1
|
Correia I, Adão P, Roy S, Wahba M, Matos C, Maurya MR, Marques F, Pavan FR, Leite CQF, Avecilla F, Costa Pessoa J. Hydroxyquinoline derived vanadium(IV and V) and copper(II) complexes as potential anti-tuberculosis and anti-tumor agents. J Inorg Biochem 2014; 141:83-93. [PMID: 25226436 DOI: 10.1016/j.jinorgbio.2014.07.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022]
Abstract
Several mixed ligand vanadium and copper complexes were synthesized containing 8-hydroxyquinoline (8HQ) and a ligand such as picolinato (pic(-)), dipicolinato (dipic(2-)) or a Schiff base. The complexes were characterized by spectroscopic techniques and by single-crystal X-ray diffraction in the case of [V(V)O(L-pheolnaph-im)(5-Cl-8HQ)] and [V(V)O(OMe)(8HQ)2], which evidenced the distorted octahedral geometry of the complexes. The electronic absorption data showed the presence of strong ligand to metal charge transfer bands, significant solvent effects, and methoxido species in methanol, which was further confirmed by (51)V-NMR spectroscopy. The structures of [Cu(II)(dipic)(8HQ)]Na and [V(IV)O(pic)(8HQ)] were confirmed by EPR spectroscopy, showing only one species in solution. The biological activity of the compounds was assessed through the minimal inhibitory concentration (MIC) of the compounds against Mycobacterium tuberculosis (Mtb) and the cytotoxic activity against the cisplatin sensitive/resistant ovarian cells A2780/A2780cisR and the non-tumorigenic HEK cells (IC50 values). Almost all tested vanadium complexes were very active against Mtb and the MICs were comparable to, or better than, the MICs of drugs, such as streptomycin. The activity of the complexes against the A2780 cell line was dependent on incubation time presenting IC50 values in the 3-14 μM (at 48 h) range. In these conditions, the complexes were significantly (*P<0.05-**P<0.001) more active than cisplatin (22 μM), in the A2780 cells and even surpassing its activity in the cisplatin-resistant cells A2780cisR (2.4-8 μM vs. 75.4; **P<0.001). In the non-tumorigenic HEK cells poor selectivity toward cancer cells for most of the complexes was observed, as well as for cisplatin.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
111 |
2
|
Del Carpio E, Hernández L, Ciangherotti C, Villalobos Coa V, Jiménez L, Lubes V, Lubes G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord Chem Rev 2018; 372:117-140. [PMID: 32226092 PMCID: PMC7094547 DOI: 10.1016/j.ccr.2018.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
In the last 30 years, since the discovery that vanadium is a cofactor found in certain enzymes of tunicates and possibly in mammals, different vanadium-based drugs have been developed targeting to treat different pathologies. So far, the in vitro studies of the insulin mimetic, antitumor and antiparasitic activity of certain compounds of vanadium have resulted in a great boom of its inorganic and bioinorganic chemistry. Chemical speciation studies of vanadium with amino acids under controlled conditions or, even in blood plasma, are essential for the understanding of the biotransformation of e.g. vanadium antidiabetic complexes at the physiological level, providing clues of their mechanism of action. The present article carries out a bibliographical research emphaticizing the chemical speciation of the vanadium with different amino acids and reviewing also some other important aspects such as its chemistry and therapeutical applications of several vanadium complexes.
Collapse
Key Words
- 2,2′-bipy, 2,2-bipyridine
- 6-mepic, 6-methylpicolinic acid
- Ad, adenosine
- Ala, alanine
- Ala-Gly, alanylglycine
- Ala-His, alanylhistidine
- Ala-Ser, alanylserine
- Amino acids
- Antidiabetics
- Antitumors
- Asp, aspartic acid
- BEOV, bis(ethylmaltolate)oxovanadium(IV)
- Chemical speciation
- Cys, cysteine
- Cyt, citrate
- DMF, N,N-dimethylformamide
- DNA, deoxyribonucleic acid
- EPR, Electron Paramagnetic Resonance
- G, Gauss
- Glu, glutamic acid
- Gly, glycine
- GlyAla, glycylalanine
- GlyGly, glycylglycine
- GlyGlyCys, glycylglycylcysteine
- GlyGlyGly, glycylglycylglycine
- GlyGlyHis, glycylglycylhistidine
- GlyPhe, glycylphenylalanine
- GlyTyr, glycyltyrosine
- GlyVal, glycylvaline
- HIV, human immunodeficiency virus
- HSA, albumin
- Hb, hemoglobin
- His, histidine
- HisGlyGly, histidylglycylglycine
- Ig, immunoglobulins
- Im, imidazole
- L-Glu(γ)HXM, l-glutamic acid γ-monohydroxamate
- LD50, the amount of a toxic agent (such as a poison, virus, or radiation) that is sufficient to kill 50 percent of population of animals
- Lac, lactate
- MeCN, acetonitrile
- NADH and NAD+, nicotinamide adenine dinucleotide
- NEP, neutral endopeptidas
- NMR, Nuclear Magnetic Resonance
- Ox, oxalate
- PI3K, phosphoinositide 3-kinase
- PTP1B, protein tyrosine phosphatase 1B
- Pic, picolinic acid
- Pro, proline
- Pro-Ala, prolylalanine
- RNA, ribonucleic acid
- SARS, severe acute respiratory syndrome
- Sal-Ala, N-salicylidene-l-alaninate
- SalGly, salicylglycine
- SalGlyAla, salicylglycylalanine
- Ser, serine
- T, Tesla
- THF, tetrahydrofuran
- Thr, threonine
- VBPO, vanadium bromoperoxidases
- VanSer, Schiff base formed from o-vanillin and l-serine
- Vanadium complexes
- acac, acetylacetone
- dhp, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone
- dipic, dipicolinic acid
- dmpp, 1,2-dimethyl-3-hydroxy-4-pyridinonate
- hTf, transferring
- hpno, 2-hydroxypyridine-N-oxide
- l.m.m., low molecular mass
- mal, maltol
- py, pyridine
- sal-l-Phe, N-salicylidene-l-tryptophanate
- salGlyGly, N-salicylideneglycylglycinate
- salSer, N-salicylideneserinate
- salTrp, N-salicylidene-L tryptophanate
- salVal, N-salicylidene-l-valinate
- salophen, N,N′-bis(salicylidene)-o-phenylenediamine
- saltrp, N-salicylidene-l-tryptophanate
- γ-PGA, poly-γ-glutamic acid
Collapse
|
Review |
7 |
56 |
3
|
Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J Inorg Biochem 2021; 217:111350. [PMID: 33477088 DOI: 10.1016/j.jinorgbio.2020.111350] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
VIVO-complexes formulated as [VIVO(OSO3)(phen)2] (1) (phen = 1,10-phenanthroline), [VIVO(OSO3)(Me2phen)2] (2) (Me2phen = 4,7-dimethyl-1,10-phenanthroline) and [VIVO(OSO3)(amphen)2] (3) (amphen = 5-amino-1,10-phenanthroline) were prepared and stability in cell incubation media evaluated. Their cytotoxicity was determined against the A2780 (ovarian), MCF7 (breast) and PC3 (prostate) human cancer cells at different incubation times. While at 3 and 24 h the cytotoxicity differs for complexes and corresponding free ligands, at 72 h incubation all compounds are equally active presenting low IC50 values. Upon incubation of A2780 cells with 1-3, cellular distribution of vanadium in cytosol, membranes, nucleus and cytoskeleton, indicate that the uptake of V is low, particularly for 1, and that the uptake pattern depends on the ligand. Nuclear microscopic techniques are used for imaging and elemental quantification in whole PC3 cells incubated with 1. Once complexes are added to cell culture media, they decompose, and with time most VIV oxidizes to VV-species. Modeling of speciation when [VIVO(OSO3)(phen)2] (1) is added to cell media is presented. At lower concentrations of 1, VIVO- and phen-containing species are mainly bound to bovine serum albumin, while at higher concentrations [VIVO(phen)n]2+-complexes become relevant, being predicted that the species taken up and mechanisms of action operating depend on the total concentration of complex. This study emphasizes that for these VIVO-systems, and probably for many others involving oxidovanadium or other labile metal complexes, it is not possible to identify active species or propose mechanisms of cytotoxic action without evaluating speciation occurring in cell media.
Collapse
|
Journal Article |
4 |
34 |
4
|
Bertini S, Coletti A, Floris B, Conte V, Galloni P. Investigation of VO-salophen complexes electronic structure. J Inorg Biochem 2015; 147:44-53. [PMID: 25796295 DOI: 10.1016/j.jinorgbio.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/25/2022]
Abstract
Vanadyl N,N'-bis(salicylidene)-o-phenylenediamine (salophen) complexes have been extensively investigated by cyclic voltammetry, UV-visible spectroscopy and theoretical calculations in MeCN, THF (tetrahydrofuran) and DMF (N,N-dimethylformamide), in order to elucidate the overall factors that influence the electronic density of the metal and therefore the properties of these complexes in various applications. Different substituents were introduced into the salophen skeleton to change the vanadium electron density. Results obtained and here presented showed that the substituents influence the metal electronic character in a way that cannot be easily predicted by considering only the electronic effect. Similarly, the solvent polarity or coordination ability affects the metal complex properties in an unpredictable way. Therefore, experimental and theoretical data here collected are a powerful tool to a priori design salophen ligands to obtain vanadyl complexes having the specific electronic properties suitable for desired applications.
Collapse
|
Journal Article |
10 |
21 |
5
|
Tesmar A, Inkielewicz-Stępniak I, Sikorski A, Wyrzykowski D, Jacewicz D, Zięba P, Pranczk J, Ossowski T, Chmurzyński L. Structure, physicochemical and biological properties of new complex salt of aqua-(nitrilotriacetato-N,O,O',O")-oxidovanadium(IV) anion with 1,10-phenanthrolinium cation. J Inorg Biochem 2015; 152:53-61. [PMID: 26349013 DOI: 10.1016/j.jinorgbio.2015.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 02/02/2023]
Abstract
The crystal structure of new 1,10-phenathrolin-1-ium aqua-(nitrilotriacetato-N,O,O',O")-oxidovanadium(IV) semihydrate of molecular formula (phenH)[VO(NTA)(H2O)]∙1/2H2O was determined. This is the first example of structurally characterized compound that comprises a distinctly separated, monomeric [VO(NTA)(H2O)](-) coordination entity. The crystallographic measurements have subsequently been complemented by the IR spectroscopic characterization and thermal analysis. Furthermore, the electrochemical (cyclic voltammetry) as well as spectrophotometric (UV-vis) studies revealed that the compound is capable of scavenging the superoxide free radicals (O2(-)) as well as stable organic radicals i.e. 2,2'-azinobis(3-ethylbenzothiazoline-6 sulfonic acid) cation radical (ABTS(+)) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), but its reactivity towards radicals is lower than that of VOSO4. Finally, biological properties of the complex in the range of 1-100 μM were investigated in relation to its cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the hippocampal neuronal HT22 cell line (the MTT and LDH tests). It has been established that in contrast to VOSO4 the title compound protects the HT22 from the oxidative damage. The paper presents a new perspective for oxidovanadium(IV) complexes as candidates for novel, low-molecular mass cytoprotective agents.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
6
|
Sergi B, Bulut I, Xia Y, Waller ZAE, Yildizhan Y, Acilan C, Lord RM. Understanding the Potential In Vitro Modes of Action of Bis(β-diketonato) Oxovanadium(IV) Complexes. ChemMedChem 2021; 16:2402-2410. [PMID: 33856120 PMCID: PMC8453837 DOI: 10.1002/cmdc.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Indexed: 12/22/2022]
Abstract
To understand the potential in vitro modes of action of bis(β‐diketonato) oxovanadium(IV) complexes, nine compounds of varying functionality have been screened using a range of biological techniques. The antiproliferative activity against a range of cancerous and normal cell lines has been determined, and show these complexes are particularly sensitive against the lung carcinoma cell line, A549. Annexin V (apoptosis) and Caspase‐3/7 assays were studied to confirm these complexes induce programmed cell death. While gel electrophoresis was used to determine DNA cleavage activity and production of reactive oxygen species (ROS), the Comet assay was used to determine induced genomic DNA damage. Additionally, Förster resonance energy transfer (FRET)‐based DNA melting and fluorescent intercalation displacement assays have been used to determine the interaction of the complexes with double strand (DS) DNA and to establish preferential DNA base‐pair binding (AT versus GC).
Collapse
|
Journal Article |
4 |
1 |
7
|
Parente JE, Williams PAM, Ferrer EG. Vanadium Compounds as Biocatalyst Models. Biol Trace Elem Res 2020; 195:725-731. [PMID: 31444772 DOI: 10.1007/s12011-019-01874-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 10/26/2022]
Abstract
Peroxidovanadium(V) and oxidovanadium(IV) compounds have been tested as peroxidase-similar compounds. Their catalytic performance was tested on phenol red and pyrogallol substrates. Bromination kinetic studies revealed Michaelis-Menten behavior with respect to phenol red for both complexes. Catalytic efficiency is ~ 104 M-1 min-1. Both vanadium complexes showed the capacity to oxidize pyrogallol, but only the oxidovanadium (IV) complex follows Michaelis-Menten kinetics with respect to this substrate (Km = 1.05 × 10-3 M). Peroxidovanadium(V) complex displayed a more complex mechanism, and further studies became necessary to elucidate it. The structure-activity relationship was also assessed.
Collapse
|
|
5 |
1 |
8
|
Sanna D, Fadda A, Casula M, Palomba G, Sini MC, Colombino M, Rozzo C, Palmieri G, Gallo C, Carbone D, Siracusa L, Pulvirenti L, Ugone V. Antidiabetic potential of vanadium complexes combined with olive leaf extracts: a viable approach to reduce metal toxicity. Biometals 2025; 38:683-698. [PMID: 40014236 PMCID: PMC11965145 DOI: 10.1007/s10534-025-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Vanadium compounds are known for their antidiabetic properties due to their ability to interfere with numerous mechanisms that lead to the decrease of blood glucose levels. Although some of these compounds have reached clinical trials and have the advantage of being orally administrable, no vanadium-containing drugs are currently available on the market, primarily due to the high doses required, which can lead intestinal and renal problems in case of long-term treatments. In this study, plant extracts obtained from olive leaves (Olea europaea L.) were combined with vanadium complexes with established antidiabetic activity with the aim of reducing their metal toxicity and, at the same time, amplifying their hypoglycemic action. The extracts were characterized by chromatographic and spectroscopic methods showing a composition rich in polyphenols and a high antioxidant activity. Formulations containing a vanadium complex (bis(maltolato)oxidovanadium(IV), BMOV, or bis(picolinato)oxidovanadium(IV), BPOV) mixed with different amount of olive leaves extract were tested in vitro to evaluate intestinal toxicity and hypoglycemic activity. The results demonstrated that the plant extracts are generally non-toxic toward human colon fibroblast in the whole range of tested concentrations and some of them are particularly effective in reducing the toxicity of the two vanadium compounds. Further in vitro tests conducted on differentiated human adipocyte cell lines revealed a significant increase in glucose uptake following treatment with the mixed formulations, compared to the effect of the individual components, indicating a synergistic effect. Immunocytochemical assays suggested that the translocation of GLUT4 transporter can be involved in the mechanism of action.
Collapse
|
research-article |
1 |
|
9
|
Shaik A, Kondaparthy V, Begum A, Husain A, Manwal DD. Enzyme PTP-1B Inhibition Studies by Vanadium Metal Complexes: a Kinetic Approach. Biol Trace Elem Res 2023; 201:5037-5052. [PMID: 36652102 DOI: 10.1007/s12011-023-03557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The medical field now needs more novel drugs to treat obesity and type-2 diabetes mellitus (T2D) than ever before. Obesity and T2D are both characterized by resistance to the hormones leptin and insulin. PTP-1B is a promising target for drug growth, as strong genetic, pharmacological, and biochemical evidence points to the possibility of treating diabetes and obesity by blocking the PTP-1B enzyme. Studies have also found that PTP-1B is overexpressed in patients with diabetes and obesity, suggesting that inhibiting PTP-1B may be a useful technique in their care. There are no clinically used PTP-1B inhibitors, despite the fact that numerous naturally occurring PTP-1B inhibitors have demonstrated great therapeutic promise. This is most likely due to their low activity or lack of selectivity. It is still important to look for more effective and focused PTP-1B inhibitors. A few organovanadium metal complexes were synthesized and characterized, and binding studies on vanadium complexes with PTP-B were also performed using fluorescence emission spectroscopy. Additionally, we theoretically (molecular modeling) and experimentally (enzyme kinetics) examined the PTP-1B inhibitory effects of these vanadium metal complexes and found that they have excellent PTP-1B inhibitory properties.
Collapse
|
|
2 |
|
10
|
Silva TUD, Silva ETD, Lima CHDS, Machado SDP. Molecular modeling of [VO(L 1-4)(R)] complexes (R = bipyridine, phenanthroline): DFT study of antioxidant activity, DNA binding and evaluation of electron-donating and -withdrawing substituent groups. J Mol Graph Model 2023; 124:108577. [PMID: 37536232 DOI: 10.1016/j.jmgm.2023.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
A DFT (density functional theory) study was conducted with eight oxovanadium complexes (C1 - C8) of general formula [VO(L1-4)(R)] (R = bipyridine, phenanthroline; L1-4 = group of ligands derived from dithiocarbamate). The obtained geometries showed a good correlation with the experimental structures. Molecular orbital analysis revealed that the contribution of the L-ligand in the SOMO (single-occupied molecular orbital) of the complexes correlated with the experimental antioxidant activity (IC50), while the contribution of the R-ligand to the LUMO (lowest unoccupied molecular orbital) of the complexes correlated with the experimental complex-DNA interaction (Kb). It has been identified that the presence of an electron-donating substituent group (such as -NH2) in the C5 - C6 structures should enhance these complexes' antioxidant and DNA interaction activities.
Collapse
|
|
2 |
|
11
|
Kalındemirtaş FD, Kaya B, Sert E, Şahin O, Kuruca SE, Ülküseven B. New oxovanadium(IV) complexes overcame drug resistance and increased in vitro cytotoxicity by an apoptotic pathway in breast cancer cells. Chem Biol Interact 2022; 363:109997. [PMID: 35654126 DOI: 10.1016/j.cbi.2022.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
In order to examine the anticancer potential of oxovanadium(IV) complexes with thiosemicarbazone, two new complexes were prepared starting from 2-thenoyltrifluoroacetone-S-methylthiosemicarbazone. The complexes with tetradentate thiosemicarbazone ligand were characterized by elemental analysis, IR, ESI MS, and single-crystal X-ray diffraction analysis. Cytotoxicity on breast cancer cells, MDA-MB-231 and MCF-7, was determined by MTT assay. Cisplatin was positive control and the results were compared with those of the normal cells, HUVEC and 3T3. The complexes exhibited greater activity on cancer cells than cisplatin, but they were cytotoxic at several times higher concentrations in the healthy cells. In our study, the presence of thiophene and fluoro groups in the oxovanadium(IV) complexes with thiosemicarbazone increased greatly the cytotoxic activity of the complexes on breast cancer cells. Moreover, the complexes induced apoptosis-mediated cell death and also reduced the expression of MDR-1 or P-glycoprotein and ABCG2. As a result, the findings indicated that the complexes have selective cytotoxicity on breast cancer cells and can overcome multidrug resistance. These properties of the complexes make it possible to be a potential anticancer drug candidate for breast cancer treatment.
Collapse
|
|
3 |
|
12
|
Soriano-Agueda L, Guevara-García A. A refreshing approach to understanding the action on DNA of vanadium (IV) and (V) complexes derived from the anticancer VCp 2Cl 2. J Inorg Biochem 2024; 261:112705. [PMID: 39217821 DOI: 10.1016/j.jinorgbio.2024.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
A computational study based on derivatives of the anticancer VCp2Cl2 compound and their interaction with representative models of deoxyribonucleic acid (DNA) is presented. The derivatives were obtained by substituting the cyclopentadienes of VCp2Cl2 with H2O, NH3, OH-, Cl-, O2- and C2O42- ligands. The oxidation states IV and V of vanadium were considered, so a total of 20 derivative complexes are included. The complexes interactions with DNA were studied using two different models, the first model considers the interactions of the complexes with the pair Guanine-Cytosine (G-C) and the second involves the interaction of the complexes with adjacent pairs, that is, d(GG). This study compares methodologies based on density functional theory with coupled cluster like calculations (DLPNO-CCSD(T)), the gold standard of electronic structure methods. Furthermore, the change in the electron density of the hydrogen bonds that keep bonded the G-C pair and d(GG) pairs, due to the presence of vanadium (IV) and (V) complexes is rationalize. To this aim, quantities obtained from the topology of the electron densities are inspected, particularly the value of the electron density at the hydrogen bond critical points. The approach allowed to identify vanadium complexes that lead to significant changes in the hydrogen bonds indicated above, a key aspect in the understanding, development, and proposal of mechanisms of action between metal complexes and DNA.
Collapse
|
|
1 |
|