1
|
Riggs LM, Pereira EFR, Thompson SM, Gould TD. cAMP-dependent protein kinase signaling is required for ( 2R,6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol 2024; 131:64-74. [PMID: 38050689 PMCID: PMC11286304 DOI: 10.1152/jn.00326.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
(2R,6R)-Hydroxynorketamine (HNK) is a ketamine metabolite that shows rapid antidepressant-like effects in preclinical studies and lacks the adverse N-methyl-d-aspartate receptor (NMDAR) inhibition-related properties of ketamine. Investigating how (2R,6R)-HNK exerts its antidepressant actions may be informative in the design of novel pharmacotherapies with improved safety and efficacy. We sought to identify the molecular substrates through which (2R,6R)-HNK induces functional changes at excitatory synapses, a prevailing hypothesis for how rapid antidepressant effects are initiated. We recorded excitatory postsynaptic potentials in hippocampal slices from male Wistar Kyoto rats, which have impaired hippocampal plasticity and are resistant to traditional antidepressants. (2R,6R)-HNK (10 µM) led to a rapid potentiation of electrically evoked excitatory postsynaptic potentials at Schaffer collateral CA1 stratum radiatum synapses. This potentiation was associated with a decrease in paired pulse facilitation, suggesting an increase in the probability of glutamate release. The (2R,6R)-HNK-induced potentiation was blocked by inhibiting either cyclic adenosine monophosphate (cAMP) or its downstream target, cAMP-dependent protein kinase (PKA). As cAMP is a potent regulator of brain-derived neurotrophic factor (BDNF) release, we assessed whether (2R,6R)-HNK exerts this acute potentiation through a rapid increase in cAMP-dependent BDNF-TrkB signaling. We found that the cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the acute synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions in vivo. These results suggest that, by potentiating glutamate release via cAMP-PKA signaling, (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission that promote structural plasticity leading to maintained antidepressant action.NEW & NOTEWORTHY Ketamine is a rapid-acting antidepressant and its preclinical effects are mimicked by its (2R,6R)-(HNK) metabolite. We found that (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission by potentiating glutamate release via cAMP-PKA signaling at hippocampal Schaffer collateral synapses. This cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the rapid synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions that are thought to maintain antidepressant action in vivo.
Collapse
|
2
|
Yates JR, Broderick MR, Berling KL, Gieske MG, Osborn E, Nelson MR, Wright MR. Effects of adolescent methylphenidate administration on methamphetamine conditioned place preference in an animal model of attention-deficit/hyperactivity disorder: Examination of potential sex differences. Drug Alcohol Depend 2023; 252:110970. [PMID: 37748422 PMCID: PMC10615784 DOI: 10.1016/j.drugalcdep.2023.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Individuals with attention-deficit/hyperactivity disorder (ADHD) are more likely to be diagnosed with a substance use disorder; however, the effects of long-term psychostimulant treatment on addiction are mixed. Preclinical studies are useful for further elucidating the relationship between ADHD and addiction-like behaviors, but these studies have focused on male subjects only. The goal of the current study was to determine if early-life administration of methylphenidate (MPH) augments methamphetamine (METH) conditioned place preference (CPP) and/or potentiates reinstatement of CPP in both male and female rats. METHODS Male and female spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) received either MPH (1.5mg/kg; p.o.) or vehicle (1.0ml/kg) during adolescence (postnatal day [PND] ~29-57). Two weeks after cessation of MPH treatment, rats were tested for METH CPP (1.0mg/kg or 2.0mg/kg; s.c.). Rats were then given extinction sessions. Once rats met extinction criteria, they were tested for reinstatement of CPP following a priming injection of METH (0.25mg/kg; s.c.). RESULTS All groups developed METH CPP, except vehicle-treated SHR males and vehicle-treated WKY females conditioned with the higher dose of METH (2.0mg/kg). Female SHRs treated with MPH showed greater reinstatement of METH CPP compared to female SHRs treated with vehicle. Adolescent MPH treatment did not augment the locomotor-stimulant effects of METH in adulthood. CONCLUSIONS These results demonstrate the importance of considering biological sex when prescribing psychostimulant medications for ADHD as long-term MPH administration may increase the risk of continued drug use in females with ADHD following a period of abstinence.
Collapse
|
3
|
Rha EY, Kim JW, Kim JH, Yoo G. Angiotensin-Converting Enzyme Inhibitor, Captopril, Improves Scar Healing in Hypertensive Rats. Int J Med Sci 2021; 18:975-983. [PMID: 33456355 PMCID: PMC7807183 DOI: 10.7150/ijms.50197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
Pathological cutaneous scars, with aberrant extracellular matrix accumulation, have multiple origins. Antihypertensive medications, such as calcium channel blockers, have been used to treat pathological scars. However, a relationship between angiotensin-converting enzyme (ACE) inhibitors, pathological scars, and blood pressure (BP) has never been reported. Here, we aimed to compare the differences in scar development and the effects of the administration of systemic ACE inhibitor on scar tissue in a normotensive rat, the Wistar Kyoto rat (WKY), a hypertensive rat, and the spontaneously hypertensive rat (SHR). Using an 8-mm punch, we created two full-thickness skin defects in a total of 32 rats (16 WKY and 16 SHR) to obtain a total of 64 wounds. We established control WKY (n = 16), captopril-treated WKY (n = 16), control SHR (n = 16), and captopril-treated SHR (n = 16) groups and started captopril (100 mg/g per day) treatment on day 21 in the appropriate groups. The BP of all groups was measured at 0, 3, and 5 weeks. The scar area was measured by histopathological examination, and scarring was expressed in terms of scar area and fibroblast and capillary counts. The expression of heat shock protein (HSP) 47, type I and III collagens, alpha-smooth muscle actin (α-SMA), Ki67, and vascular endothelial growth factor (VEGF) was investigated using immunohistochemistry. The scar area and fibroblast count were significantly higher in control SHR than in control WKY. The scar area, fibroblast count, and capillary count were significantly smaller in captopril-treated SHR than in control SHR. Immunostaining for α-SMA, Ki67, and VEGF also showed a noticeable decrease in scarring in the treated SHR compared with that in control SHR. Thus, BP affects scar development in a rat model, and an ACE inhibitor is more effective at reducing scars in hypertensive rats than in normotensive rats.
Collapse
|
4
|
Shupe EA, Glover ME, Unroe KA, Kerman IA, Clinton SM. Inborn differences in emotional behavior coincide with alterations in hypothalamic paraventricular motor projections. Eur J Neurosci 2020; 53:814-826. [PMID: 33249622 DOI: 10.1111/ejn.15065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022]
Abstract
Integrated behavioral responses to emotionally salient stimuli require the concomitant activation of descending neural circuits that integrate physiological, affective, and motor responses to stress. Our previous work interrogated descending circuits in the brainstem and spinal cord that project to motor and sympathetic targets. The hypothalamic paraventricular nucleus (PVN), a key node of this circuitry, integrates multiple motor and sympathetic responses activated by stress. The present study sought to determine whether descending projections from the PVN to targets in muscle and adrenal gland are differentially organized in rats with inborn differences in emotionality and stress responsivity. We utilized retrograde transsynaptic tract-tracing with unique pseudorabies virus (PRV) recombinants that were injected into sympathectomized gastrocnemius muscle and adrenal gland in two rat models featuring inborn differences in emotional behavior. Our tract-tracing results revealed a significant decrease in the number of PVN neurons with poly-synaptic projections to the gastrocnemius in male Wistar Kyoto [WKY] rats (versus Sprague Dawley rats) and selectively bred Low Novelty Responder [bLR] rats (versus selectively bred High Novelty Responder [bHR] rats). These neuroanatomical differences mirrored behavioral observations showing that both WKY and bLR rats display marked inhibition of emotional motor responses in a variety of settings relative to their respective controls. Our findings suggest that, in male rodents, PVN poly-synaptic projections to skeletal muscle may regulate emotional motor and coping responses to stress. More broadly, perturbations in PVN motor circuitry may play a role in mediating psychomotor disturbances observed in depression or anxiety-related disorders.
Collapse
|
5
|
Increased Notch2/NF-κB Signaling May Mediate the Depression Susceptibility: Evidence from Chronic Social Defeat Stress Mice and WKY Rats. Physiol Behav 2020; 228:113197. [PMID: 33017602 DOI: 10.1016/j.physbeh.2020.113197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023]
Abstract
The susceptibility to depression has been attributed to the chronic stress and genetic factors but still fails to identify definite biomarkers. The present study aimed to investigate the role of disrupted Notch signaling in the medial prefrontal cortex of the chronic social defeat stress (CSDS) mice and Wistar Kyoto (WKY) rats. RNA-sequencing and quantitative real-time PCR analyses evidenced the involvement of Notch signaling pathway in depression. Western blotting reported an increased level of Notch2 and NF-κB and a decreased level of Hes1 and Bcl2/Bax ratio both in the susceptible mice when compared with the control or resilient ones and in the depression WKY rats when compared with the Wistar or non-depression WKY groups. Further analysis showed that the above-mentioned changes were significantly correlated with the depression-like behaviors and that the elicited Notch2 strongly correlated with the upregulated NF-κB, not with the downregulated Hes1 or Bcl2/Bax ratio. In conclusion, the increased Notch2/NF-κB signaling in the medial prefrontal cortex may mediate depression susceptibility, providing a potential diagnostic biomarker or therapeutic target for treating major depressive disorder.
Collapse
|
6
|
Palmieri J, Spiegler KM, Pang KCH, Myers CE. Dataset of active avoidance in Wistar-Kyoto and Sprague Dawley rats: Experimental data and reinforcement learning model code and output. Data Brief 2020; 32:106074. [PMID: 32904157 PMCID: PMC7451822 DOI: 10.1016/j.dib.2020.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 10/30/2022] Open
Abstract
Data were collected from 40 Wistar-Kyoto (WKY) and 40 Sprague Dawley (SD) rats during an active escape-avoidance experiment. Footshock could be avoided by pressing a lever during a danger period prior to onset of shock. If avoidance did not occur, a series of footshocks was administered, and the rat could press a lever to escape (terminate shocks). For each animal, data were simplified to the presence or absence of lever press and stimuli in each 12-second time frame. Using the pre-processed dataset, a reinforcement learning (RL) model, based on an actor-critic architecture, was utilized to estimate several different model parameters that best characterized each rat's behaviour during the experiment. Once individual model parameters were determined for all 80 rats, behavioural recovery simulations were run using the RL model with each animal's "best-fit" parameters; the simulated behaviour generated avoidance data (percent of trials avoided during a given experimental session) that could be compared across simulated rats, as is customarily done with empirical data. The datasets representing both the experimental data and the model-generated data can be interpreted in various ways to gain further insight into rat behaviour during avoidance and escape learning. Furthermore, the estimated parameters for each individual rat can be compared across groups. Thus, possible between-strain differences in model parameters can be detected, which might provide insights into strain differences in learning. The software implementing the RL model can also be applied to or serve as a template for other experiments involving acquisition learning. Reference for Co-Submission: K.M. Spiegler, J. Palmieri, K.C.H. Pang, C.E. Myers, A reinforcement-learning model of active avoidance behavior: Differences between Sprague-Dawley and Wistar-Kyoto rats. Behav. Brain Res. (2020 Jun 22[epub ahead of print]) doi: 10.1016/j.bbr.2020.112784.
Collapse
|
7
|
Spiegler KM, Palmieri J, Pang KCH, Myers CE. A reinforcement-learning model of active avoidance behavior: Differences between Sprague Dawley and Wistar-Kyoto rats. Behav Brain Res 2020; 393:112784. [PMID: 32585299 DOI: 10.1016/j.bbr.2020.112784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/27/2022]
Abstract
Avoidance behavior is a typically adaptive response performed by an organism to avert harmful situations. Individuals differ remarkably in their tendency to acquire and perform new avoidance behaviors, as seen in anxiety disorders where avoidance becomes pervasive and inappropriate. In rodent models of avoidance, the inbred Wistar-Kyoto (WKY) rat demonstrates increased learning and expression of avoidance compared to the outbred Sprague Dawley (SD) rat. However, underlying mechanisms that contribute to these differences are unclear. Computational modeling techniques can help identify factors that may not be easily decipherable from behavioral data alone. Here, we utilize a reinforcement learning (RL) model approach to better understand strain differences in avoidance behavior. An actor-critic model, with separate learning rates for action selection (in the actor) and state evaluation (in the critic), was applied to individual data of avoidance acquisition from a large cohort of WKY and SD rats. Latent parameters were extracted, such as learning rate and subjective reinforcement value of foot shock, that were then compared across groups. The RL model was able to accurately represent WKY and SD avoidance behavior, demonstrating that the model could simulate individual performance. The model determined that the perceived negative value of foot shock was significantly higher in WKY than SD rats, whereas learning rate in the actor was lower in WKY than SD rats. These findings demonstrate the utility of computational modeling in identifying underlying processes that could promote strain differences in behavioral performance.
Collapse
|
8
|
Yamazato M, Nakamoto M, Sakima A, Yamazato Y, Takishita S, Ohya Y. Responsiveness of α2-adrenoceptor/I1-imidazoline receptor in the rostral ventrolateral medulla to cardiovascular regulation is enhanced in conscious spontaneously hypertensive rat. Clin Exp Hypertens 2018; 41:255-262. [PMID: 29764227 DOI: 10.1080/10641963.2018.1469641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Stimulation of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla decreases the blood pressure via sympathoinhibition. However, alteration of receptor responses in genetically hypertensive rats remains unclear. We examined cardiovascular responses of α2-adrenoceptor/I1-imidazoline receptor agonist and antagonists microinjected into the rostral ventrolateral medulla of conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Injection of 2-nmol clonidine-an α2-adrenoceptor/I1-imidazoline receptor agonist-unilaterally into the rostral ventrolateral medulla decreased the blood pressure, heart rate, and renal sympathetic nerve activity; the responses were significantly enhanced in spontaneously hypertensive rats than in Wistar Kyoto rats. Co-injection of 2-nmol 2-methoxyidazoxan (a selective α2-adrenoceptor antagonist) or 2-nmol efaroxan (an I1-receptor antagonist) with 2 nmol of clonidine attenuated the hypotensive and bradycardic effects of clonidine-only injection. Injection of 2-methoxyidazoxan alone increased the blood pressure and heart rate in spontaneously hypertensive rats, but not in Wistar Kyoto rats. These results suggest enhanced responsiveness of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats.
Collapse
|
9
|
Kin K, Yasuhara T, Kameda M, Agari T, Sasaki T, Morimoto J, Okazaki M, Umakoshi M, Kuwahara K, Kin I, Tajiri N, Date I. Hippocampal neurogenesis of Wistar Kyoto rats is congenitally impaired and correlated with stress resistance. Behav Brain Res 2017; 329:148-156. [PMID: 28465137 DOI: 10.1016/j.bbr.2017.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/17/2017] [Accepted: 04/22/2017] [Indexed: 12/28/2022]
Abstract
The hippocampus is thought to be an important region for depression. However, the relationship between hippocampal neurogenesis and depression is still controversial. Wistar Kyoto (WKY) rats are frequently used as a depression model. WKY rats are known to show physiologically abnormal features, and these features resemble abnormalities seen in depressed patients. However, the neurogenesis of WKY rats is still unknown. In this study, we first evaluated the neurogenesis of WKY rats and compared it to that of Wistar (WIS) rats. No strain effect was observed in the number of cells positive for 5-bromo-2'-deoxyuridine (BrdU) and BrdU/Doublecortin (Dcx) in the subventricular zone (SVZ). However, the number of BrdU- and BrdU/Dcx-positive cells in the dentate gyrus (DG) of the hippocampus was significantly lower in WKY rats than in WIS rats. Next, we evaluated the correlation between neurogenesis and behavior tests. Behavior tests did not affect neurogenesis in either strain. Hippocampal neurogenesis correlated negatively with the results of a forced swim test (FST) on day 2 in each strain. That is, rats with a lower level of native neurogenesis in the DG showed a higher level of learned helplessness induced by the inescapable stress of the FST on day 1. Our findings indicate that hippocampal neurogenesis in WKY rats is congenitally impaired in contrast to that in WIS rats. Native cell proliferation and neurogenesis in the DG are correlated with stress resistance. These findings may be useful for developing new targets for depression treatment.
Collapse
|
10
|
Changes in liver proteins of rats fed standard and high-fat and sucrose diets induced by fish omega-3 PUFAs and their combination with grape polyphenols according to quantitative proteomics. J Nutr Biochem 2016; 41:84-97. [PMID: 28064013 DOI: 10.1016/j.jnutbio.2016.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/05/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
This study considered the physiological modulation of liver proteins due to the supplementation with fish oils under two dietary backgrounds: standard or high in fat and sucrose (HFHS), and their combination with grape polyphenols. By using a quantitative proteomics approach, we showed that the capacity of the supplements for regulating proteins depended on the diet; namely, 10 different proteins changed into standard diets, while 45 changed into the HFHS diets and only scarcely proteins were found altered in common. However, in both contexts, fish oils were the main regulatory force, although the addition of polyphenols was able to modulate some fish oils' effects. Moreover, we demonstrated the ability of fish oils and their combination with grape polyphenols in improving biochemical parameters and reducing lipogenesis and glycolysis enzymes, enhancing fatty acid beta-oxidation and insulin signaling and ameliorating endoplasmic reticulum stress and protein oxidation when they are included in an unhealthy diet.
Collapse
|
11
|
Feng P, Akladious AA, Hu Y. Hippocampal and motor fronto-cortical neuroligin1 is increased in an animal model of depression. Psychiatry Res 2016; 243:210-8. [PMID: 27423632 DOI: 10.1016/j.psychres.2016.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/09/2016] [Accepted: 06/26/2016] [Indexed: 01/04/2023]
Abstract
Neuroligins (NLGNs) regulate synaptic excitability, neuronal signaling and sleep. We hypothesize that alteration of NLGNs is involved in the pathology of depression and tested the hypothesis in a model of depression using Wistar Kyoto (WKy) rat and its control, the Wistar (Wis) rat. We first evaluated behavioral deficits using the forced swim test and then characterized alterations of NLGN1 and NLGN2 with RT-PCR and Western Blotting in the prefrontal cortex, motor frontal cortex and hippocampus. Compared with controls of Wis rats, (1) the WKy rats had significantly shorter swim time and longer immobile time; (2) NLGN1 mRNA levels was higher in the motor frontal cortex and hippocampus in the WKy model; (3) NLGN1 protein was significantly higher in the motor frontal cortex, the prefrontal cortex and the hippocampus in the WKy model; (4) NLGN2 mRNA was significantly higher in the motor frontal cortex but significantly lower in the hippocampus in the WKy model. We concluded that NLGN1 gene and protein expression is higher in the motor frontal cortex, hippocampus and in the prefrontal cortex in the WKy rats suggesting that alterations of NLGN1 is involved in the pathology of depression but need to be further evaluated in human.
Collapse
|
12
|
Dysfunction in amygdala-prefrontal plasticity and extinction-resistant avoidance: A model for anxiety disorder vulnerability. Exp Neurol 2015; 275 Pt 1:59-68. [PMID: 26546833 DOI: 10.1016/j.expneurol.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/17/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Individuals exhibiting an anxiety disorder are believed to possess an innate vulnerability that makes them susceptible to the disorder. Anxiety disorders are also associated with abnormalities in the interconnected brain regions of the amygdala and prefrontal cortex (PFC). However, the link between anxiety vulnerability and amygdala-PFC dysfunction is currently unclear. Accordingly, the present study sought to determine if innate dysfunction within the amygdala to PFC projection underlies the susceptibility to develop anxiety-like behavior, using an anxiety vulnerable rodent model. The inbred Wistar Kyoto (WKY) rat was used to model vulnerability, as this strain naturally expresses extinction-resistant avoidance; a behavior that models the symptom of avoidance present in anxiety disorders. Synaptic plasticity was assessed within the projection from the basolateral nucleus of the amygdala (BLA) to the prelimbic cortical subdivision of the PFC in WKY and Sprague Dawley (SD) rats. While WKY rats exhibited normal paired-pulse plasticity, they did not maintain long-term potentiation (LTP) as SD rats. Thus, impaired plasticity within the BLA-PL cortex projection may contribute to extinction resistant avoidance of WKY, as lesions of the PL cortex in SD rats impaired extinction of avoidance similar to WKY rats. Treatment with d-cycloserine to reverse the impaired LTP in WKY rats was unsuccessful. The lack of LTP in WKY rats was associated with a significant reduction of NMDA receptors containing NR2A subunits in the PL cortex. Thus, dysfunction in amygdala-PFC plasticity is innate in anxiety vulnerable rats and may promote extinction-resistant avoidance by disrupting communication between the amygdala and prefrontal cortex.
Collapse
|
13
|
Antidepressant-like effects of buprenorphine in rats are strain dependent. Behav Brain Res 2014; 278:385-92. [PMID: 25453747 DOI: 10.1016/j.bbr.2014.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/06/2014] [Accepted: 10/11/2014] [Indexed: 01/01/2023]
Abstract
The prevalence of major depressive disorder and the limited efficacy of conventional drug treatments provide significant impetus to develop novel and more rapidly acting antidepressants for individuals with treatment resistant forms of depression. The primary goal of these studies was to ascertain whether buprenorphine (BPN), a medically available drug with mixed effects at opioid receptors, was effective in behavioral tests using the Wistar Kyoto (WKY) rat strain, a rodent model of exaggerated depressive and anxiety behaviors that demonstrates resistance to certain antidepressants. As WKY rats are maintained by different sources, we assessed the behavioral effects of BPN using the modified rat forced swim test (FST) and the emergence test in WKY rat colonies obtained from different vendors. BPN dose-dependently reduced immobility and increased swimming behavior in the FST and reduced emergence latencies in two WKY lines (Charles River (WKY/NCrl) and Harlan laboratories (WKY/NHsd)) that also showed high baseline immobility in the FST. WKY rats from Taconic (WKY/NTac) did not show high baseline immobility in the FST or anxiety as had been previously reported, suggesting a drift in the phenotype of rats from this supplier. Furthermore, BPN did not reduce immobility in the FST or reduce latencies in the emergence test in WKY rats from Taconic. BPN also failed to produce antidepressant-like effects in Wistar and Sprague-Dawley rats. These results indicate a striking strain-selectivity for the effects of BPN, producing antidepressant and anxiolytic-like responses in WKY/NCrl and WKY/NHsd lines but not in the normosensitive control Wistar and Sprague-Dawley strains.
Collapse
|
14
|
Catuzzi JE, Beck KD. Anxiety vulnerability in women: a two-hit hypothesis. Exp Neurol 2014; 259:75-80. [PMID: 24518489 DOI: 10.1016/j.expneurol.2014.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 01/04/2023]
Abstract
Females are twice as likely to develop an anxiety disorder compared to males, and thus, are believed to possess an innate vulnerability that increases their susceptibility to develop an anxiety disorder. However, studies using aversive learning paradigms to model anxiety disorders in humans and animals have revealed contradictory results. While females exhibit the ability to rapidly acquire stimulus-response associations, which may result from a greater attentional bias towards threat, females are also capable to readily extinguish these associations. Thus, there is little evidence to suggest that the female sex represents a vulnerability factor of anxiety, per se. However, if females are to possess a second vulnerability factor that increases the inflexibility of stimulus-response associations, then an anxiety disorder may be more likely to develop. Behavioral inhibition (BI) is a vulnerability factor associated with the formation of inflexible stimulus-response associations. In this "two hit" model of anxiety vulnerability, females possessing a BI temperament will rapidly acquire stimulus-response associations that are resistant to extinction, resulting in the development of an anxiety disorder. In this review we explore evidence for a "two-hit" hypothesis underlying anxiety vulnerability in females. We explore the literature for evidence of a sex difference in attentional bias towards threat that may lead to the facilitated acquisition of stimulus-response associations in females. We also provide evidence that BI is associated with inflexible stimulus-response association formation. We conclude with data generated from our laboratory that highlights the additive effect of the female sex and behavioral inhibition vulnerabilities using a model behavior for anxiety disorder-susceptibility, active avoidance.
Collapse
|
15
|
Chien SJ, Lin KM, Kuo HC, Huang CF, Lin YJ, Huang LT, Tain YL. Two different approaches to restore renal nitric oxide and prevent hypertension in young spontaneously hypertensive rats: l-citrulline and nitrate. Transl Res 2014; 163:43-52. [PMID: 24113064 DOI: 10.1016/j.trsl.2013.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) deficiency mediates oxidative stress in the kidney and is involved in the development of hypertension. NO synthesis occurs via 2 pathways: nitric oxide synthase (NOS) dependent and NOS-independent. We tested whether the development of hypertension is prevented by restoration of NO by dietary l-citrulline or nitrate supplementation in young spontaneously hypertensive rats (SHRs). Male SHRs and normotensive Wistar Kyoto control rats (WKYs)s age 4 weeks were assigned to 4 groups: untreated SHRs and WKYs, and SHRs and WKYs that received 0.25% l-citrulline for 8 weeks. In our second series of studies, we replaced l-citrulline with 1 mmol/kg/d sodium nitrate. All rats were sacrificed at age 12 weeks. We found an increase in the blood pressure of SHRs was prevented by dietary supplementation of l-citrulline or nitrate. Both treatments restored NO bioavailability and reduced oxidative stress in SHR kidneys. l-Citrulline therapy reduced levels of l-arginine and asymmetric dimethylarginine (ADMA)-an endogenous inhibitor of NOS-and increased the l-arginine-to-ADMA ratio in SHR kidneys. Nitrate treatment reduced plasma levels of l-arginine and ADMA concurrently in SHRs. Our findings suggest that both NOS-dependent and -independent approaches in the prehypertensive stage toward augmentation of NO can prevent the development of hypertension in young SHRs.
Collapse
|
16
|
Identification of SLC26A transporters involved in the Cl⁻/HCO₃⁻ exchange in proximal tubular cells from WKY and SHR. Life Sci 2013; 93:435-40. [PMID: 23933130 DOI: 10.1016/j.lfs.2013.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
AIMS slc26a proteins are responsible for a large number of functions either in normal physiology or in human disease. We have previously reported that proximal tubular epithelial (PTE) cells immortalized from spontaneously hypertensive rats (SHRs) were endowed with increased Cl(-)/HCO3(-) exchanger activity and slc26a6 protein expression compared with PTE cells immortalized from normotensive Wistar Kyoto (WKY) rats. The aim of the present study was to identify slc26a members responsible for the Cl(-)/HCO3(-) exchange in WKY and SHR PTE cells. MAIN METHODS Cl(-)/HCO3(-) exchanger activity was assessed as the initial rate of pHi recovery after removal of HCO3(-) or after removal of Cl(-). The presence of slc26a genes was evaluated by means of reverse transcriptase-PCR (RT-PCR) in WKY and SHR PTE cell lines and in the kidney of WKY and SHR. Transcript abundance was measured by quantitative real-time polymerase chain reaction (PCR). KEY FINDINGS We detected slc26a4, slc26a6, slc26a7 and slc26a9 transcripts in the rat kidney of WKY and SHR. In WKY and SHR PTE cell lines we detected slc26a4, slc26a6 and slc26a9 transcripts, which were, respectively, 12-, 4- and 15-fold upregulated in SHR cells. Gene silencing with small interfering RNAs (siRNAs) targeting slc26a4, slc26a6 and slc26a9 reduced Cl(-)/HCO3(-) exchanger activity in both cell lines. SIGNIFICANCE These results indicate that Cl(-)/HCO3(-) exchanger activity is mediated by, at least in part, slc26a4, slc26a6 and slc26a9 in cultured WKY and SHR cells. The overexpression of these slc26a members in SHR cells may correspond to an adaptive process to cope with the sustained increase in proximal tubular sodium reabsorption.
Collapse
|
17
|
O' Mahony SM, Clarke G, McKernan DP, Bravo JA, Dinan TG, Cryan JF. Differential visceral nociceptive, behavioural and neurochemical responses to an immune challenge in the stress-sensitive Wistar Kyoto rat strain. Behav Brain Res 2013; 253:310-7. [PMID: 23872358 DOI: 10.1016/j.bbr.2013.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 01/08/2023]
Abstract
A highly regulated crosstalk exists between the immune and neuroendocrine systems with the altered immune responses in stress-related disorders being a valid example of this interaction. The Wister Kyoto (WKY) rat is an animal model with a genetic predisposition towards an exaggerated stress response and is used to study disorders such as depression and irritable bowel syndrome (IBS), where stress plays a substantial role. The impact of a lipopolysaccride (LPS) immune challenge has not yet been investigated in this animal model to date. Hence our aim was to assess if the stress susceptible genetic background of the WKY rat was associated with a differential response to an acute immune challenge. Central and peripheral parameters previously shown to be altered by LPS administration were assessed. Under baseline conditions, WKY rats displayed visceral hypersensitivity compared to Sprague Dawley (SD) control rats. However, only SD rats showed an increase in visceral sensitivity following endotoxin administration. The peripheral immune response to the LPS was similar in both strains whilst the central neurochemistry was blunted in the WKY rats. Sickness behaviour was also abrogated in the WKY rats. Taken together, these data indicate that the genetic background of the WKY rat mitigates the response to infection centrally, but not peripherally. This implies that heightened stress-susceptibility in vulnerable populations may compromise the coordinated CNS response to peripheral immune activation.
Collapse
|
18
|
Gomes P, Simão S, Silva E, Pinto V, Amaral JS, Afonso J, Serrão MP, Pinho MJ, Soares-da-Silva P. Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:138-45. [PMID: 20592768 PMCID: PMC2763239 DOI: 10.4161/oxim.2.3.8819] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/22/2009] [Accepted: 04/22/2009] [Indexed: 01/25/2023]
Abstract
The aim of this study was to investigate whether the effects of aging on oxidative stress markers and expression of major oxidant and antioxidant enzymes associate with impairment of renal function and increases in blood pressure. To explore this, we determined age-associated changes in lipid peroxidation (urinary malondialdehyde), plasma and urinary hydrogen peroxide (H2O2) levels, as well as renal H2O2 production, and the expression of oxidant and antioxidant enzymes in young (13 weeks) and old (52 weeks) male Wistar Kyoto (WKY) rats. Urinary lipid peroxidation levels and H2O2 production by the renal cortex and medulla of old rats were higher than their young counterparts. This was accompanied by overexpression of NADPH oxidase components Nox4 and p22phox in the renal cortex of old rats. Similarly, expression of superoxide dismutase (SOD) isoforms 2 and 3 and catalase were increased in the renal cortex from old rats. Renal function parameters (creatinine clearance and fractional excretion of sodium), diastolic blood pressure and heart rate were not affected by aging, although slight increases in systolic blood pressure were observed during this 52-week period. It is concluded that overexpression of renal Nox4 and p22phox and the increases in renal H2O2 levels in aged WKY does not associate with renal functional impairment or marked increases in blood pressure. It is hypothesized that lack of oxidative stress-associated effects in aged WKY rats may result from increases in antioxidant defenses that counteract the damaging effects of H2O2.
Collapse
|