Sharma S, Uggini GK, Patel V, Desai I, Balakrishnan S. Exposure to sub-lethal dose of a combination insecticide during early embryogenesis influences the normal patterning of mesoderm resulting in incomplete closure of ventral body wall of chicks of domestic hen.
Toxicol Rep 2018;
5:302-308. [PMID:
29556477 PMCID:
PMC5856662 DOI:
10.1016/j.toxrep.2018.02.005]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 01/12/2023] Open
Abstract
Chlorpyrifos and cypermethrin treatment induced developmental anomalies in chicks.
Protrusion of visceral organs and microphthalmia were the major anomalies observed.
Treated embryos were conspicuous with incomplete ventral body wall and sternum.
Altered expression pattern of E-cadherin, Shh, bmp4, Wnt11 and Pitx2 were recorded.
Impairment of major regulators of development is suspected to induce VBWD.
Pesticide exposure to the non target groups especially during embryonic development has quite often resulted in congenital malformations. A commercially available combination insecticide (Ci, 50% chlorpyrifos and 5% cypermethrin) is known to induce ventral body wall defects (VBWDs) wherein abdominal viscera protrude out of the ventral body wall. Herein, an attempt was made to understand the mechanistic insight into Ci induced VBWDs. For this, before incubation, the chick embryos were dosed with the test chemical and then at different developmental stages of incubation, they were monitored for the changes in the expression of certain genes, which are indispensable for the ventral body wall closure since they regulate the cell fate, proliferation and survival. Concurrently, histopathological changes during the embryonic development were examined to corroborate the above observations. The results of mRNA profiling revealed a significant downregulation of Shh on day 4 and upregulation on day 10, while bmp4, Pitx2, E-cadherin, Wnt11, Wnt6, Pxn, MyoD1, Caspase-3, AHR, Cyp3A4, showed a significant upregulation on day 4 and/or on day 10. N-cadherin, fgf8, bmp1 showed no significant changes. The possible means by which these skewed expression patterns of regulatory molecules culminated into the VBWD are discussed.
Collapse