1
|
Marini F, Tagliabue CF, Sposito AV, Hernandez-Arieta A, Brugger P, Estévez N, Maravita A. Crossmodal representation of a functional robotic hand arises after extensive training in healthy participants. Neuropsychologia 2013; 53:178-86. [PMID: 24296252 DOI: 10.1016/j.neuropsychologia.2013.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 11/26/2022]
Abstract
The way in which humans represent their own bodies is critical in guiding their interactions with the environment. To achieve successful body-space interactions, the body representation is strictly connected with that of the space immediately surrounding it through efficient visuo-tactile crossmodal integration. Such a body-space integrated representation is not fixed, but can be dynamically modulated by the use of external tools. Our study aims to explore the effect of using a complex tool, namely a functional prosthesis, on crossmodal visuo-tactile spatial interactions in healthy participants. By using the crossmodal visuo-tactile congruency paradigm, we found that prolonged training with a mechanical hand capable of distal hand movements and providing sensory feedback induces a pattern of interference, which is not observed after a brief training, between visual stimuli close to the prosthesis and touches on the body. These results suggest that after extensive, but not short, training the functional prosthesis acquires a visuo-tactile crossmodal representation akin to real limbs. This finding adds to previous evidence for the embodiment of functional prostheses in amputees, and shows that their use may also improve the crossmodal combination of somatosensory feedback delivered by the prosthesis with visual stimuli in the space around it, thus effectively augmenting the patients' visuomotor abilities.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
23 |
2
|
Gordon JC, Rankin JW, Daley MA. How do treadmill speed and terrain visibility influence neuromuscular control of guinea fowl locomotion? ACTA ACUST UNITED AC 2015; 218:3010-22. [PMID: 26254324 PMCID: PMC4631773 DOI: 10.1242/jeb.104646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/21/2015] [Indexed: 12/28/2022]
Abstract
Locomotor control mechanisms must flexibly adapt to both anticipated and unexpected terrain changes to maintain movement and avoid a fall. Recent studies revealed that ground birds alter movement in advance of overground obstacles, but not treadmill obstacles, suggesting context-dependent shifts in the use of anticipatory control. We hypothesized that differences between overground and treadmill obstacle negotiation relate to differences in visual sensory information, which influence the ability to execute anticipatory manoeuvres. We explored two possible explanations: (1) previous treadmill obstacles may have been visually imperceptible, as they were low contrast to the tread, and (2) treadmill obstacles are visible for a shorter time compared with runway obstacles, limiting time available for visuomotor adjustments. To investigate these factors, we measured electromyographic activity in eight hindlimb muscles of the guinea fowl (Numida meleagris, N=6) during treadmill locomotion at two speeds (0.7 and 1.3 m s−1) and three terrain conditions at each speed: (i) level, (ii) repeated 5 cm low-contrast obstacles (<10% contrast, black/black), and (iii) repeated 5 cm high-contrast obstacles (>90% contrast, black/white). We hypothesized that anticipatory changes in muscle activity would be higher for (1) high-contrast obstacles and (2) the slower treadmill speed, when obstacle viewing time is longer. We found that treadmill speed significantly influenced obstacle negotiation strategy, but obstacle contrast did not. At the slower speed, we observed earlier and larger anticipatory increases in muscle activity and shifts in kinematic timing. We discuss possible visuomotor explanations for the observed context-dependent use of anticipatory strategies. Summary: Guinea fowl (Numida meleagris) show speed-dependent shifts in neuromuscular control during obstacle negotiation, characterized by a greater reliance on anticipatory modulation and stride-to-stride neural adjustments at slow speed, shifting towards feedforward activation and intrinsic mechanical stability at high speed.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
22 |
3
|
Whitwell RL, Goodale MA. Grasping without vision: time normalizing grip aperture profiles yields spurious grip scaling to target size. Neuropsychologia 2013; 51:1878-87. [PMID: 23796704 DOI: 10.1016/j.neuropsychologia.2013.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
The analysis of normalized movement trajectories is a popular and informative technique used in investigations of visuomotor control during goal-directed acts like reaching and grasping. This technique typically involves standardizing measures against the amplitude of some other variable - most typically time. Here, we show that this normalizing technique can lead to some surprising results. In the first of two experiments, we asked participants to grasp target objects without ever seeing them from trial to trial. In the second experiment, participants were given a brief preview of the target and were then cued 3s later to pick it up while vision was prevented. Critically, on some trials during the delay period and unbeknownst to the participants, the previewed target was swapped for a new unseen one. The results of both experiments show that time-normalized measures of grip aperture during the closing phase of the movement appear to be scaled to target size well before the fingers make contact with the target - even though participants had no idea what the size of the target was that they were grasping. In contrast, a classical measure of anticipatory grip scaling, maximum grip aperture, did not show scaling to target size. As we demonstrate, however, in both experiments, movement time was longer for the larger target than the smaller ones. Thus, the comparisons of time-normalized grip aperture, particularly during the closing phase of the movements, were made across different points in real time. Taken together, the results of these experiments highlight a need for caution when investigators interpret differences in time-normalized dependent measures - particularly when the effect of interest is correlated with the dependent measure and a third variable (e.g., movement time) that is used to standardize the dependent measure.
Collapse
|
Journal Article |
12 |
17 |
4
|
Proietti R, Pezzulo G, Tessari A. An active inference model of hierarchical action understanding, learning and imitation. Phys Life Rev 2023; 46:92-118. [PMID: 37354642 DOI: 10.1016/j.plrev.2023.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/26/2023]
Abstract
We advance a novel active inference model of the cognitive processing that underlies the acquisition of a hierarchical action repertoire and its use for observation, understanding and imitation. We illustrate the model in four simulations of a tennis learner who observes a teacher performing tennis shots, forms hierarchical representations of the observed actions, and imitates them. Our simulations show that the agent's oculomotor activity implements an active information sampling strategy that permits inferring the kinematic aspects of the observed movement, which lie at the lowest level of the action hierarchy. In turn, this low-level kinematic inference supports higher-level inferences about deeper aspects of the observed actions: proximal goals and intentions. Finally, the inferred action representations can steer imitative responses, but interfere with the execution of different actions. Our simulations show that hierarchical active inference provides a unified account of action observation, understanding, learning and imitation and helps explain the neurobiological underpinnings of visuomotor cognition, including the multiple routes for action understanding in the dorsal and ventral streams and mirror mechanisms.
Collapse
|
Review |
2 |
17 |
5
|
Maltempo T, Pitzalis S, Bellagamba M, Di Marco S, Fattori P, Galati G, Galletti C, Sulpizio V. Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex. Brain Struct Funct 2021; 226:2989-3005. [PMID: 33738579 PMCID: PMC8541995 DOI: 10.1007/s00429-021-02254-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Visual cues coming from the lower visual field (VF) play an important role in the visual guidance of upper and lower limb movements. A recently described region situated in the dorsomedial parietal cortex, area hPEc (Pitzalis et al. in NeuroImage 202:116092, 2019), might have a role in integrating visually derived information with somatomotor signals to guide limb interaction with the environment. In macaque, it has been demonstrated that PEc receives visual information mostly from the lower visual field but, to date, there has been no systematic investigation of VF preference in the newly defined human homologue of macaque area PEc (hPEc). Here we examined the VF preferences of hPEc while participants performed a visuomotor task implying spatially directed delayed eye-, hand- and foot-movements towards different spatial locations within the VF. By analyzing data as a function of the different target locations towards which upcoming movements were planned (and then executed), we observed the presence of asymmetry in the vertical dimension of VF in area hPEc, being this area more strongly activated by limb movements directed towards visual targets located in the lower compared to the upper VF. This result confirms the view, first advanced in macaque monkey, that PEc is involved in processing visual information to guide body interaction with the external environment, including locomotion. We also observed a contralateral dominance for the lower VF preference in the foot selective somatomotor cortex anterior to hPEc. This result might reflect the role of this cortex (which includes areas PE and S-I) in providing highly topographically organized signals, likely useful to achieve an appropriate foot posture during locomotion.
Collapse
|
Journal Article |
4 |
14 |
6
|
Licari MK, Reynolds JE, Tidman S, Ndiaye S, Sekaran SN, Reid SL, Lay BS. Visual tracking behaviour of two-handed catching in boys with developmental coordination disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 83:280-286. [PMID: 30097307 DOI: 10.1016/j.ridd.2018.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/29/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Developmental coordination disorder (DCD) is a motor learning disability that affects coordination resulting in an inability to perform movement skills at an age appropriate level. One area suspected to contribute to the movement difficulties experienced are deficits in visuomotor control. AIMS This study investigated visual tracking behaviour during catching in children with DCD. METHODS AND PROCEDURES Twenty-four boys completed the study: 11 with DCD (9.43 years ±0.73) and 13 controls (9.16 years ± 0.68). Participants performed 10 central catching trials, with the best five used to evaluate tracking behaviour and motor responses. OUTCOMES AND RESULTS Prior to ball release, the DCD group exhibited more fixations (p = 0.043) of lesser duration (p = 0.045). During flight, the DCD group took longer to initiate smooth pursuit (p = 0.003) however, once initiated, both groups were effectively able to maintain smooth pursuit. Despite initial delays, these had no impact on movement initiation time (p = 0.173), however, movement time was significantly slower in the DCD group (p = 0.031). CONCLUSIONS AND IMPLICATIONS The results of this study demonstrate that catching performance in children with DCD likely reflect a combination of errors in attending to visual information and movement organisation.
Collapse
|
|
7 |
13 |
7
|
Freud E, Culham JC, Namdar G, Behrmann M. Object complexity modulates the association between action and perception in childhood. J Exp Child Psychol 2018; 179:56-72. [PMID: 30476695 DOI: 10.1016/j.jecp.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022]
Abstract
Vision for action and vision for perception both rely on shape representations derived within the visual system. Whether the same psychological and neural mechanisms underlie both forms of behavior remains hotly contested, and whether this arrangement is equivalent in adults and children is controversial as well. To address these outstanding questions, we used an established psychophysical heuristic, Weber's law, which, in adults, has typically been observed for perceptual judgment tasks but not for actions such as grasping. We examined whether this perception-action dissociation in Weber's law was present in childhood as it is in adulthood and whether it was modulated by stimulus complexity. Two major results emerged. First, although adults evinced visuomotor behavior that violated Weber's law, young children (4.5-6.5 years) adhered to Weber's law when they grasped complex objects ("Efron" blocks), which varied along both the graspable and non-graspable dimensions to maintain a constant surface area, but not when they grasped simple objects, which varied only along the graspable dimension. Second, adherence to Weber's law was found across all ages in the context of a perceptual task. Together, these findings suggest that, in early childhood, visuomotor representations are modulated by perceptual representations, particularly when a refined description of object shape is needed.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
12 |
8
|
Anticipatory gaze strategies when grasping moving objects. Exp Brain Res 2015; 233:3413-23. [PMID: 26289482 DOI: 10.1007/s00221-015-4413-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
Grasping moving objects involves both spatial and temporal predictions. The hand is aimed at a location where it will meet the object, rather than the position at which the object is seen when the reach is initiated. Previous eye-hand coordination research from our laboratory, utilizing stationary objects, has shown that participants' initial gaze tends to be directed towards the eventual location of the index finger when making a precision grasp. This experiment examined how the speed and direction of a computer-generated block's movement affect gaze and selection of grasp points. Results showed that when the target first appeared, participants anticipated the target's eventual movement by fixating well ahead of its leading edge in the direction of eventual motion. Once target movement began, participants shifted their fixation to the leading edge of the target. Upon reach initiation, participants then fixated towards the top edge of the target. As seen in our previous work with stationary objects, final fixations tended towards the final index finger contact point on the target. Moreover, gaze and kinematic analyses revealed that it was direction that most influenced fixation locations and grasp points. Interestingly, participants fixated further ahead of the target's leading edge when the direction of motion was leftward, particularly at the slower speed-possibly the result of mechanical constraints of intercepting leftward-moving targets with one's right hand.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
10 |
9
|
Neuropsychology of posteromedial parietal cortex and conversion factors from Mild Cognitive Impairment to Alzheimer's disease: systematic search and state-of-the-art review. Aging Clin Exp Res 2022; 34:289-307. [PMID: 34232485 PMCID: PMC8847304 DOI: 10.1007/s40520-021-01930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
In the present review, we discuss the rationale and the clinical implications of assessing visuospatial working memory (VSWM), awareness of memory deficits, and visuomotor control in patients with mild cognitive impairment (MCI). These three domains are related to neural activity in the posteromedial parietal cortex (PMC) whose hypoactivation seems to be a significant predictor of conversion from MCI to Alzheimer’s disease (AD) as indicated by recent neuroimaging evidence. A systematic literature search was performed up to May 2021. Forty-eight studies were included: 42 studies provided analytical cross-sectional data and 6 studies longitudinal data on conversion rates. Overall, these studies showed that patients with MCI performed worse than healthy controls in tasks assessing VSWM, awareness of memory deficits, and visuomotor control; in some cases, MCI patients’ performance was comparable to that of patients with overt dementia. Deficits in VSWM and metamemory appear to be significant predictors of conversion. No study explored the relationship between visuomotor control and conversion. Nevertheless, it has been speculated that the assessment of visuomotor abilities in subjects at high AD risk might be useful to discriminate patients who are likely to convert from those who are not. Being able to indirectly estimate PMC functioning through quick and easy neuropsychological tasks in outpatient settings may improve diagnostic and prognostic accuracy, and therefore, the quality of the MCI patient’s management.
Collapse
|
Review |
3 |
10 |
10
|
Rodríguez-Herreros B, de Grave DDJ, López-Moliner J, Brenner E, Smeets JBJ. Shifted visual feedback of the hand affects reachability judgments in interception. Vision Res 2013; 88:30-7. [PMID: 23811422 DOI: 10.1016/j.visres.2013.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 06/13/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Estimating whether an object is reachable is important if one intends to interact with the object. If an object is moving, it will be reachable only within a certain time-window. In such situations, motion of the object relative to the body has to be taken into account to judge the moment at which the target becomes reachable. We know that judgments of reachability are influenced by displaced visual feedback about the position of the hand when objects are static. Here we examine whether displaced feedback of the hand also influences reachability judgments when reachability is temporally constrained because the object is moving. The task for the subjects was to intercept a virtual cube with their unseen index finger as soon as the cube was considered to be reachable. Subjects received visual feedback about the position of their index finger, but this feedback was shifted in depth by 5 cm, either away from or closer to their body. The region that was judged to be reachable was larger when feedback of the hand was shifted away from the body than when the feedback was shifted closer to the body. This effect was correlated with the spatial error committed at the interception point. We conclude that all judgments about the surrounding space are adjusted in relation to the shifted visual feedback of the hand.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
5 |
11
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
|
Review |
2 |
5 |
12
|
Ozana A, Ganel T. Obeying the law: speed-precision tradeoffs and the adherence to Weber's law in 2D grasping. Exp Brain Res 2019; 237:2011-2021. [PMID: 31161415 DOI: 10.1007/s00221-019-05572-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
Visually guided actions toward two-dimensional (2D) and three-dimensional (3D) objects show different patterns of adherence to Weber's law. In 3D grasping, Just Noticeable Differences (JNDs) do not scale with object size, violating Weber's law. Conversely, JNDs in 2D grasping increase with size, showing a pattern of scaler variability between aperture and JND, as predicted by Weber's law. In the current study, we tested whether such scaler variability in 2D grasping reflects genuine adherence to Weber's law. Alternatively, it could be potentially accounted for by a speed-precision tradeoff effect due to an increase in aperture velocity with size. In two experiments, we modified the relation between aperture velocity and size in 2D grasping and tested whether movement trajectories still adhere to Weber's law. In Experiment 1, we aimed to equate aperture velocities between different-sized objects by pre-adjusting the initial finger aperture to match the target's size. In Experiment 2, we reversed the relation between size and velocity by asking participants to hold their fingers wide open prior to grasp, resulting in faster velocities for smaller rather than for larger objects. The results of the two experiments showed that although aperture velocities did not increase with size, adherence to Weber's law was still maintained. These results indicate that the adherence to Weber's law during 2D grasping cannot be accounted for by a speed-precision tradeoff effect, but rather represents genuine reliance on relative, perceptually based computations in visuomotor interactions with 2D objects.
Collapse
|
Journal Article |
6 |
5 |
13
|
Engel D, Schwenk JCB, Schütz A, Morris AP, Bremmer F. Multi-segment phase coupling to oscillatory visual drive. Gait Posture 2021; 86:132-138. [PMID: 33721690 DOI: 10.1016/j.gaitpost.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND It has been shown that humans adapt their postural sway to oscillatory, visually simulated self-motion. However, little is still known about the way individual body segments contribute to this adjustment of body sway and how this contribution varies with different environmental conditions. RESEARCH QUESTION How do the centre of pressure (COP) and individual body segments phase-lock to a sinusoidal visual drive depending on the frequency of stimulation? METHODS In this study, we introduce phase coupling as a method for assessing full body motion in response to visual stimuli presented in virtual reality (VR). 12 participants (mean age: 31 ± 9 years) stood inside a virtual tunnel which oscillated sinusoidally in the anterior-posterior direction at a frequency of 0.2 Hz, 0.8 Hz or 1.2 Hz. Primary outcome measures were the trajectories of their COP as well as of 25 body segments obtained by a motion tracking system. RESULTS Subjects significantly coupled the phase of their COP and body segments to the visual drive. Our analysis yielded significant phase coupling of the COP to the stimulus for all tested frequencies. The phase coupling of body segments revealed a shift in postural response as a function of frequency. At the low frequency of 0.2 Hz, we found strong and significant phase coupling homogeneously distributed across the body. At the higher frequencies of 0.8 Hz and 1.2 Hz, however, overall phase coupling became weaker and was centred around the lower torso and hip segments. SIGNIFICANCE Information on how the visual percept of self-motion affects balance control is crucial for understanding visuomotor processing in health and disease. Our setup and methods constitute a reliable tool for assessing perturbed balance control, which can be utilized in future clinical trials.
Collapse
|
|
4 |
4 |
14
|
Bank PJM, Dobbe LRM, Meskers CGM, de Groot JH, de Vlugt E. Manipulation of visual information affects control strategy during a visuomotor tracking task. Behav Brain Res 2017; 329:205-214. [PMID: 28501420 DOI: 10.1016/j.bbr.2017.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 11/28/2022]
Abstract
Proper understanding of motor control requires insight into the extent and manner in which task performance and control strategy are influenced by various aspects of visual information. We therefore systematically manipulated the visual presentation (i.e., scaling factor and optical flow density) of a visuomotor tracking task without changing the task itself, and investigated the effect on performance, effort, motor control strategy (i.e., anticipatory or corrective steering) and underlying neuromechanical parameters (i.e., intrinsic muscle stiffness and damping, and proprioceptive and visual feedback). Twenty healthy participants controlled the left-right position of a virtual car (by means of wrist rotations in a haptic robot) to track a slightly curved virtual road (presented on a 60" LED screen), while small torque perturbations were applied to the wrist (1.25-20Hz multisine) for quantification of the neuromechanical parameters. This visuomotor tracking task was performed in conditions with low/medium/high scaling factor and low/high optical flow density. Task performance was high in all conditions (tracking accuracy 96.6%-100%); a higher scaling factor was associated with slightly better performance. As expected, participants did adapt their control strategy and the use of proprioceptive and visual feedback in response to changes in the visual presentation. These findings indicate that effects of visual representation on motor behavior should be taken into consideration in designing, interpreting and comparing experiments on motor control in health and disease. In future studies, these insights might be exploited to assess the sensory-motor adaptability in various clinical conditions.
Collapse
|
|
8 |
4 |
15
|
Grasping occluded targets: investigating the influence of target visibility, allocentric cue presence, and direction of motion on gaze and grasp accuracy. Exp Brain Res 2017; 235:2705-2716. [PMID: 28597294 DOI: 10.1007/s00221-017-5004-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Participants executed right-handed reach-to-grasp movements toward horizontally translating targets. Visual feedback of the target when reaching, as well as the presence of additional cues placed above and below the target's path, was manipulated. Comparison of average fixations at reach onset and at the time of the grasp suggested that participants accurately extrapolated the occluded target's motion prior to reach onset, but not after the reach had been initiated, resulting in inaccurate grasp placements. Final gaze and grasp positions were more accurate when reaching for leftward moving targets, suggesting individuals use different grasp strategies when reaching for targets traveling away from the reaching hand. Additional cue presence appeared to impair participants' ability to extrapolate the disappeared target's motion, and caused grasps for occluded targets to be less accurate. Novel information is provided about the eye-hand strategies used when reaching for moving targets in unpredictable visual conditions.
Collapse
|
Journal Article |
8 |
4 |
16
|
Egomotion-related visual areas respond to goal-directed movements. Brain Struct Funct 2022; 227:2313-2328. [PMID: 35763171 DOI: 10.1007/s00429-022-02523-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.
Collapse
|
|
3 |
4 |
17
|
Beudel M, Leenders KL, de Jong BM. Hippocampus activation related to 'real-time' processing of visuospatial change. Brain Res 2016; 1652:204-211. [PMID: 27742470 DOI: 10.1016/j.brainres.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
The delay associated with cerebral processing time implies a lack of real-time representation of changes in the observed environment. To bridge this gap for motor actions in a dynamical environment, the brain uses predictions of the most plausible future reality based on previously provided information. To optimise these predictions, adjustments to actual experiences are necessary. This requires a perceptual memory buffer. In our study we gained more insight how the brain treats (real-time) information by comparing cerebral activations related to judging past-, present- and future locations of a moving ball, respectively. Eighteen healthy subjects made these estimations while fMRI data was obtained. All three conditions evoked bilateral dorsal-parietal and premotor activations, while judgment of the location of the ball at the moment of judgment showed increased bilateral posterior hippocampus activation relative to making both future and past judgments at the one-second time-sale. Since the condition of such 'real-time' judgments implied undistracted observation of the ball's actual movements, the associated hippocampal activation is consistent with the concept that the hippocampus participates in a top-down exerted sensory gating mechanism. In this way, it may play a role in novelty (saliency) detection.
Collapse
|
|
9 |
3 |
18
|
Katsumata H. Attenuation of size illusion effect in dual-task conditions. Hum Mov Sci 2019; 67:102497. [PMID: 31326743 DOI: 10.1016/j.humov.2019.102497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 06/08/2019] [Accepted: 07/06/2019] [Indexed: 11/18/2022]
Abstract
We over-estimate or under-estimate the size of an object depending its background structure (e.g., the Ebbinghaus illusion). Since deciding and preparing to execute a movement is based on perception, motor performance deteriorates due to the faulty perception of information. Therefore, such cognitive process can be a source of a failure in motor performance, although we feel in control of our performance through conscious cognitive activities. If a movement execution process can avoid distraction by the illusion-deceived conscious process, the effect of the visual illusion on visuomotor performance can be eliminated or attenuated. This study investigated this hypothesis by examining two task performances developed for a target figure inducing the Ebbinghaus size illusion: showing visually perceived size of an object by index finger-thumb aperture (size-matching), and reaching out for the object and pretending to grasp it (pantomimed grasping). In these task performances, the size of the index finger-thumb aperture becomes larger or smaller than the actual size, in accordance with the illusion effect. This study examined whether the size illusion effect can be weakened or eliminated by the dual-task condition where actors' attention to judge the object's size and to produce the aperture size is interrupted. 16 participants performed the size-matching and pantomimed grasping tasks while simultaneously executing a choice reaction task (dual task) or without doing so (single task). Using an optical motion capture system, the size-illusion effect was analyzed in terms of the aperture size, which indicates the visually perceived object size. The illusion effect was attenuated in the dual task condition, compared to it in the single task condition. This suggests that the dual task condition modulated attention focus on the aperture movement and therefore the aperture movement was achieved with less distraction caused by illusory information.
Collapse
|
Journal Article |
6 |
3 |
19
|
Takamuku S, Ohta H, Kanai C, de C Hamilton AF, Gomi H. Seeing motion of controlled object improves grip timing in adults with autism spectrum condition: evidence for use of inverse dynamics in motor control. Exp Brain Res 2021; 239:1047-1059. [PMID: 33528597 DOI: 10.1007/s00221-021-06046-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
Previous studies (Haswell et al. in Nat Neurosci 12:970-972, 2009; Marko et al. in Brain J Neurol 138:784-797, 2015) reported that people with autism rely less on vision for learning to reach in a force field. This suggested a possibility that they have difficulties in extracting force information from visual motion signals, a process called inverse dynamics computation. Our recent study (Takamuku et al. in J Int Soc Autism Res 11:1062-1075, 2018) examined the ability of inverse computation with two perceptual tasks and found similar performances in typical and autistic adults. However, this tested the computation only in the context of sensory perception while it was possible that the suspected disability is specific to the motor domain. Here, in order to address the concern, we tested the use of inverse dynamics computation in the context of motor control by measuring changes in grip timing caused by seeing/not seeing a controlled object. The motion of the object was informative of its inertial force and typical participants improved their grip timing based on the visual feedback. Our interest was on whether the autism participants show the same improvement. While some autism participants showed atypical hand slowing when seeing the controlled object, we found no evidence of abnormalities in the inverse computation in our grip timing task or in a replication of the perceptual task. This suggests that the ability of inverse dynamics computation is preserved not only for sensory perception but also for motor control in adults with autism.
Collapse
|
Journal Article |
4 |
2 |
20
|
It is the flash which appears, the movement will follow: Investigating the relation between spatial attention and obstacle avoidance. Psychon Bull Rev 2016; 22:1292-8. [PMID: 25980479 PMCID: PMC4577540 DOI: 10.3758/s13423-015-0821-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obstacles are represented in the attentional landscape. However, it is currently unclear what the exclusive contribution of attention is to the avoidance response. This is because in earlier obstacle avoidance designs, it was impossible to disentangle an effect of attention from the changing features of the obstacle (e.g., its identity, size, or orientation). Conversely, any feature manipulation could be interpreted as an attentional as well as an obstacle effect on avoidance behavior. We tested the possible tuning of avoidance responses by a spatial cue in two experiments. In both experiments, spatial and nonspatial cues were separately given as go cues for an obstacle avoidance task. Participants had to reach past two obstacles in Experiment 1, and past a single obstacle in Experiment 2. We found that when the right obstacle was flashed, participants veered away more and produced more-variable trajectories over trials than in conditions with nonspatial and left spatial cues, regardless of the presence or absence of another obstacle. Therefore, we concluded that the tuning of avoidance responses can be influenced by spatial cues. Moreover, we speculated that a flashed obstacle receives more attentional weighting in the attentional landscape and prompts a stronger repulsion away from the obstacle.
Collapse
|
Journal Article |
9 |
2 |
21
|
Carther-Krone TA, Senanayake SA, Marotta JJ. The influence of the Sander parallelogram illusion and early, middle and late vision on goal-directed reaching and grasping. Exp Brain Res 2020; 238:2993-3003. [PMID: 33095294 DOI: 10.1007/s00221-020-05960-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Vision is one of the most robust sensory inputs used for the execution of goal-directed actions. Despite a history of extensive visuomotor research, how individuals process visual context for the execution of movements continues to be debated. This experiment examines how early, middle and late visuomotor control is impacted by illusory characteristics in a reaching and grasping task. Participants either manually estimated or reached out and picked up a three-dimensional target bar resting on a two-dimensional picture of the Sander parallelogram illusion. Participants performed their grasps within a predefined time movement window based on their own average grasp time, allowing for the manipulation of visual feedback. On some trials, vision was only available before the response cue (an auditory tone), while on others vision was occluded until the response cue, becoming available for either the full, early, middle or late portions of the movement. While results showed that the effect of the illusion was stronger on manual estimations than on grasping, maximum grip apertures in the occluded vision and early vision grasping conditions were also consistent to a lesser extent with the illusion. The late vision condition showed longer movement time, wrist deceleration period, time to maximum grip aperture and lower maximum velocity. These findings indicate that visual context affects visuomotor control distinctly depending on when vision is available, and supports the notion that human vision is comprised of two functionally and anatomically distinct systems.
Collapse
|
Journal Article |
5 |
2 |
22
|
Mroczkowski CA, Niechwiej-Szwedo E. Stereopsis contributes to the predictive control of grip forces during prehension. Exp Brain Res 2021; 239:1345-1358. [PMID: 33661370 DOI: 10.1007/s00221-021-06052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/29/2021] [Indexed: 11/26/2022]
Abstract
Binocular viewing is associated with a superior prehensile performance, which is particularly evident in the latter part of the reach as the hand approaches and makes contact with the target object. However, the visuomotor mechanisms through which binocular vision serves prehension are not fully understood. This study assessed the role of stereopsis in the predictive control of grasping by measuring grip force. Twenty participants performed a precision reach-to-grasp task in four viewing conditions: binocular, monocular, and with reduced stereoacuity (200 arc sec, > 400 arc sec). Monocular, compared to binocular viewing, was associated with a fourfold increase in grasp errors, a 56% increase in grasp duration, 22% decrease in grip force at 50 ms following grasp initiation, and the time of peak force occurred 40% later after grasp initiation (all p < 0.05). Grasp performance was also disrupted when viewing with reduced stereoacuity. Notably, grip force at the time of object lift-off was comparable between all viewing conditions. These results demonstrate that binocular stereopsis contributes to the efficient programming of grip forces. Specifically, stereopsis may provide important sensory information that enables the central nervous system to engage in predictive control of grasping.
Collapse
|
Journal Article |
4 |
2 |
23
|
Yeomans MA, Phillips B, Dalecki M, Hondzinski JM. Eye movement influences on coupled and decoupled eye-hand coordination tasks. Exp Brain Res 2021; 239:2477-2488. [PMID: 34115166 DOI: 10.1007/s00221-021-06138-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
Visually guided reaching precision and accuracy depend on the level of coupling between movements of the eyes and hand. In the present study, participants performed central fixations and either saccadic or smooth pursuit eye movements during fast and accurate reaching tasks involving eye-hand coupling and decoupling to better understand type of eye movement influence over upper limb control. Some eye-hand coupling and decoupling tasks also included hand reversals, where the hand moves away from the target to direct a cursor toward the target to account for various levels of hand-cursor and eye-cursor coupling. Regardless of eye-movement type, eye-hand-cursor coupling produced an endpoint accuracy advantage over decoupling. Use of hand reversal decreased peak speed and increased response time of the hand, whether considering fixation or a given eye movement. Use of smooth pursuit slowed hand movements relative to saccades, yet improved endpoint accuracy. Compared to central fixations, using smooth pursuit also slowed hand movements, while using saccades decreased, thus improved, hand reaction times. Data suggest an advantage, when using smooth pursuit to track the hand movement for the greatest endpoint accuracy, an advantage when using saccades for the fastest movements, and an eye-hand coupling advantage when using saccades for the shortest reactions. Researchers should provide clear eye-movement instructions for participants and/or monitor the eyes when assessing similar upper limb control to account for possible differences in eye movements used. Moreover, the type of eye movement chosen for participants should correspond to the primary goal of the task.
Collapse
|
Journal Article |
4 |
1 |
24
|
Mazaheri M, Roerdink M, Duysens J, Beek PJ, Peper CLE. Attentional costs of walking are not affected by variations in lateral balance demands in young and older adults. Gait Posture 2016; 46:126-31. [PMID: 27131189 DOI: 10.1016/j.gaitpost.2016.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/04/2016] [Accepted: 03/04/2016] [Indexed: 02/02/2023]
Abstract
Increased attentional costs of walking in older adults have been attributed to age-related changes in visuomotor and/or balance control of walking. The present experiment was conducted to examine the hypothesis that attentional costs of walking vary with lateral balance demands during walking in young and older adults. Twenty young and twenty older adults walked on a treadmill at their preferred walking speed under five conditions: unconstrained normal walking, walking on projected visual lines corresponding to either the participant's preferred step width or 50% thereof (i.e. increased balance demand), and walking within low- and high-stiffness lateral stabilization frames (i.e. lower balance demands). Attentional costs were assessed using a probe reaction-time task during these five walking conditions, normalized to baseline performance as obtained during sitting. Both imposed step-width conditions were more attentionally demanding than the three other conditions, in the absence of any other significant differences between conditions. These effects were similar in the two groups. The results indicate that the attentional costs of walking were, in contrast to what has been postulated previously, not influenced by lateral balance demands. The observed difference in attentional costs between normal walking and both visual lines conditions suggests that visuomotor control processes, rather than balance control, strongly affect the attentional costs of walking. A tentative explanation of these results may be that visuomotor control processes are mainly governed by attention-demanding cortical processes, whereas balance is regulated predominantly subcortically.
Collapse
|
|
9 |
1 |
25
|
Numasawa K, Miyamoto T, Kizuka T, Ono S. The relationship between the implicit visuomotor control and the motor planning accuracy. Exp Brain Res 2021; 239:2151-2158. [PMID: 33977362 DOI: 10.1007/s00221-021-06120-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
It has been well established that an implicit motor response can be elicited by a target perturbation or a visual background motion during a reaching movement. Computational studies have suggested that the mechanism of this response is based on the error signal between the efference copy and the actual sensory feedback. If the implicit motor response is based on the efference copy, the motor command accuracy would affect the amount of the modulation of the motor response. Therefore, the purpose of the current study was to investigate the relationship between the implicit motor response and the motor planning accuracy. We used a memory-guided reaching task and a manual following response (MFR) which is induced by visual grating motion. Participants performed reaching movements toward a memorized-target location with a beep cue which was presented 0 or 3 s after the target disappeared (0-s delay and 3-s delay conditions). Leftward or rightward visual grating motion was applied 400 ms after the cue. In addition, an event-related potential (ERP) was recorded during the reaching task, which reflects the motor command accuracy. Our results showed that the N170 ERP amplitude in the parietal electrodes and the MFR amplitude were significantly larger for the 3-s delay condition than the 0-s delay condition. These results suggest that the motor planning accuracy affects the amount of the implicit visuomotor response. Furthermore, there was a significant within-subjects correlation between the MFR and the N170 amplitude, which could corroborate the relationship between the implicit motor response and the motor planning accuracy.
Collapse
|
Journal Article |
4 |
1 |