Cheng C, Yuan C, Cui B, Li J, Liu G. β-Cyclodextrin based Pickering emulsions for α-tocopherol delivery: Antioxidation stability and bioaccessibility.
Food Chem 2024;
438:138000. [PMID:
38000154 DOI:
10.1016/j.foodchem.2023.138000]
[Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
β-Cyclodextrin (β-CD) Pickering emulsion and cinnamaldehyde/β-cyclodextrin (CIN/β-CD) Pickering emulsion were prepared and the influences of oxidation and digestion were investigated. CIN/β-CD composite was better dispersed at the oil-water interface than β-CD. Hydrophobic group of CIN anchored in the oil phase and Hydrophilic hydroxyl group of β-CD extended into the aqueous phase, which allowed CIN/β-CD composite to be oriented at the oil-water interface and formed a more stable oil-water interface layer. β-CD Pickering emulsion was more susceptible to oxidative deterioration than CIN/β-CD Pickering emulsion, its malondialdehyde (MDA) value was as high as 509.41 ± 9.37 nmol/L. Digestion experiment indicated that CIN/β-CD Pickering emulsion was released inner oil phase in the small intestine and free fatty acid (FFA) release rate was 44.32 ± 1.08%. Pharmacokinetic parameters manifested that α-tocopherol peak concentration (Cmax) was 64.32 ± 6.45 mg/L and the peak time (Tmax) appeared at 5 h after administration of CIN/β-CD Pickering emulsion.
Collapse