1
|
Kooyers NJ. The evolution of drought escape and avoidance in natural herbaceous populations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:155-62. [PMID: 25804818 DOI: 10.1016/j.plantsci.2015.02.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 05/03/2023]
Abstract
While the functional genetics and physiological mechanisms controlling drought resistance in crop plants have been intensely studied, less research has examined the genetic basis of adaptation to drought stress in natural populations. Drought resistance adaptations in nature reflect natural rather than human-mediated selection and may identify novel mechanisms for stress tolerance. Adaptations conferring drought resistance have historically been divided into alternative strategies including drought escape (rapid development to complete a life cycle before drought) and drought avoidance (reducing water loss to prevent dehydration). Recent studies in genetic model systems such as Arabidopsis, Mimulus, and Panicum have begun to elucidate the genes, expression profiles, and physiological changes responsible for ecologically important variation in drought resistance. Similar to most crop plants, variation in drought escape and avoidance is complex, underlain by many QTL of small effect, and pervasive gene by environment interactions. Recently identified major-effect alleles point to a significant role for genetic constraints in limiting the concurrent evolution of both drought escape and avoidance strategies, although these constraints are not universally found. This progress suggests that understanding the mechanistic basic and fitness consequences of gene by environment interactions will be critical for crop improvement and forecasting population persistence in unpredictable environments.
Collapse
|
Review |
10 |
194 |
2
|
Geber MA, Dawson TE. Genetic variation in and covariation between leaf gas exchange, morphology, and development in Polygonum arenastrum, an annual plant. Oecologia 1990; 85:153-158. [PMID: 28312550 DOI: 10.1007/bf00319396] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/1990] [Accepted: 07/23/1990] [Indexed: 10/26/2022]
Abstract
We present evidence of genetic variation in and covariation between leaf-level gas exchange properties and leaf size among family lines of Polygonum arenastrum. This self-fertilizing annual had previously been shown to vary genetically in developmental phenology and in morphology (size of leaves, internodes, flowers and seeds) (Geber 1990). Significant family differences were found in photosynthetic carbon assimilation rate (A), lcaf conductance to water vapor (g), instantaneous water-use efficiency (WUE), and leaf carbon isotope discrimination (Δ). A strong positive genetic correlation between A and g suggested that there was stomatal limitation on A. In addition, higher g led to relatively greater increases in transpiration, E, than in assimilation, A, so that families with high rates of gas exchange had lower instantaneous WUE and/or higher carbon isotope discrimination values. Leaf size and gas exchange were genetically correlated. In earlier studies leaf size was found to be genetically correlated with developmental phenology (Geber 1990). The pattern that emerges is one in which small-leaved families (which also have small internodes, flowers, and seeds) tend to have high gas exchange rates, low WUE, rapid development to flowering and high early fecundity, but reduced life span and maximum (vegetative and reproductive) yield compared to large-leaved families. We suggest that this pattern may have arisen from selection for contrasting suites of characters adapted to environments differing in season length.
Collapse
|
Journal Article |
35 |
89 |
3
|
Lajtha K, Whitford WG. The effect of water and nitrogen amendments on photosynthesis, leaf demography, and resource-use efficiency in Larrea tridentata, a desert evergreen shrub. Oecologia 1989; 80:341-348. [PMID: 28312061 DOI: 10.1007/bf00379035] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/1988] [Indexed: 10/26/2022]
Abstract
In the Chihuahuan Desert of southern New Mexico, both water and nitrogen limit the primary productivity of Larrea tridentata, a xerophytic evergreen shrub. Net photosynthesis was positively correlated to leaf N, but only in plants that received supplemental water. Nutrient-use efficiency, defined as photosynthetic carbon gain per unit N invested in leaf tissue, declined with increasing leaf N. However, water-use efficiency, defined as the ratio of photosynthesis to transpiration, increased with increasing leaf N, and thus these two measures of resource-use efficiency were inversely correlated. Resorption efficiency was not significantly altered over the nutrient gradient, nor was it affected by irrigation treatments. Leaf longevity decreased significantly with fertilization although the absolute magnitude of this decrease was fairly small, in part due to a large background of insect-induced mortality. Age-specific gas exchange measurements support the hypothesis that leaf aging represents a redistribution of resources, rather than actual deterioration or declining resource-use efficiency.
Collapse
|
Journal Article |
36 |
76 |
4
|
Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotsuga menziesii : A common-garden experiment. Oecologia 1993; 93:80-87. [PMID: 28313778 DOI: 10.1007/bf00321195] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/1992] [Accepted: 09/03/1992] [Indexed: 10/24/2022]
Abstract
Patterns of genetic variation in gas-exchange physiology were analyzed in a 15-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation that contains 25 populations grown from seed collected from across the natural distribution of the species. Seed was collected from 33°30' to 53°12' north latitude and from 170 m to 2930 m above sea level, and from the coastal and interior (Rocky Mountain) varieties of the species. Carbon isotope discrimination (Δ) ranged from 19.70(‰) to 22.43(‰) and was closely related to geographic location of the seed source. The coastal variety (20.50 (SE=0.21)‰) was not significantly different from the interior variety (20.91 (0.15)‰). Instead, most variation was found within the interior variety; populations from the southern Rockies had the highest discrimination (21.53 (0.20)‰) (lowest water-use efficiency). Carbon isotope discrimination (Δ), stomatal conductance to water vapor (g), the ratio of intercellular to ambient CO2 concentration (ci/ca), and intrinsic water-use efficiency (A/g) were all correlated with altitude of origin (r=0.76, 0.73, 0.74, and -0.63 respectively); all were statistically significant at the 0.01 level. The same variables were correlated with both height and diameter at age 15 (all at P≤0.0005). Observed patterns in the common garden did not conform to our expectation of higher WUE, measured by both A/g and Δ, in trees from the drier habitats of the interior, nor did they agree with published in situ observations of decreasing g and Δ with altitude. The genetic effect opposes the altitudinal one, leading to some degree of homeostasis in physiological characteri tics in situ.
Collapse
|
Journal Article |
32 |
72 |
5
|
Lajtha K, Getz J. Photosynthesis and water-use efficiency in pinyon-juniper communities along an elevation gradient in northern New Mexico. Oecologia 1993; 94:95-101. [PMID: 28313865 DOI: 10.1007/bf00317308] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/1992] [Accepted: 11/02/1992] [Indexed: 11/27/2022]
Abstract
We investigated plant ecophysiological response to fertilization of selected sites along an elevation gradient in a pinyon-juniper woodland. Plant density and species composition followed typical patterns for pinyon-juniper woodlands over this gradient, with a sparse juniper (Juniperus monosperma (Engelm.) Sarg.)-grassland community at the lowest elevation and gradually increasing total canopy cover and pinyon (Pinus edulis Engelm.) cover with elevation. Carbon isotope analysis showed that both tree species had higher water-use efficiency (WUE) at the lowest, and presumably driest, sites. Over most of the gradient, however, it appeared that changes in stand density compensated for changes in water availability. Contrary to initial hypotheses, the more drought-tolerant juniper did not demonstrate significantly greater WUE than pinyon, although it maintained positive carbon gain at lower predawn xylem pressure potentials than pinyon. In pinyon, both A max and WUE increased with increasing N concentration in tissues. Pinyon needles also demonstrated declining nitrogen-use efficiency with age. There was no relationship between tissue N and either A max or WUE measured at A max in juniper, although δ13C analysis indicated that WUE increased in juniper with increased N availability. Results from this study suggest that plasticity in plant physiological processes could result in nonlinear responses of organic matter production to climate change, and therefore must be accounted for in ecosystem models.
Collapse
|
Journal Article |
32 |
61 |
6
|
Blas A, Garrido A, Unver O, Willaarts B. A comparison of the Mediterranean diet and current food consumption patterns in Spain from a nutritional and water perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1020-1029. [PMID: 30769304 DOI: 10.1016/j.scitotenv.2019.02.111] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The promotion of responsible consumption is a key strategy to achieve environmental benefits, sustainable food security, and enhance public health. Countries like Spain are making efforts to reverse growing obesity and promote healthy diets, such as the recommended and traditional Mediterranean, recognized as a key strategy to improve the population's health with locally grown, traditional, and seasonal products like fruits, vegetables, olive oil, and fish. With a view to connecting water, agriculture, food security, nutrition and health, this research aims to investigate and compare the nutritional and water implications of the current food consumption of Spanish households with the recommended Mediterranean diet. Besides, we calculate their nutritional composition, compare their water footprints, and develop a new methodological approach to assess nutritional water productivity (i.e. the nutritional value per unit of embedded water). Results show that the current Spanish diet is shifting away from the recommended Mediterranean towards an alternative one containing three times more meat, dairy and sugar products, and a third fewer fruits, vegetables, and cereals. The Mediterranean diet is also less caloric, as it contains smaller amounts of proteins and fats and is richer in fiber and micronutrients. Due to the high-embedded water content in animal products, a shift towards a Mediterranean diet would reduce the consumptive WF about 750 l/capita day. Additionally, the Mediterranean diet has better water-nutritional efficiency than the current one: it provides more energy, fiber, and nutrients per liter of consumptive water. The study confirms the Mediterranean diet is a healthier and more sustainable diet with strong cultural heritage.
Collapse
|
|
6 |
55 |
7
|
Comparative ecophysiology of five species of Sedum (Crassulaceae) under well-watered and drought-stressed conditions. Oecologia 1992; 92:532-541. [PMID: 28313224 DOI: 10.1007/bf00317845] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1992] [Accepted: 07/28/1992] [Indexed: 10/26/2022]
Abstract
Gas exchange patterns, diurnal malic acid fluctuations, and stable carbon isotope ratios of five species of Sedum were investigated to assess the ecophysiological characteristics of three different photosynthetic pathways under well-watered and drought-stressed conditions. All five species have succulent leaves and stems and were examined under identical environmental conditions. When well-watered, Sedum integrifolium (Raf.) Nels. and S. ternatum Michx. displayed C3 photosynthesis, S. telephioides Michx. and S. nuttallianum Raf. exhibited CAM-cycling, and S. wrightii A. Gray showed CAM. When grown under a less frequent watering regime, S. integrifolium and S. ternatum exhibited CAM-cycling, whereas S. telephioides and S. nuttallianum displayed CAM-cycling simultaneously with low-level CAM. Sedum wrightii retained its CAM mode of photosynthesis. In general, leaf δ13C values reflected these variations in photosynthetic pathways. While all values of water-use efficiency (WUE) were greater than those reported for most C3 and C4 species, no correlation of malic acid accumulation in the CAM and CAM-cycling (including low-level CAM) species with increased WUE was found. Sedum wrightii (CAM) had the highest WUE value at night, yet its 24-h WUE was not different from S. ternatum when the latter was in the C3 mode. Thus, relative water-use efficiencies of these species of Sedum were not predictable based on photosynthetic pathways alone.
Collapse
|
Journal Article |
33 |
49 |
8
|
Mulkey SS. Photosynthetic acclimation and water-use efficiency of three species of understory herbaceous bamboo (Gramineae) in Panama. Oecologia 1986; 70:514-519. [PMID: 28311492 DOI: 10.1007/bf00379897] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/1985] [Indexed: 11/24/2022]
Abstract
To assess the role of photosynthetic acclimation in the response of tropical understory herbs to treefall light gaps, photosynthetic response curves were determined for three species of herbaceous bamboo growing in treatments of sun and shade at Barro Calorado Island, Panama. Increased maximum photosynthetic capacity did not always accompany higher ramet production in the sun treatment. Pharus latifolius reproduced abundantly in both treatments, and produced more ramets and developed higher maximum photosynthetic capacity under higher irradiance. Streptochaeta spicata also produced a high percentage of reproductive ramets in both treatments and produced more ramets in the sun, did not show any significant differences in photosynthetic parameters between treatments. Streptochaeta sodiroana did not change maximum photosynthetic capacity in the sun, and had higher photosynthetic efficiency and lower mortality in the shade. Stable carbon isotope composition of leaves indicated that all three species developed higher water-use efficiency under higher irradiance. Photosynthetic flexibility may contribute to the ability of P. latifolius to reproduce in treefall gaps, whereas S. spicata and S. sodiroana may maintain the ability to fix carbon efficiently in low irradiance even when growing or persisting in gaps.
Collapse
|
Journal Article |
39 |
39 |
9
|
Marshall JD, Dawson TE, Ehleringer JR. Integrated nitrogen, carbon, and water relations of a xylem-tapping mistletoe following nitrogen fertilization of the host. Oecologia 1994; 100:430-438. [PMID: 28306932 DOI: 10.1007/bf00317865] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1994] [Accepted: 07/30/1994] [Indexed: 10/26/2022]
Abstract
Xylem-tapping mistletoes transpire large volumes of water (E) while conducting photosynthesis (A) at low rates, thus maintaining low instantaneous wateruse efficiency (A/E). These gas-exchange characteristics have been interpreted as a means of facilitating assimilation of nitrogen dissolved at low concentration in host xylem water; however, low A/E also results in substantial heterotrophic carbon gain. In this study, host trees (Juniperus osteosperma) were fertilized and gas exchange of mistletoe (Phoradendron juniperinum) and host were monitored to determine whether mistletoe A/E would approach that of the host if mistletoes were supplied with abundant nitrogen. Fertilization significantly increased foliar N concentrations (N), net assimilation rates, and A/E in both mistletoe and host. However, at any given N concentration, mistletoes maintained lower A and lower A/E than their hosts. On the other hand, when instantaneous water-use efficiency and A/N were calculated to include heterotrophic assimilation of carbon dissolved in the xylem sap of the host, both water-use efficiency and A/N converged on host values. A simple model of Phoradendron carbon and nitrogen budgets was constructed to analyze the relative benefits of nitrogen- and carbonparasitism. The model assumes constant E and includes feedbacks of tissue nitrogen concentration on photosyn-thesis. These results, combined with our earlier observation that net assimilation rates of mistletoes and their hosts are approximately matched (Marshall et al. 1994), support part of the nitrogen-parasitism hypothesis: that high rates of transpiration benefit the mistletoe primarily through nitrogen gain. However, the low ratio of A/E is interpreted not as a means of acquiring nitrogen, but as an inevitable consequence of an imbalance in C and N assimilation.
Collapse
|
Journal Article |
31 |
37 |
10
|
Carbon isotope discrimination, water-use efficiency, growth, and mortality in a natural shrub population. Oecologia 1994; 100:347-354. [PMID: 28307020 DOI: 10.1007/bf00316964] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1994] [Accepted: 07/30/1994] [Indexed: 10/26/2022]
Abstract
In order to scale up from the ecophysiological characters of individual plants to population-level questions, we need to determine if character patterns in natural populations are stable through time, and if the characters are related to growth and survival. We investigated these questions in a 3-year study for one character, integrated water-use efficiency (WUE) as estimated by carbon isotope discrimination (δ) in a population of the Great Basin shrub, Chrysothamnus nauseosus. WUE was a conservative character for a given plant within and across seasons, and a previously documented difference between two size classes (represented by juveniles and adults) was maintained; smaller juveniles had a lower WUE than larger adults. The lower WUE of juveniles was often accompanied by higher rates of photosynthesis and stomatal conductance as compared to adults even though juveniles generally had more negative xylem pressure potentials. Although many discussions of the role of WUE in natural populations have been based on the expectation that higher WUE (lower δ) is generally associated with less growth, we found no such relation-ship for juvenile plants in this population (i.e δ was not positively correlated with height increase). In addition, juvenile plant mortality was not correlated with δ. Although there were stable patterns of WUE for plants in this population, the positive correlation between WUE and size, and the lack of a negative correlation between WUE and height growth, make it unlikely that the WUE of an individual plant will be related in a simple manner to its growth and survival in the population.
Collapse
|
Journal Article |
31 |
36 |
11
|
Stem photosynthesis in a desert ephemeral, Eriogonum inflatum : Characterization of leaf and stem CO 2 fixation and H 2O vapor exchange under controlled conditions. Oecologia 1987; 72:542-549. [PMID: 28312516 DOI: 10.1007/bf00378980] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1986] [Indexed: 10/26/2022]
Abstract
The gas exchange characteristics of photosynthetic tissues of leaves and stems of Eriogonum inflatum are described. Inflated stems were found to contain extraordinarily high internal CO2 concentrations (to 14000 μbar), but fixation of this internal CO2 was 6-10 times slower than fixation of atmospheric CO2 by these stems. Although the pool of CO2 is a trivial source of CO2 for stem photosynthesis, it may result in higher water-use efficiency of stem tissues. Leaf and stem photosynthetic activities were compared by means of CO2 fixation in CO2 response curves, light and temperature response curves in IRGA systems, and by means of O2 exchange at CO2 saturation in a leaf disc O2 electrode system. On an area basis leaves contain about twice the chlorophyll and nitrogen as stems, and are capable of up to 4-times the absolute CO2 and O2 exchange rates. However, the stem shape is such that lighting of the shaded side leads to a substantial increase in overall stem photosynthesis on a projected area basis, to about half the leaf rate in air. Stem conductance is lower than leaf conductance under most conditions and is less sensitive to high temperature or high VPD. Under most conditions, the ratio C i /C a is lower in stems than in leaves and stems show greater water-use efficiency (higher ratio assimilation/transpiration) as a function of VPD. This potential advantage of stem photosynthesis in a water limited environment may be offset by the higher VPD conditions in the hotter, drier part of the year when stems are active after leaves have senesced. Stem and leaf photosynthesis were similarly affected by decreasing plant water potential.
Collapse
|
Journal Article |
38 |
25 |
12
|
Leonardi S, Gentilesca T, Guerrieri R, Ripullone F, Magnani F, Mencuccini M, Noije TV, Borghetti M. Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. GLOBAL CHANGE BIOLOGY 2012; 18:2925-2944. [PMID: 24501068 DOI: 10.1111/j.1365-2486.2012.02757.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 06/03/2023]
Abstract
The objective of this study is to globally assess the effects of atmospheric nitrogen deposition and climate, associated with rising levels of atmospheric CO2 , on the variability of carbon isotope discrimination (Δ(13) C), and intrinsic water-use efficiency (iWUE) of angiosperm and conifer tree species. Eighty-nine long-term isotope tree-ring chronologies, representing 23 conifer and 13 angiosperm species for 53 sites worldwide, were extracted from the literature, and used to obtain long-term time series of Δ(13) C and iWUE. Δ(13) C and iWUE were related to the increasing concentration of atmospheric CO2 over the industrial period (1850-2000) and to the variation of simulated atmospheric nitrogen deposition and climatic variables over the period 1950-2000. We applied generalized additive models and linear mixed-effects models to predict the effects of climatic variables and nitrogen deposition on Δ(13) C and iWUE. Results showed a declining Δ(13) C trend in the angiosperm and conifer species over the industrial period and a 16.1% increase of iWUE between 1850 and 2000, with no evidence that the increased rate was reduced at higher ambient CO2 values. The temporal variation in Δ(13) C supported the hypothesis of an active plant mechanism that maintains a constant ratio between intercellular and ambient CO2 concentrations. We defined linear mixed-effects models that were effective to describe the variation of Δ(13) C and iWUE as a function of a set of environmental predictors, alternatively including annual rate (Nrate ) and long-term cumulative (Ncum ) nitrogen deposition. No single climatic or atmospheric variable had a clearly predominant effect, however, Δ(13) C and iWUE showed complex dependent interactions between different covariates. A significant association of Nrate with iWUE and Δ(13) C was observed in conifers and in the angiosperms, and Ncum was the only independent term with a significant positive association with iWUE, although a multi-factorial control was evident in conifers.
Collapse
|
|
13 |
25 |
13
|
Hussain MI, Al-Dakheel AJ, Reigosa MJ. Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:411-420. [PMID: 30691637 DOI: 10.1016/j.plaphy.2018.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 05/18/2023]
Abstract
Quinoa is an important nutritive crop that can play a strategic role in the development of marginal and degraded lands. Genotypic variations in carbon isotope composition (δ13C), carbon isotope discrimination (Δ13C), ratio of intercellular to atmospheric CO2 concentration (Ci/Ca), intrinsic water use efficiency (iWUE), seed yield and grain protein contents were analyzed in 6 quinoa cultivars grown in the field under saline conditions (0, 10, 20 dS m-1). Significant variations occurred in dry biomass, seed yield, plant height, number of branches, number of panicles, panicle weight, harvest index, N and C content. Some genotypes produced yields with values significantly higher than 2.04 t ha-1 (Q12), with an average increased to 2.58 t ha-1 (AMES22157). The present study indicates a large variation in Δ13C for salinity treatments (3.43‰) and small magnitude of variations among genotypes (0.95‰). Results showed that Δ might be used as an important index for screening, and selection of the salt tolerant quinoa genotypes with high iWUE. Quinoa genotypes differs in foliar 13C and 15N isotope composition, which reflected complex interactions of salinity and plant carbon and nitrogen metabolisms. Grain protein contents were found higher in Q19 and Q31 and lowest in Q26. The study demonstrates that AMES22157 and Q12, were salt tolerant and high yielder while the AMES22157 was more productive. This study provides a reliable measure of morpho-physiological, biochemical and isotopic responses of quinoa cultivars to salinity in hyper arid UAE climate and it may be valuable in the future breeding programs. The development of genotypes having both higher water use efficiency and yield potential would be a very useful contribution for producers in the dry region of Arabian Peninsula.
Collapse
|
|
7 |
22 |
14
|
Liu X, Wei Z, Ma Y, Liu J, Liu F. Effects of biochar amendment and reduced irrigation on growth, physiology, water-use efficiency and nutrients uptake of tobacco (Nicotiana tabacum L.) on two different soil types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144769. [PMID: 33736368 DOI: 10.1016/j.scitotenv.2020.144769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 05/29/2023]
Abstract
Biochar has shown beneficial effects in agricultural production, yet the combined effects of biochar and reduced irrigation on crop growth and water-use efficiency (WUE) in diverse soil types have not been fully explored. A split-root pot experiment was conducted to investigate the effects of addition of 2% softwood (SWB) and wheat straw biochar (WSB) on growth, physiology, WUE and nutrients uptake of tobacco (Nicotiana tabacum L.) plants grown in a Ferrosol and an Anthrosol, respectively, under three irrigation treatments. The plants were either irrigated daily to 90% of water-holding capacity (FI), or irrigated with 70% volume of water used for FI to the whole root-zone (DI) or alternately to half root-zone (PRD). The results showed that plants grown in Anthrosol possessed greater leaf gas exchange rates, dry biomass and WUE while lower nutrients content compared to those grown in Ferrosol. Despite a negative effect on plant N content and WUE, WSB addition increased water-holding capacity, consequently improved leaf gas exchange, water uptake, biomass and K content resulting in an improved in the leaf quality of tobacco as exemplified by an increased leaf K content and a more appropriate N to K stoichiometric ratio. However, these effects were not evident upon SWB addition. Moreover, these responses to biochar addition were stronger in Ferrosol than in Anthrosol might be associated with its lower pH. Compared to FI, PRD slightly reduced photosynthetic rate but significantly decreased stomatal conductance, transpiration rate and leaf area, leading to a significant increase in intrinsic, instantaneous and plant WUE. Additionally, PRD was superior over DI in improving yield, WUE, N uptake under a same irrigation volume. It was concluded that WSB combined with PRD could be a promising practice to synergistically improve tobacco yield, quality and WUE by improving soil hydro-physical properties and nutrients bioavailability.
Collapse
|
|
4 |
19 |
15
|
Barbour MM, Kaiser BN. The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:119-127. [PMID: 27593470 DOI: 10.1016/j.plantsci.2016.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 05/24/2023]
Abstract
Increased mesophyll conductance (gm) has been suggested as a target for selection for high productivity and high water-use efficiency in crop plants, and genotypic variability in gm has been reported in several important crop species. However, effective selection requires an understanding of how gm varies with growth conditions, to ensure that the ranking of genotypes is consistent across environments. We assessed the genotypic variability in gm and other leaf gas exchange traits, as well as growth and biomass allocation for six wheat genotypes under different water and nitrogen availabilities. The wheat genotypes differed in their response of gm to growth conditions, resulting in genotypic differences in the mesophyll limitation to photosynthesis and a significant increase in the mesophyll limitation to photosynthesis under drought. In this experiment, leaf intrinsic water-use efficiency was more closely related to stomatal conductance than to mesophyll conductance, and stomatal limitation to photosynthesis increased more in some genotypes than in others in response to drought. Screening for gm should be carried out under a range of growth conditions.
Collapse
|
|
9 |
19 |
16
|
Zhao J, Feng H, Xu T, Xiao J, Guerrieri R, Liu S, Wu X, He X, He X. Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143599. [PMID: 33250244 DOI: 10.1016/j.scitotenv.2020.143599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Drought, a natural hydrometeorological phenomenon, has been more frequent and more widespread due to climate change. Water availability strongly regulates the coupling (or trade-off) between carbon uptake via photosynthesis and water loss through transpiration, known as water-use efficiency (WUE). Understanding the effects of drought on WUE across different vegetation types and along the wet to dry gradient is paramount to achieving better understanding of ecosystem functioning in response to climate change. We explored the physiological and environmental control on ecosystem WUE in response to drought using observations for 44 eddy covariance flux sites in the Northern Hemisphere. We quantified the response of WUE to drought and the relative contributions of gross primary production (GPP) and evapotranspiration (ET) to the variations of WUE. We also examined the control of physiological and environmental factors on monthly WUE under different moisture conditions. Cropland had a peak WUE value under moderate drought conditions, while grassland, deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and evergreen needleleaf forest (ENF) had peak WUE under slight drought conditions. WUE was mainly driven by GPP for cropland, grassland, DBF, and ENF but was mainly driven by ET for EBF. Vapor pressure deficit (VPD) and canopy conductance (Gc) were the most important factors regulating WUE. Moreover, WUE had negative responses to air temperature, precipitation, and VPD but had a positive response to Gc and ecosystem respiration. Our findings highlight the different effects of biotic and abiotic factors on WUE among different vegetation types and the important roles of VPD and Gc in controlling ecosystem WUE in response to drought.
Collapse
|
|
4 |
18 |
17
|
Liu KD, Yang GL, Yang DG. Investigating industrial water-use efficiency in mainland China: An improved SBM-DEA model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110859. [PMID: 32721307 DOI: 10.1016/j.jenvman.2020.110859] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/10/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Improving water-use efficiency (WUE) is a crucial way of achieving green industrial production and sustainable development. Applying an improved Super-slacks-based measure model with undesirable outputs, this paper investigates industrial WUE in mainland China. The results show that: (1) Industrial WUE in China is improving with the efficiency value increasing from 0.9874 to 0.9962 in 2012-2015. (2) The regions of water absolute scarcity and the vulnerability show the highest industry-related WUE, whereas the water stressed region, water scarce region, and water abundant region failed to achieve efficiency during the observation period. (3) The overall index value using the conventional model was higher than that of the improved model, indicating the need for a more reasonable water-use structure and environmentally friendly discharge structure. This study provides a new perspective for measuring industrial WUE and advances related studies by (1) incorporating the actual structure of water used and wastewater discharged with weights assigned to input and output slacks according to marginal use cost of water and marginal treatment cost of wastewater; and (2) adding realistic constraints on the amount of water used and wastewater discharged to the model. The estimated provinces in mainland China can adjust their industrial water-use structures and wastewater-discharge structures based on the results of this study, and thus improve the industrial WUE.
Collapse
|
|
5 |
16 |
18
|
Li H, Han X, Liu X, Zhou M, Ren W, Zhao B, Ju C, Liu Y, Zhao J. A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genomics 2019; 20:737. [PMID: 31615416 PMCID: PMC6794760 DOI: 10.1186/s12864-019-6143-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ERECTA (ER) is a leucine-rich repeat-receptor-like kinase gene (LRR-RLK) encoding a protein isolated from Arabidopsis. Although the regulatory functions of ER genes have been widely explored in plant development and disease resistance, their roles in drought stress responses remain to be clarified. RESULTS In this study, we cloned and characterized two ER genes, SbER1-1 and SbER2-1, from the drought-tolerant model plant sorghum (Sorghum bicolor L.). Under drought stress, the two genes were expressed in the leaves and stems but not in the roots, and SbER2-1 transcript accumulation in the stem was increased. SbER2-1 was localized both on the plasma membrane and in the chloroplast. Moreover, SbER2-1 expression in Arabidopsis and maize conferred increased drought tolerance, especially in regard to water-use efficiency, increasing the net photosynthetic rate in maize under drought stress. Based on RNA-Seq analysis together with the physiological data, we conclude that the transgenic maize plants have upregulated phenylpropanoid metabolism and increased lignin accumulation under drought stress. CONCLUSIONS Our results demonstrate that SbER2-1 plays an important role in response to drought stress. Furthermore, photosynthetic systems and phenylpropanoid metabolism are implicated in SbER2-1-mediated drought stress tolerance mechanisms. The use of genetic engineering to regulate SbER2-1 expression in plants and to breed new varieties tolerant to drought is a research field full of potential.
Collapse
|
research-article |
6 |
14 |
19
|
Harris-Shultz KR, Hayes CM, Knoll JE. Mapping QTLs and Identification of Genes Associated with Drought Resistance in Sorghum. Methods Mol Biol 2019; 1931:11-40. [PMID: 30652280 DOI: 10.1007/978-1-4939-9039-9_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water limits global agricultural production. Increases in global aridity, a growing human population, and the depletion of aquifers will only increase the scarcity of water for agriculture. Water is essential for plant growth and in areas that are prone to drought, the use of drought-resistant crops is a long-term solution for growing more food for more people with less water. Sorghum is well adapted to hot and dry environments and has been used as a dietary staple for millions of people. Increasing the drought resistance in sorghum hybrids with no impact on yield is a continual objective for sorghum breeders. In this review, we describe the loci, quantitative trait loci (QTLs), or genes that have been identified for traits involved in drought avoidance (water-use efficiency, cuticular wax synthesis, trichome development and morphology, root system architecture) and drought tolerance (compatible solutes, pre- and post-flowering drought tolerance). Many of these identified genes and QTL regions have not been tested in hybrids and the effect of these genes, or their interactions, on yield must be understood in normal and drought-stressed conditions to understand the strength and weaknesses of their utility.
Collapse
|
Review |
6 |
12 |
20
|
Merchuk-Ovnat L, Fahima T, Krugman T, Saranga Y. Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:23-34. [PMID: 27593460 DOI: 10.1016/j.plantsci.2016.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 05/18/2023]
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving drought resistance in domesticated wheat. Nevertheless, wild germplasm has not been widely used in wheat breeding for abiotic stress resilience. In the current study, a near isogenic line NIL-7A-B-2, introgressed with a drought-related QTL from wild emmer wheat on chromosome 7A, and its recurrent parent, bread wheat cv. BarNir, were investigated under four environments across 2 years-water-limited and well-watered conditions in a rain-protected screen-house (Year 1) and two commercial open field plots under ample precipitation (Year 2). NIL-7A-B-2 exhibited an advantage over BarNir in grain yield and biomass production under most environments. Further physiological analyses suggested that enhanced photosynthetic capacity and photochemistry combined with higher flag leaf area are among the factors underlying the improved productivity of NIL-7A-B-2. These were coupled with improved sink capacity in NIL-7A-B-2, manifested by greater yield components than its parental line. This study provides further support for our previous findings that introgression of wild emmer QTL alleles, using marker assisted selection, can enhance grain yield and biomass production across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of yield and drought resistance.
Collapse
|
|
9 |
11 |
21
|
Fardusi MJ, Ferrio JP, Comas C, Voltas J, Resco de Dios V, Serrano L. Intra-specific association between carbon isotope composition and productivity in woody plants: A meta-analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:110-118. [PMID: 27593469 DOI: 10.1016/j.plantsci.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 06/06/2023]
Abstract
The study of intra-specific variations in growth and plant physiological response to drought is crucial to understand the potential for plant adaptation to global change. Carbon isotope composition (δ(13)C) in plant tissues offers an integrated measure of intrinsic water-use efficiency (WUEi). The intra-specific association between δ(13)C and productivity has been extensively studied in herbaceous crops, but species-specific information on woody plants is still limited and has so far provided contradictory results. In this work we explored the general patterns of the relationship between δ(13)C and growth traits (height, diameter and biomass) using a meta-analysis. We compiled information from 49 articles, including 176 studies performed on 34 species from 16 genera. We found a positive global intra-specific correlation between δ(13)C and growth (Gr=0.28, P<0.0001), stronger for biomass than for height, and non-significant for diameter. The extent of this intra-specific association increased from Mediterranean to subtropical, temperate and boreal biomes, i.e. from water-limited to energy-limited environments. Conifers and shrubs, but not broadleaves, showed consistent positive intra-specific correlations. The meta-analysis also revealed that the relationship between δ(13)C and growth is better characterized at juvenile stages, under near-optimal and controlled conditions, and by analyzing δ(13)C in leaves rather than in wood.
Collapse
|
|
9 |
10 |
22
|
Ariyarathne MA, Wone BWM. Overexpression of the Selaginella lepidophylla bHLH transcription factor enhances water-use efficiency, growth, and development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111129. [PMID: 35067299 DOI: 10.1016/j.plantsci.2021.111129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 05/20/2023]
Abstract
Abiotic stresses have the greatest impact on the growth and productivity of crops, especially under current and future extreme weather events due to climate change. Thus, it is vital to explore novel strategies to improve crop plant abiotic stress tolerance to feed an ever-growing world population. Selaginella lepidophylla is a desiccation-tolerant spike moss with specialized adaptations that allow it to tolerate water loss down to 4% relative water content. A candidate basic helix-loop-helix (bHLH) transcription factor was highly expressed at 4% relative water content in S. lepidophylla (SlbHLH). This SlbHLH gene was codon-optimized (SlbHLHopt) and overexpressed in Arabidopsis for functional characterization. Overexpression of the SlbHLHopt gene not only significantly increased plant growth, development, and integrated water-use efficiency, but also significantly increased seed germination and green cotyledon emergence rates under water-deficit stress and salt stress conditions. Under a 150 mM NaCl salt stress condition, SlbHLHopt-overexpressing lines increased primary root length, the number of lateral roots, and fresh and dry biomass at the seedling stage compared to control lines. Interestingly, SlbHLHopt-overexpressing lines also have significantly higher flavonoid content. Altogether, these results suggest that SlbHLH functions as an important regulator of plant growth, development, abiotic stress tolerance, and water-use efficiency.
Collapse
|
|
3 |
10 |
23
|
Busato JG, de Carvalho CM, Zandonadi DB, Sodré FF, Mol AR, de Oliveira AL, Navarro RD. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35811-35820. [PMID: 29170925 DOI: 10.1007/s11356-017-0795-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P > Ca > N > Mg > K > Fe > Zn > Mn > Mo > Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L-1 HA increased significantly both dry and wet root matter in lettuce but the CO2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H+ extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.
Collapse
|
|
7 |
8 |
24
|
Vicente MH, Zsögön A, de Sá AFL, Ribeiro RV, Peres LEP. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). JOURNAL OF PLANT PHYSIOLOGY 2015; 177:11-19. [PMID: 25659332 DOI: 10.1016/j.jplph.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.
Collapse
|
|
10 |
7 |
25
|
Liu D, Palla KJ, Hu R, Moseley RC, Mendoza C, Chen M, Abraham PE, Labbé JL, Kalluri UC, Tschaplinski TJ, Cushman JC, Borland AM, Tuskan GA, Yang X. Perspectives on the basic and applied aspects of crassulacean acid metabolism (CAM) research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:394-401. [PMID: 30080627 DOI: 10.1016/j.plantsci.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 05/24/2023]
Abstract
Due to public concerns about the decreasing supply of blue water and increasing heat and drought stress on plant growth caused by urbanization, increasing human population and climate change, interest in crassulacean acid metabolism (CAM), a specialized type of photosynthesis enhancing water-use efficiency (WUE) and drought tolerance, has increased markedly. Significant progress has been achieved in both basic and applied research in CAM plants since the beginning of this century. Here we provide a brief overview of the current status of CAM research, and discuss future needs and opportunities in a wide range of areas including systems biology, synthetic biology, and utilization of CAM crops for human benefit, with a focus on the following aspects: 1) application of genome-editing technology and high-throughput phenotyping to functional genomics research in model CAM species and genetic improvement of CAM crops, 2) challenges for multi-scale metabolic modeling of CAM systems, 3) opportunities and new strategies for CAM pathway engineering to enhance WUE and drought tolerance in C3 (and C4) photosynthesis crops, 4) potential of CAM species as resources for food, feed, natural products, pharmaceuticals and biofuels, and 5) development of CAM crops for ecological and aesthetic benefits.
Collapse
|
Review |
7 |
7 |