1
|
Harb J, Lin PJ, Hao J. Recent Development of Wnt Signaling Pathway Inhibitors for Cancer Therapeutics. Curr Oncol Rep 2019; 21:12. [PMID: 30715618 DOI: 10.1007/s11912-019-0763-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Review current understanding of both canonical and non-canonical Wnt signaling in cancer and provide updated knowledge in current clinical trials of Wnt signaling drugs. RECENT FINDINGS Important roles of both canonical and non-canonical Wnt signaling in cancer have been increasingly recognized. Recent clinical trials of several Wnt-signaling drugs have showed promising outcomes. In addition, some drugs that were originally approved for the treatment of other diseases have been recently found to block Wnt signaling, highlighting their potential to treat Wnt-dependent cancer. Dysfunction of Wnt signaling is implicated in cancer, and targeting Wnt signaling represents a useful approach to treat cancer. Current clinical trials of Wnt signaling drugs have showed promising outcomes, and repurposing the previously approved drugs for other diseases to treat Wnt-dependent cancer requires further studies.
Collapse
|
Review |
6 |
99 |
2
|
Kaucka M, Zikmund T, Tesarova M, Gyllborg D, Hellander A, Jaros J, Kaiser J, Petersen J, Szarowska B, Newton PT, Dyachuk V, Li L, Qian H, Johansson AS, Mishina Y, Currie JD, Tanaka EM, Erickson A, Dudley A, Brismar H, Southam P, Coen E, Chen M, Weinstein LS, Hampl A, Arenas E, Chagin AS, Fried K, Adameyko I. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. eLife 2017; 6. [PMID: 28414273 PMCID: PMC5417851 DOI: 10.7554/elife.25902] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022] Open
Abstract
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale. DOI:http://dx.doi.org/10.7554/eLife.25902.001
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
40 |
3
|
Roszko I, S Sepich D, Jessen JR, Chandrasekhar A, Solnica-Krezel L. A dynamic intracellular distribution of Vangl2 accompanies cell polarization during zebrafish gastrulation. Development 2015; 142:2508-20. [PMID: 26062934 DOI: 10.1242/dev.119032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
Abstract
During vertebrate gastrulation, convergence and extension movements elongate embryonic tissues anteroposteriorly and narrow them mediolaterally. Planar cell polarity (PCP) signaling is essential for mediolateral cell elongation underlying these movements, but how this polarity arises is poorly understood. We analyzed the elongation, orientation and migration behaviors of lateral mesodermal cells undergoing convergence and extension movements in wild-type zebrafish embryos and mutants for the Wnt/PCP core component Vangl2 (Trilobite). We demonstrate that Vangl2 function is required at the time when cells transition to a highly elongated and mediolaterally aligned body. vangl2 mutant cells fail to undergo this transition and to migrate along a straight path with high net speed towards the dorsal midline. Instead, vangl2 mutant cells exhibit an anterior/animal pole bias in cell body alignment and movement direction, suggesting that PCP signaling promotes effective dorsal migration in part by suppressing anterior/animalward cell polarity and movement. Endogenous Vangl2 protein accumulates at the plasma membrane of mesenchymal converging cells at the time its function is required for mediolaterally polarized cell behavior. Heterochronic cell transplantations demonstrated that Vangl2 cell membrane accumulation is stage dependent and regulated by both intrinsic factors and an extracellular signal, which is distinct from PCP signaling or other gastrulation regulators, including BMP and Nodals. Moreover, mosaic expression of fusion proteins revealed enrichment of Vangl2 at the anterior cell edges of highly mediolaterally elongated cells. These results demonstrate that the dynamic Vangl2 intracellular distribution is coordinated with and necessary for the changes in convergence and extension cell behaviors during gastrulation.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
33 |
4
|
Muñoz FJ, Godoy JA, Cerpa W, Poblete IM, Huidobro-Toro JP, Inestrosa NC. Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochem Biophys Res Commun 2014; 444:189-94. [PMID: 24440698 DOI: 10.1016/j.bbrc.2014.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Wnt signaling has a crucial role in synaptic function at the central nervous system. Here we evaluate whether Wnts affect nitric oxide (NO) generation in hippocampal neurons. We found that non-canonical Wnt-5a triggers NO production; however, Wnt-3a a canonical ligand did not exert the same effect. Co-administration of Wnt-5a with the soluble Frizzled related protein-2 (sFRP-2) a Wnt antagonist blocked the NO production. Wnt-5a activates the non-canonical Wnt/Ca(2+) signaling through a mechanism that depends on Ca(2+) release from Ryanodine-sensitive internal stores. The increase in NO levels evoked by Wnt-5a promotes the insertion of the GluN2B subunit of the NMDA receptor (NMDAR) into the neuronal cell surface. To the best of our knowledge, this is the first time that Wnt-5a signaling is related to NO production, which in turn increases NMDARs trafficking to the cell surface.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
26 |
5
|
Pan Y, Guo X, Yang Z, Chen S, Lei Y, Lin M, Wang L, Feng C, Ke Z. AEG-1 activates Wnt/PCP signaling to promote metastasis in tongue squamous cell carcinoma. Oncotarget 2016; 7:2093-104. [PMID: 26689985 PMCID: PMC4811518 DOI: 10.18632/oncotarget.6573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Despite advances in therapy, survival among patients with locally advanced squamous cell carcinoma of tongue (TSCC) and cervical lymph node metastasis remains dismal. Here, we estimated the functional effect of AEG-1 on TSCC metastasis and explored the molecular mechanism by which AEG-1 stimulates epithelial-mesenchymal transition (EMT). We initially found that AEG-1 mRNA levels were much higher in metastatic TSCC than in non-metastatic TSCC and that AEG-1 expression strongly correlates with EMT status. Receiver operating characteristic analysis showed that the combined AEG-1 and EMT statuses are predictive of the survival rate among TSCC patients. In addition, AEG-1 knockdown inhibited EMT in cultured TSCC cell lines and in a xenograft-mouse model. Recombinant AEG-1 activated Wnt/PCP-Rho signaling, and its stimulatory effects on TSCC cell invasiveness and EMT were reversed by an anti-Wnt5a neutralizing antibody or by inhibition of Rac1 or ROCK. These results highlight the critical stimulatory effect of AEG-1 on cancer cell invasiveness and EMT and indicate that AEG-1 may be a useful prognostic biomarker for TSCC patients.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
24 |
6
|
Sepich DS, Solnica-Krezel L. Intracellular Golgi Complex organization reveals tissue specific polarity during zebrafish embryogenesis. Dev Dyn 2016; 245:678-91. [PMID: 27043944 DOI: 10.1002/dvdy.24409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cell polarity is essential for directed migration of mesenchymal cells and morphogenesis of epithelial tissues. Studies in cultured cells indicate that a condensed Golgi Complex (GC) is essential for directed protein trafficking to establish cell polarity underlying directed cell migration. Dynamic changes of the GC intracellular organization during early vertebrate development remain to be investigated. RESULTS We used antibody labeling and fusion proteins in vivo to study the organization and intracellular placement of the GC during early zebrafish embryogenesis. We found that the GC was dispersed into several puncta containing cis- and trans-Golgi Complex proteins, presumably ministacks, until the end of the gastrula period. By early segmentation stages, the GC condensed in cells of the notochord, adaxial mesoderm, and neural plate, and its intracellular position became markedly polarized away from borders between these tissues. CONCLUSIONS We find that GC is dispersed in early zebrafish cells, even when cells are engaged in massive gastrulation movements. The GC accumulates into patches in a stage and cell-type specific manner, and becomes polarized away from borders between the embryonic tissues. With respect to tissue borders, intracellular GC polarity in notochord is independent of mature apical/basal polarity, Wnt/PCP, or signals from adaxial mesoderm. Developmental Dynamics 245:678-691, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
10 |
7
|
Shi DL. Decoding Dishevelled-Mediated Wnt Signaling in Vertebrate Early Development. Front Cell Dev Biol 2020; 8:588370. [PMID: 33102490 PMCID: PMC7554312 DOI: 10.3389/fcell.2020.588370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Dishevelled proteins are key players of Wnt signaling pathways. They transduce Wnt signals and perform cellular functions through distinct conserved domains. Due to the presence of multiple paralogs, the abundant accumulation of maternal transcripts, and the activation of distinct Wnt pathways, their regulatory roles during vertebrate early development and the mechanism by which they dictate the pathway specificity have been enigmatic and attracted much attention in the past decades. Extensive studies in different animal models have provided significant insights into the structure-function relationship of conserved Dishevelled domains in Wnt signaling and the implications of Dishevelled isoforms in early developmental processes. Notably, intra- and inter-molecular interactions and Dishevelled dosage may be important in modulating the specificity of Wnt signaling. There are also distinct and redundant functions among Dishevelled isoforms in development and disease, which may result from differential spatiotemporal expression patterns and biochemical properties and post-translational modifications. This review presents the advances and perspectives in understanding Dishevelled-mediated Wnt signaling during gastrulation and neurulation in vertebrate early embryos.
Collapse
|
Review |
5 |
9 |
8
|
Kumar R, Ciprianidis A, Theiß S, Steinbeißer H, Kaufmann LT. Nemo-like kinase 1 (Nlk1) and paraxial protocadherin (PAPC) cooperatively control Xenopus gastrulation through regulation of Wnt/planar cell polarity (PCP) signaling. Differentiation 2016; 93:27-38. [PMID: 27875771 DOI: 10.1016/j.diff.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022]
Abstract
The Wnt/planar cell polarity (PCP) pathway directs cell migration during vertebrate gastrulation and is essential for proper embryonic development. Paraxial protocadherin (PAPC, Gene Symbol pcdh8.2) is an important activator of Wnt/PCP signaling during Xenopus gastrulation, but how PAPC activity is controlled is incompletely understood. Here we show that Nemo-like kinase 1 (Nlk1), an atypical mitogen-activated protein (MAP) kinase, physically associates with the C-terminus of PAPC. This interaction mutually stabilizes both proteins by inhibiting polyubiquitination. The Nlk1 mediated stabilization of PAPC is essential for Wnt/PCP signaling, tissue separation and gastrulation movements. We identified two conserved putative phosphorylation sites in the PAPC C-terminus that are critical for Nlk1 mediated PAPC stabilization and Wnt/PCP regulation. Intriguingly, the kinase activity of Nlk1 itself was not essential for its cooperation with PAPC, suggesting an indirect regulation for example by impeding a different kinase that promotes protein degradation. Overall these results outline a novel, kinase independent role of Nlk1, wherein Nlk1 regulates PAPC stabilization and thereby controls gastrulation movements and Wnt/PCP signaling during development.
Collapse
|
Journal Article |
9 |
4 |
9
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
|
Review |
4 |
3 |
10
|
Roberts ER, Ganeshkumar S, Gunewardena S, Chennathukuzhi V. Loss of PRICKLE1 leads to subfertility, aberrant extracellular matrix and abnormal myometrial architecture in mice. Reproduction 2025; 169:e240344. [PMID: 39679867 PMCID: PMC11883868 DOI: 10.1530/rep-24-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
In brief PRICKLE1, a WNT/planar cell polarity (PCP) protein that is downregulated in uterine leiomyoma, plays an important role in myometrial tissue architecture and extracellular matrix (ECM) deposition. This paper shows that myometrial-specific ablation of the mouse Prickle1 gene results in a uterine leiomyoma phenotype. Abstract Uterine leiomyomas (ULs) are the most prevalent benign tumors of the female reproductive tract, originating from the myometrium and affecting over 75% of reproductive-age women. Symptoms of UL include pelvic pain, pressure, dysmenorrhea, menorrhagia, anemia and reproductive dysfunction. Currently, there is no effective long-term pharmacotherapy for UL, making them the leading cause of hysterectomies in the United States. The lack of treatment options is attributed to the absence of accurate animal models and a limited understanding of UL pathogenesis. Previous research has shown that the loss of repressor of element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) within the myometrium promotes UL pathogenesis. In addition, deletion of Rest in the mouse myometrium leads to a UL phenotype. PRICKLE1, also known as Rest-interacting LIM-domain protein (RILP), is required for nuclear localization of REST and Wnt/PCP signaling, making it a critical target for UL studies. In the context of PCP, smooth muscle cells in UL show abnormal organization, aberrant ECM structure and expression levels, potentially influenced by PRICKLE1 loss. The exact role of PRICKLE1 and Wnt/PCP in UL pathogenesis remains unclear. To explore PRICKLE1's role in UL, we deleted Prickle1 using our myometrial-specific iCre. Our findings demonstrate that Prickle1 loss in the myometrium results in a UL phenotype characterized by altered collagen expression, excessive ECM deposition, aberrant smooth muscle cell organization, increased Esr1 and Pgr expression and dysregulated Wnt/PCP signaling. This novel mouse model serves as a valuable preclinical tool for understanding UL pathogenesis and developing future pharmacotherapies.
Collapse
|
research-article |
1 |
|
11
|
Cordero-Varela JA, Reyes-Corral M, Lao-Pérez M, Fernández-Santos B, Montenegro-Elvira F, Sempere L, Ybot-González P. Analysis of Gut Characteristics and Microbiota Changes with Maternal Supplementation in a Neural Tube Defect Mouse Model. Nutrients 2023; 15:4944. [PMID: 38068802 PMCID: PMC10708240 DOI: 10.3390/nu15234944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Adequate nutrient supply is crucial for the proper development of the embryo. Although nutrient supply is determined by maternal diet, the gut microbiota also influences nutrient availability. While currently there is no cure for neural tube defects (NTDs), their prevention is largely amenable to maternal folic acid and inositol supplementation. The gut microbiota also contributes to the production of these nutrients, which are absorbed by the host, but its role in this context remains largely unexplored. In this study, we performed a functional and morphological analysis of the intestinal tract of loop-tail mice (Vangl2 mutants), a mouse model of folate/inositol-resistant NTDs. In addition, we investigated the changes in gut microbiota using 16S rRNA gene sequencing regarding (1) the host genotype; (2) the sample source for metagenomics analysis; (3) the pregnancy status in the gestational window of neural tube closure; (4) folic acid and (5) D-chiro-inositol supplementation. We observed that Vangl2+/Lp mice showed no apparent changes in gastrointestinal transit time or fecal output, yet exhibited increased intestinal length and cecal weight and gut dysbiosis. Moreover, our results showed that the mice supplemented with folic acid and D-chiro-inositol had significant changes in their microbiota composition, which are changes that could have implications for nutrient absorption.
Collapse
|
research-article |
2 |
|
12
|
Fang K, Pishva E, Piers T, Scholpp S. Amyloid-β can activate JNK signalling via WNT5A-ROR2 to reduce synapse formation in Alzheimer's disease. J Cell Sci 2025; 138:JCS263526. [PMID: 39907042 PMCID: PMC11832185 DOI: 10.1242/jcs.263526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Wnt signalling is an essential signalling system in neurogenesis, with a crucial role in synaptic plasticity and neuronal survival, processes that are disrupted in Alzheimer's disease (AD). Within this network, the Wnt/β-catenin pathway has been studied for its neuroprotective role, and this is suppressed in AD. However, the involvement of the non-canonical Wnt-planar cell polarity (Wnt/PCP) pathway in AD remains to be determined. This study investigates the role of ROR2, a Wnt/PCP co-receptor, in synaptogenesis. We demonstrate that WNT5A-ROR2 signalling activates the JNK pathway, leading to synapse loss in mature neurons. This effect mirrors the synaptotoxic actions of Aβ1-42 and DKK1, which are elevated in AD. Notably, blocking ROR2 and JNK mitigates Aβ1-42 and DKK1-induced synapse loss, suggesting their dependence on ROR2. In induced pluripotent stem cell (iPSC)-derived cortical neurons carrying a PSEN1 mutation, known to increase the Aβ42/40 ratio, we observed increased WNT5A-ROR2 clustering and reduced numbers of synapses. Inhibiting ROR2 or JNK partially rescued synaptogenesis in these neurons. These findings suggest that, unlike the Wnt/β-catenin pathway, the Wnt/PCP-ROR2 signalling pathway can operate in a feedback loop with Aβ1-42 to enhance JNK signalling and contribute to synapse loss in AD.
Collapse
|
research-article |
1 |
|
13
|
Roberts ER, Bhurke AV, Ganeshkumar S, Gunewardena S, Arora R, Chennathukuzhi VM. Loss of PRICKLE1 leads to abnormal endometrial epithelial architecture, decreased embryo implantation, and reduced fertility in mice. PNAS NEXUS 2025; 4:pgaf024. [PMID: 39917256 PMCID: PMC11801272 DOI: 10.1093/pnasnexus/pgaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Successful embryo implantation requires coordinated changes in the uterine luminal epithelium, including structural adaptations, apical-basal polarity shifts, intrauterine fluid resorption, and cellular communication. Planar cell polarity proteins, essential for cell organization, are understudied in the context of uterine physiology and implantation. PRICKLE proteins, components of PCP, are suggested to play critical roles in epithelial polarization and tissue morphogenesis. However, their function in the polarized unicellular layer of endometrial epithelium, which supports embryo implantation, is unknown. We developed an endometrial epithelial-specific knockout of mouse Prickle1 using Lactoferrin-iCre to investigate its role in uterine physiology. Prickle1 ablation in the endometrial epithelium of mice resulted in decreased embryo implantation by gestational day 4.5, leading to lower fertility. 3D imaging of the uterus revealed abnormal luminal folding, impaired luminal closure, and altered glandular length in mutant uteri. Additionally, we observed decreased aquaporin-2 expression, disrupted cellular architecture, and altered E-cadherin expression and localization in the mutant uterine epithelium. Evidence of epithelial-mesenchymal transition was found within luminal epithelial cells, further linking PRICKLE1 loss to uterine pathologies. Furthermore, altered polarity of cell division leading to incomplete cytokinesis and increase in binuclear or multinucleated cells suggests a crucial role for PRICKLE1 in the maintenance of epithelial architecture. Our findings highlight PRICKLE1's critical role in the planar cell polarity pathway within the uterus, revealing its importance in the molecular and cellular responses essential for successful pregnancy and fertility.
Collapse
|
research-article |
1 |
|
14
|
Shi DL. Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia. Cells 2024; 13:2116. [PMID: 39768206 PMCID: PMC11727252 DOI: 10.3390/cells13242116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis. Wnt/planar cell polarity signaling plays an important role in the biased orientation and rotational motion of motile cilia. The leftward fluid flow generated in the cavity of the left-right organizer is sensed by immotile cilia through complex mechanisms to trigger left-sided calcium signaling and lateralized gene expression pattern. Disrupted asymmetric positioning or impaired structure and function of cilia leads to randomized left-right axis determination, which is closely linked to laterality defects, particularly congenital heart disease. Despite of the formidable progress made in deciphering the critical contribution of cilia to establishing the left-right asymmetry, a strong challenge remains to understand how cilia generate and sense fluid flow to differentially activate gene expression across the left-right axis. This review analyzes mechanisms underlying the asymmetric morphogenesis and function of the left-right organizer in left-right axis formation. It also aims to identify important questions that are open for future investigations.
Collapse
|
Review |
1 |
|
15
|
Domínguez-Berzosa L, Cantarero L, Rodríguez-Sanz M, Tort G, Garrido E, Troya-Balseca J, Sáez M, Castro-Martínez XH, Fernandez-Lizarbe S, Urquizu E, Calvo E, López JA, Palomo T, Palau F, Hoenicka J. ANKK1 Is a Wnt/PCP Scaffold Protein for Neural F-ACTIN Assembly. Int J Mol Sci 2024; 25:10705. [PMID: 39409035 PMCID: PMC11477271 DOI: 10.3390/ijms251910705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The TaqIA polymorphism is a marker of both the Ankyrin Repeat and Kinase Domain containing I gene (ANKK1) encoding a RIP-kinase, and the DRD2 gene for the dopamine receptor D2. Despite a large number of studies of TaqIA in addictions and other psychiatric disorders, there is difficulty in interpreting this genetic phenomenon due to the lack of knowledge about ANKK1 function. In SH-SY5Y neuroblastoma models, we show that ANKK1 interacts with the synapse protein FERM ARH/RhoGEF and Pleckstrin Domain 1 (FARP1), which is a guanine nucleotide exchange factor (GEF) of the RhoGTPases RAC1 and RhoA. ANKK1-FARP1 colocalized in F-ACTIN-rich structures for neuronal maturation and migration, and both proteins activate the Wnt/PCP pathway. ANKK1, but not FARP1, promotes neuritogenesis, and both proteins are involved in neuritic spine outgrowth. Notably, the knockdown of ANKK1 or FARP1 affects RhoGTPases expression and neural differentiation. Additionally, ANKK1 binds WGEF, another GEF of Wnt/PCP, regulating its interaction with RhoA. During neuronal differentiation, ANKK1-WGEF interaction is downregulated, while ANKK1-FARP1 interaction is increased, suggesting that ANKK1 recruits Wnt/PCP components for bidirectional control of F-ACTIN assembly. Our results suggest a brain structural basis in TaqIA-associated phenotypes.
Collapse
|
research-article |
1 |
|
16
|
Zhao M, Chen S. The role of VANGL2 in glioma oncogenesis and progression: insights into expression profiles and prognostic relevance. Front Oncol 2025; 14:1527226. [PMID: 39871948 PMCID: PMC11770008 DOI: 10.3389/fonc.2024.1527226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025] Open
Abstract
Introduction The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development. Methods A systematic analysis was conducted to assess VANGL2 expression patterns at both transcriptional and proteomic levels. Functional enrichment analysis was performed to investigate the biological pathways associated with VANGL2 in glioma. In vitro experiments were conducted to assess the impact of VANGL2 on glioma cell behaviors. Furthermore, rigorous methodologies were employed in survival analysis to control for confounding factors. Results We identified substantial upregulation of VANGL2 gene in both low-grade glioma (LGG) and glioblastoma (GBM). Functional enrichment analysis of genes positively associated with VANGL2 in glioma underscored their enrichment in Notch signaling and pathway regulating pluripotency of stem cells. In vitro experiments further confirmed that VANGL2 promotes glioma cell migration, invasion, proliferation, and tumor sphere formation. We identified a significant correlation between increased VANGL2 expression and IDH mutation in glioma patients. Elevated VANGL2 expression was identified as a predictor of poor prognosis in glioma. Conclusion Our analysis of the expression and prognostic features of the core PCP gene VANGL2 underscored its critical roles in glioma oncogenesis and progression.
Collapse
|
research-article |
1 |
|