry. These findings suggest that a non-obligate, short term, and dynamic USH2 quaternary protein complex may exist in vivo. Our work provides valuable insight into the physiological role of the USH2 complex in vivo and informs possible reconstruction of the USH2 complex for future therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
43 |
8
|
Lee SY, Joo K, Oh J, Han JH, Park HR, Lee S, Oh DY, Woo SJ, Choi BY. Severe or Profound Sensorineural Hearing Loss Caused by Novel USH2A Variants in Korea: Potential Genotype-Phenotype Correlation. Clin Exp Otorhinolaryngol 2019; 13:113-122. [PMID: 31674169 PMCID: PMC7248602 DOI: 10.21053/ceo.2019.00990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022] Open
Abstract
Objectives We, herein, report two novel USH2A variants from two unrelated Korean families and their clinical phenotypes, with attention to severe or more than severe sensorineural hearing loss (SNHL). Methods Two postlingually deafened subjects (SB237-461, M/46 and SB354-692, F/34) with more than severe SNHL and also with suspicion of Usher syndrome type II (USH2) were enrolled. A comprehensive audiological and ophthalmological assessments were evaluated. We conducted the whole exome sequencing and subsequent pathogenicity prediction analysis. Results We identified the following variants of USH2A from the two probands manifesting more than severe SNHL and retinitis pigmentosa (RP): compound heterozygosity for a nonsense (c.8176C>T: p.R2723X) and a missense variant (c.1823G>A: p.C608Y) in SB237, and compound heterozygosity for two frameshift variants (c.14835delT: p.S4945fs & c.13112_13115delAAAT: p.G4371fs) in SB354. Based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines, two novel variants, c.1823G>A: p.C608Y and c.14835delT: p.Ser4945fs, can be classified as “uncertain significance” and “pathogenic,” respectively. The audiogram exhibited more than severe SNHL and a down-sloping configuration, necessitating cochlear implantation. The ophthalmic examinations revealed typical features of RP. Interestingly, one proband (SB 354-692) carrying two truncating compound heterozygous variants exhibited more severe hearing loss than the other proband (SB 237-461), carrying one truncation with one missense variant. Conclusion Our results provide insight on the expansion of audiological spectrum encompassing more than severe SNHL in Korean subjects harboring USH2A variants, suggesting that USH2A should also be included in the candidate gene of cochlear implantation. A specific combination of USH2A variants causing truncating proteins in both alleles could demonstrate more severe audiological phenotype than that of USH2A variants carrying one truncating mutation and one missense mutation, suggesting a possible genotype-phenotype correlation. The understanding of audiological complexity associated with USH2A will be helpful for genetic counseling and treatment starategy.
Collapse
|
Journal Article |
6 |
32 |
9
|
Pendse ND, Lamas V, Pawlyk BS, Maeder ML, Chen ZY, Pierce EA, Liu Q. In Vivo Assessment of Potential Therapeutic Approaches for USH2A-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:91-96. [PMID: 31884594 DOI: 10.1007/978-3-030-27378-1_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mutations in USH2A gene account for most cases of Usher syndrome type II (USH2), characterized by a combination of congenital hearing loss and progressive vision loss. In particular, approximately 30% of USH2A patients harbor a single base pair deletion, c.2299delG, in exon 13 that creates a frameshift and premature stop codon, leading to a nonfunctional USH2A protein. The USH2A protein, also known as usherin, is an extremely large transmembrane protein (5202 aa), which limits the use of conventional AAV-mediated gene therapy; thus development of alternative approaches is required for the treatment of USH2A patients. As usherin contains multiple repetitive domains, we hypothesize that removal of one or more of those domains encoded by mutant exon(s) in the USH2A gene may reconstitute the reading frame and restore the production of a shortened yet adequately functional protein. In this study, we deleted the exon 12 of mouse Ush2a gene (corresponding to exon 13 of human USH2A) using CRISPR/Cas9-based exon-skipping approach and revealed that a shortened form of Ush2a that lacks exon 12 (Ush2a-∆Ex12) is produced and localized correctly in the cochlea. When the Ush2a-∆Ex12 allele is expressed on an Ush2a null background, the Ush2a-∆Ex12 protein can successfully restore the impaired hair cell structure and the auditory function in the Ush2a-/- mice. These results demonstrate that CRISPR/Cas9-based exon-skipping strategy holds a great therapeutic potential for the treatment of USH2A patients.
Collapse
|
|
6 |
24 |
10
|
González-Del Pozo M, Fernández-Suárez E, Martín-Sánchez M, Bravo-Gil N, Méndez-Vidal C, Rodríguez-de la Rúa E, Borrego S, Antiñolo G. Unmasking Retinitis Pigmentosa complex cases by a whole genome sequencing algorithm based on open-access tools: hidden recessive inheritance and potential oligogenic variants. J Transl Med 2020; 18:73. [PMID: 32050993 PMCID: PMC7014749 DOI: 10.1186/s12967-020-02258-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background Retinitis Pigmentosa (RP) is a clinically and genetically heterogeneous disorder that results in inherited blindness. Despite the large number of genes identified, only ~ 60% of cases receive a genetic diagnosis using targeted-sequencing. The aim of this study was to design a whole genome sequencing (WGS) based approach to increase the diagnostic yield of complex Retinitis Pigmentosa cases. Methods WGS was conducted in three family members, belonging to one large apparent autosomal dominant RP family that remained unsolved by previous studies, using Illumina TruSeq library preparation kit and Illumina HiSeq X platform. Variant annotation, filtering and prioritization were performed using a number of open-access tools and public databases. Sanger sequencing of candidate variants was conducted in the extended family members. Results We have developed and optimized an algorithm, based on the combination of different open-access tools, for variant prioritization of WGS data which allowed us to reduce significantly the number of likely causative variants pending to be manually assessed and segregated. Following this algorithm, four heterozygous variants in one autosomal recessive gene (USH2A) were identified, segregating in pairs in the affected members. Additionally, two pathogenic alleles in ADGRV1 and PDZD7 could be contributing to the phenotype in one patient. Conclusions The optimization of a diagnostic algorithm for WGS data analysis, accompanied by a hypothesis-free approach, have allowed us to unmask the genetic cause of the disease in one large RP family, as well as to reassign its inheritance pattern which implies differences in the clinical management of these cases. These results contribute to increasing the number of cases with apparently dominant inheritance that carry causal mutations in recessive genes, as well as the possible involvement of various genes in the pathogenesis of RP in one patient. Moreover, our WGS-analysis approach, based on open-access tools, can easily be implemented by other researchers and clinicians to improve the diagnostic yield of additional patients with inherited retinal dystrophies.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
20 |
11
|
Le Guen Y, Belloy ME, Napolioni V, Eger SJ, Kennedy G, Tao R, He Z, Greicius MD. A novel age-informed approach for genetic association analysis in Alzheimer's disease. Alzheimers Res Ther 2021; 13:72. [PMID: 33794991 PMCID: PMC8017764 DOI: 10.1186/s13195-021-00808-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Many Alzheimer's disease (AD) genetic association studies disregard age or incorrectly account for it, hampering variant discovery. METHODS Using simulated data, we compared the statistical power of several models: logistic regression on AD diagnosis adjusted and not adjusted for age; linear regression on a score integrating case-control status and age; and multivariate Cox regression on age-at-onset. We applied these models to real exome-wide data of 11,127 sequenced individuals (54% cases) and replicated suggestive associations in 21,631 genotype-imputed individuals (51% cases). RESULTS Modeling variable AD risk across age results in 5-10% statistical power gain compared to logistic regression without age adjustment, while incorrect age adjustment leads to critical power loss. Applying our novel AD-age score and/or Cox regression, we discovered and replicated novel variants associated with AD on KIF21B, USH2A, RAB10, RIN3, and TAOK2 genes. CONCLUSION Our AD-age score provides a simple means for statistical power gain and is recommended for future AD studies.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
19 |
12
|
Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes (Basel) 2021; 12:genes12060805. [PMID: 34070435 PMCID: PMC8227183 DOI: 10.3390/genes12060805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 01/15/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of inherited combined hearing and vision loss. As an autosomal recessive trait, it affects 15,000 people in the United States alone and is responsible for ~21% of inherited blindness and 3 to 6% of early childhood deafness. Approximately 2/3 of the patients with Usher syndrome suffer from USH2, of whom 85% have mutations in the USH2A gene. Patients affected by USH2 suffer from congenital bilateral progressive sensorineural hearing loss and retinitis pigmentosa which leads to progressive loss of vision. To study the molecular mechanisms of this disease and develop a gene therapy strategy, we generated human induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) obtained from a patient carrying compound heterozygous variants of USH2A c.2299delG and c.1256G>T and the patient’s healthy sibling. The pluripotency and stability were confirmed by pluripotency cell specific marker expression and molecular karyotyping. Subsequent CRISPR/Cas9 genome editing using a homology repair template was used to successfully correct the USH2A c.2299delG mutation back to normal c.2299G in the generated patient iPSCs to create an isogenic pair of lines. Importantly, this manuscript describes the first use of the recombinant Cas9 and synthetic gRNA ribonucleoprotein complex approach to correct the USH2A c.2299delG without additional genetic effects in patient-derived iPSCs, an approach that is amenable for therapeutic genome editing. This work lays a solid foundation for future ex vivo and in vivo gene therapy investigations and these patient’s iPSCs also provide an unlimited resource for disease modeling and mechanistic studies.
Collapse
|
Journal Article |
4 |
15 |
13
|
Hufnagel RB, Liang W, Duncan JL, Brewer CC, Audo I, Ayala AR, Branham K, Cheetham JK, Daiger SP, Durham TA, Guan B, Heon E, Hoyng CB, Iannaccone A, Kay CN, Michaelides M, Pennesi ME, Singh MS, Ullah E. Tissue-specific genotype-phenotype correlations among USH2A-related disorders in the RUSH2A study. Hum Mutat 2022; 43:613-624. [PMID: 35266249 PMCID: PMC9018588 DOI: 10.1002/humu.24365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/10/2022]
Abstract
We assessed genotype-phenotype correlations among the visual, auditory, and olfactory phenotypes of 127 participants with Usher syndrome (USH2) (n =80) or nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) (n = 47) due to USH2A variants, using clinical data and molecular diagnostics from the Rate of Progression in USH2A Related Retinal Degeneration (RUSH2A) study. USH2A truncating alleles were associated with USH2 and had a dose-dependent effect on hearing loss severity with no effect on visual loss severity within the USH2 subgroup. A group of missense alleles in an interfibronectin domain appeared to be hypomorphic in ARRP. These alleles were associated with later age of onset, larger visual field area, better sensitivity thresholds, and better electroretinographic responses. No effect of genotype on the severity of olfactory deficits was observed. This study unveils a unique, tissue-specific USH2A allelic hierarchy with important prognostic implications for patient counseling and treatment trial endpoints. These findings may inform clinical care or research approaches in others with allelic disorders or pleiotropic phenotypes.
Collapse
|
Research Support, N.I.H., Intramural |
3 |
14 |
14
|
Karali M, Testa F, Brunetti-Pierri R, Di Iorio V, Pizzo M, Melillo P, Barillari MR, Torella A, Musacchia F, D’Angelo L, Banfi S, Simonelli F. Clinical and Genetic Analysis of a European Cohort with Pericentral Retinitis Pigmentosa. Int J Mol Sci 2019; 21:ijms21010086. [PMID: 31877679 PMCID: PMC6982348 DOI: 10.3390/ijms21010086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Retinitis pigmentosa (RP) is a clinically heterogenous disease that comprises a wide range of phenotypic and genetic subtypes. Pericentral RP is an atypical form of RP characterized by bone-spicule pigmentation and/or atrophy confined in the near mid-periphery of the retina. In contrast to classic RP, the far periphery is better preserved in pericentral RP. The aim of this study was to perform the first detailed clinical and genetic analysis of a cohort of European subjects with pericentral RP to determine the phenotypic features and the genetic bases of the disease. A total of 54 subjects from 48 independent families with pericentral RP, non-syndromic and syndromic, were evaluated through a full ophthalmological examination and underwent clinical exome or retinopathy gene panel sequencing. Disease-causative variants were identified in 22 of the 35 families (63%) in 10 different genes, four of which are also responsible for syndromic RP. Thirteen of the 34 likely pathogenic variants were novel. Intra-familiar variability was also observed. The current study confirms the mild phenotype of pericentral RP and extends the spectrum of genes associated with this condition.
Collapse
|
Journal Article |
6 |
14 |
15
|
Lenassi E, Saihan Z, Bitner-Glindzicz M, Webster AR. The effect of the common c.2299delG mutation in USH2A on RNA splicing. Exp Eye Res 2014; 122:9-12. [PMID: 24607488 DOI: 10.1016/j.exer.2014.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/01/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Recessive variants in the USH2A gene are an important cause of both Usher syndrome and nonsyndromic retinitis pigmentosa. A single base-pair deletion in exon 13 (c.2299delG, p.Glu767Serfs*21) is considered the most frequent mutation of USH2A. It is predicted to generate a premature termination codon and is presumed to lead to nonsense mediated decay. However the effect of this variant on RNA has not been formally investigated. It is not uncommon for exonic sequence alterations to cause aberrant splicing and the aim of the present report is to evaluate the effect of c.2299delG on USH2A transcripts. Nasal cells represent the simplest available tissue to study splicing defects in USH2A. Nasal brushing, RNA extraction from nasal epithelial cells and reverse transcription PCR were performed in five Usher syndrome patients who were homozygous for c.2299delG, two unaffected c.2299delG heterozygotes and seven control individuals. Primers to amplify between exons 12 and 15 and exons 10 and 14 were utilised. Significant variability was observed between different RT-PCR experiments. Importantly, in controls, PCR product of the expected size were amplified on all occasions (13/13 experiments); for patients this was true in only 4/14 experiments (Fisher exact test p = 0.0002). Bioinformatics tools predict the c.2299delG change to disrupt an exonic splicing enhancer and to create an exonic splicing silencer within exon 13. Here, we report an effect of the common c.2299delG mutation on splicing of exons 12 and 13 of USH2A. Future studies are expected to provide important insights into the contribution of this effect on the phenotype.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
13 |
16
|
Fakin A, Šuštar M, Brecelj J, Bonnet C, Petit C, Zupan A, Glavač D, Jarc-Vidmar M, Battelino S, Hawlina M. Double Hyperautofluorescent Rings in Patients with USH2A-Retinopathy. Genes (Basel) 2019; 10:genes10120956. [PMID: 31766479 PMCID: PMC6947471 DOI: 10.3390/genes10120956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
USH2A mutation is the most common cause of retinitis pigmentosa, with or without hearing impairment. Patients most commonly exhibit hyperautofluorescent ring on fundus autofluorescence imaging (FAF) and rod-cone dystrophy on electrophysiology. A detailed study of three USH2A patients with a rare pattern of double hyperautofluorescent rings was performed. Twenty-four patients with typical single hyperautofluorescent rings were used for comparison of the ages of onset, visual fields, optical coherence tomography, electrophysiology, and audiograms. Double rings delineated the area of pericentral retinal degeneration in all cases. Two patients exhibited rod-cone dystrophy, whereas the third had a cone-rod dystrophy type of dysfunction on electrophysiology. There was minimal progression on follow-up in all three. Patients with double rings had significantly better visual acuity, cone function, and auditory performance than the single ring group. Double rings were associated with combinations of null and missense mutations, none of the latter found in the single ring patients. According to these findings, the double hyperautofluorescent rings indicate a mild subtype of USH2A disease, characterized by pericentral retinal degeneration, mild to moderate hearing loss, and either a rod-cone or cone-rod pattern on electrophysiology, the latter expanding the known clinical spectrum of USH2A-retinopathy.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
9 |
17
|
Sun Y, Li L, Yao W, Liu X, Yang Y, Ma B, Xue D. USH2A Mutation is Associated With Tumor Mutation Burden and Antitumor Immunity in Patients With Colon Adenocarcinoma. Front Genet 2021; 12:762160. [PMID: 34795697 PMCID: PMC8593250 DOI: 10.3389/fgene.2021.762160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the diseases with the highest morbidity and mortality in the world. At present, immunotherapy has become a valuable method for the treatment of COAD. Tumor mutational burden (TMB) is considered to be the most common biomarker for predicting immunotherapy. According to reports, the mutation rate of COAD ranks third. However, whether these gene mutations are related to TMB and immune response is still unknown. Here, COAD somatic mutation data were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Bioinformatics methods were used to study the relationships among gene mutations, COAD survival prognosis, and tumor immune response. A total of 22 of the top 40 mutations in TCGA and ICGC databases were the same. Among them, the USH2A mutation was associated with high TMB and poor clinical prognosis. According to Gene Set Enrichment Analysis (GSEA) and the CIBERSORT algorithm, we determined that the USH2A mutation upregulates signaling pathways involved in the immune system and the antitumor immune response. In cases with a USH2A mutation, the immune score and MSI score of TCGA samples increased, the expression of immune checkpoint genes decreased significantly, and the TIDE score decreased significantly. Dependent on the presence or absence of a USH2A mutation, TCGA COAD samples were analyzed for differentially expressed genes, 522 of which were identified. Using a univariate Cox analysis and LASSO COX analysis of these differential genes, a prediction model was established, which established significant differences in the infiltration of immune cells, immune checkpoint gene expression, immune score, MSI score, TMB, and TIDE in patients in high- and low-risk groups. In conclusion, mutation of USH2A is frequent in COAD and is related to an increase in TMB and the antitumor immunity. The differential genes screened by USH2A mutation allowed the construction of a risk model for predicting the survival and prognosis of cancer patients, in addition to providing new ideas for COAD immunotherapy.
Collapse
|
|
4 |
9 |
18
|
Reurink J, Weisschuh N, Garanto A, Dockery A, van den Born LI, Fajardy I, Haer-Wigman L, Kohl S, Wissinger B, Farrar GJ, Ben-Yosef T, Pfiffner FK, Berger W, Weener ME, Dudakova L, Liskova P, Sharon D, Salameh M, Offenheim A, Heon E, Girotto G, Gasparini P, Morgan A, Bergen AA, ten Brink JB, Klaver CC, Tranebjærg L, Rendtorff ND, Vermeer S, Smits JJ, Pennings RJ, Aben M, Oostrik J, Astuti GD, Corominas Galbany J, Kroes HY, Phan M, van Zelst-Stams WA, Thiadens AA, Verheij JB, van Schooneveld MJ, de Bruijn SE, Li CH, Hoyng CB, Gilissen C, Vissers LE, Cremers FP, Kremer H, van Wijk E, Roosing S. Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction. HGG ADVANCES 2023; 4:100181. [PMID: 36785559 PMCID: PMC9918427 DOI: 10.1016/j.xhgg.2023.100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.
Collapse
|
research-article |
2 |
8 |
19
|
Ivanova ME, Trubilin VN, Atarshchikov DS, Demchinsky AM, Strelnikov VV, Tanas AS, Orlova OM, Machalov AS, Overchenko KV, Markova TV, Golenkova DM, Anoshkin KI, Volodin IV, Zaletaev DV, Pulin AA, Nadelyaeva II, Kalinkin AI, Barh D. Genetic screening of Russian Usher syndrome patients toward selection for gene therapy. Ophthalmic Genet 2018; 39:706-713. [PMID: 30358468 DOI: 10.1080/13816810.2018.1532527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Usher syndrome (USH) is heterogeneous in nature and requires genetic test for diagnosis and management. Mutations in USH associated genes are reported in some populations except Russians. Here, we first time represented the mutation spectrum of a Russian USH cohort. METHODS Twenty-eight patients with USH were selected from 3214 patients from Deaf-Blind Support Foundation "Con-nection" during 2014-2016 following the observational study NCT03319524. Complete ophthalmologic, ENT, and vestibular medical tests were done for clinical characterization. NGS, MLPA, and Sanger sequencing were considered for genetic analysis. RESULTS Around 53.57% and 39.28% patients had USH1 and USH2, respectively; 17.85% cases (n = 5/28) had no known mutation. Eleven (73.33%) subjects showed variations in USH1 associated genes MYO7A (72.72%), CDH23 (9.09%), PCDH15 (9.09%), and USH1C (9.09%). Eleven mutations are detected in MYO7A where 54.54% are novel. MYO7A: p.Q18* was most frequent (27.27%) mutation and is associated with early manifestation and most severe clinical picture. Two novel mutations (p.E1301* and c.158-?_318+?del) are detected in PCDH15 gene. Around 90.90% patients suspected to be USH2 are confirmed by genetic testing. Eleven mutations detected in the USH2A gene, where 27.27% were novel. Most common USH2A mutation is p.W3955* (50%) followed by p.E767fs, p.R1653*, and c.8682-9A> G (20% each). CONCLUSION The Russian USH cohort shows both novel and known USH mutations. Clinically the prevalence of USH2 is low (39.28%) and the frequency of MYO7A mutations responsible for USH1B is very high (63.63%, N = 7/11) compared to other cohorts. These seven patients carrying MYO7A mutations are preliminarily eligible for the UshStat® gene therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
8 |
20
|
Inaba A, Maeda A, Yoshida A, Kawai K, Hirami Y, Kurimoto Y, Kosugi S, Takahashi M. Truncating Variants Contribute to Hearing Loss and Severe Retinopathy in USH2A-Associated Retinitis Pigmentosa in Japanese Patients. Int J Mol Sci 2020; 21:ijms21217817. [PMID: 33105608 PMCID: PMC7659936 DOI: 10.3390/ijms21217817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
USH2A is a common causal gene of retinitis pigmentosa (RP), a progressive blinding disease due to retinal degeneration. Genetic alterations in USH2A can lead to two types of RP, non-syndromic and syndromic RP, which is called Usher syndrome, with impairments of vision and hearing. The complexity of the genotype–phenotype correlation in USH2A-associated RP (USH2A-RP) has been reported. Genetic and clinical characterization of USH2A-RP has not been performed in Japanese patients. In this study, genetic analyses were performed using targeted panel sequencing in 525 Japanese RP patients. Pathogenic variants of USH2A were identified in 36 of 525 (6.9%) patients and genetic features of USH2A-RP were characterized. Among 36 patients with USH2A-RP, 11 patients had syndromic RP with congenital hearing problems. Amino acid changes due to USH2A alterations were similarly located throughout entire regions of the USH2A protein structure in non-syndromic and syndromic RP cases. Notably, truncating variants were detected in all syndromic patients with a more severe retinal phenotype as compared to non-syndromic RP cases. Taken together, truncating variants could contribute to more serious functional and tissue damages in Japanese patients, suggesting important roles for truncating mutations in the pathogenesis of syndromic USH2A-RP.
Collapse
|
|
5 |
7 |
21
|
Reurink J, Dockery A, Oziębło D, Farrar GJ, Ołdak M, ten Brink JB, Bergen AA, Rinne T, Yntema HG, Pennings RJE, van den Born LI, Aben M, Oostrik J, Venselaar H, Plomp AS, Khan MI, van Wijk E, Cremers FPM, Roosing S, Kremer H. Molecular Inversion Probe-Based Sequencing of USH2A Exons and Splice Sites as a Cost-Effective Screening Tool in USH2 and arRP Cases. Int J Mol Sci 2021; 22:ijms22126419. [PMID: 34203967 PMCID: PMC8232728 DOI: 10.3390/ijms22126419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.
Collapse
|
Journal Article |
4 |
4 |
22
|
He C, Liu X, Zhong Z, Chen J. Mutation screening of the USH2A gene reveals two novel pathogenic variants in Chinese patients causing simplex usher syndrome 2. BMC Ophthalmol 2020; 20:70. [PMID: 32093671 PMCID: PMC7038606 DOI: 10.1186/s12886-020-01342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background Usher syndrome (USH) is the most prevalent cause of the human genetic deafness and blindness. USH type II (USH2) is the most common form of USH, and USH2A is the major pathogenic gene for USH2. For expanding the spectrum of USH2A mutations and further revealing the role of USH2A in USH2, we performed the USH2A gene variant screening in Chinese patients with USH2. Methods Genomic DNA was extracted from peripheral blood of unrelated Chinese USH2 patients, we designed specific primers for amplifying the coding region (exons 2–72) of the USH2A gene. Sanger sequencing was used to study alleles. Silico prediction tools were used to predict the pathogenicity of the variants identified in these patients. Results Five heterozygous pathogenic variants were detected in four patients. Two patients were found to have two-mutations and two patients only have one. Two novel variants c.4217C > A (p.Ser1406X) and c.11780A > G (p.Asp3927Gly)) were predicted deleterious by computer prediction algorithms. In addition, three reported mutations (c.8559-2A > G, c.8232G > C and c.11389 + 3A > T) were also found in this study. Conclusions We identified five heterozygous pathogenic variants in the USH2A gene in Chinese patients diagnosed with Usher syndrome type 2, two of which were not reported. It expands the spectrum of USH2A variants in USH.
Collapse
|
Journal Article |
5 |
3 |
23
|
Li X, Huang S, Yuan Y, Lu Y, Zhang D, Wang X, Yuan H, Han W, Dai P. Detecting novel mutations and combined Klinefelter syndrome in Usher syndrome cases. Acta Otolaryngol 2019; 139:479-486. [PMID: 31035849 DOI: 10.1080/00016489.2019.1603397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Usher syndrome (USH) is an autosomal recessive disease characterized by hearing loss, vision loss, and occasionally vestibular dysfunction. Klinefelter syndrome (KS) is an X chromosome polyploidy characterized by one or more additional X chromosomes in males. To date, there has been no report of USH combined with KS. OBJECTIVES This study examined the causative genes in three Chinese probands with congenital hearing loss. MATERIAL AND METHODS Targeted next-generation sequencing (NGS) was performed to identify mutations in three probands with hearing loss. Low-coverage whole-genome sequencing (WGS) analysis of aneuploidy was used to verify the chromosome aneuploidy. RESULTS Four novel MYO7A mutations were identified in two USH1 probands who were initially diagnosed with nonsyndromic hearing loss until the onset of vision loss. Another case was initially diagnosed with nonsyndromic hearing loss and USH2 and KS were discovered incidentally after the genetic analysis. CONCLUSIONS Our findings expand the mutation spectrum of MYO7A. This is also the first report of concomitant USH and KS. Genetic testing can help with clinical management, particularly if an unrecognized syndromic disorder is identified before the onset of additional symptoms. A clinical genetic evaluation is recommended as part of the diagnostic work-up in congenital hearing loss.
Collapse
|
|
6 |
3 |
24
|
Schellens RT, Broekman S, Peters T, Graave P, Malinar L, Venselaar H, Kremer H, De Vrieze E, Van Wijk E. A protein domain-oriented approach to expand the opportunities of therapeutic exon skipping for USH2A-associated retinitis pigmentosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:980-994. [PMID: 37313440 PMCID: PMC10258241 DOI: 10.1016/j.omtn.2023.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Loss-of-function mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). We previously presented skipping of USH2A exon 13 as a promising treatment paradigm for USH2A-associated RP. However, RP-associated mutations are often private, and evenly distributed along the USH2A gene. In order to broaden the group of patients that could benefit from therapeutic exon skipping strategies, we expanded our approach to other USH2A exons in which unique loss-of-function mutations have been reported by implementing a protein domain-oriented dual exon skipping strategy. We first generated zebrafish mutants carrying a genomic deletion of the orthologous exons of the frequently mutated human USH2A exons 30-31 or 39-40 using CRISPR-Cas9. Excision of these in-frame combinations of exons restored usherin expression in the zebrafish retina and rescued the photopigment mislocalization typically observed in ush2a mutants. To translate these findings into a future treatment in humans, we employed in vitro assays to identify and validate antisense oligonucleotides (ASOs) with a high potency for sequence-specific dual exon skipping. Together, the in vitro and in vivo data demonstrate protein domain-oriented ASO-induced dual exon skipping to be a highly promising treatment option for RP caused by mutations in USH2A.
Collapse
|
research-article |
2 |
3 |
25
|
Meunier A, Zanlonghi X, Roux AF, Fils JF, Caspers L, Migeotte I, Abramowicz M, Meunier I. Natural history of Usher type 2 with the c.2299delG mutation of USH2A in a large cohort. Ophthalmic Genet 2022; 43:470-475. [PMID: 35345973 DOI: 10.1080/13816810.2022.2051191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The c.2299delG mutation is prevalent and accounts for 24.5% USH2A pathogenic variants, with promising prospects for customized gene therapy. MATERIALS AND METHODS We compared the ocular and auditory phenotypes in a retrospective cohort of 169 Usher type 2 patients, with and without the c.2299delG allele, including visual acuity, slit-lamp examination, optical coherence tomography, kinetic perimetry, and audiometric assessment to define the hearing disability. Statistical methods used were covariate balancing propensity score and adjusted survival curves log-rank test for the analysis of visual acuity. RESULTS We compare 54 Usher patients (31%) carrying at least one c.2299delG allele to 109 patients without this variant. The mean ages at onset of night blindness (14 years) and onset of peripheral vision deficiency (24 years) were similar in both groups, as was the severity of hearing loss (p = 0.731), even in homozygotes (p = 0.136). Based on the covariate balancing propensity score, the c.2299delG carrier patients developed cataract and reached a BCVA of 20/63 earlier than patients without this mutation (mean age 36 versus 42 y.o.; and 52.2 versus 55.1 y.o., respectively). Using adjusted survival curves and a log-rank test based on inverse probability weighting, patients with the c.2299delG variant reach blindness (BCVA <20/400) at 42.3 years old instead of 79.8 years for other USH2A pathogenic variants. CONCLUSIONS We conclude that c.2299delG is associated with a more severe phenotype of the Usher type 2, in homozygotes and in compound heterozygotes.
Collapse
|
|
3 |
3 |