1
|
Abstract
The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis.
Collapse
|
Review |
7 |
521 |
2
|
Shang S, Hua F, Hu ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 2017; 8:33972-33989. [PMID: 28430641 PMCID: PMC5464927 DOI: 10.18632/oncotarget.15687] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved and versatile pathway that is known to be involved in embryonic development, tissue homeostasis and a wide variety of human diseases. Aberrant activation of this pathway gives rise to the accumulation of β-catenin in the nucleus and promotes the transcription of many oncogenes such as c-Myc and CyclinD-1. As a result, it contributes to carcinogenesis and tumor progression of several cancers, including colon cancer, hepatocellular carcinoma, pancreatic cancer, lung cancer and ovarian cancer. β-Catenin is a pivotal component of the Wnt signaling pathway and it is tightly regulated at three hierarchical levels: protein stability, subcellular localization and transcriptional activity. Uncovering the regulatory mechanisms of β-catenin will provide new insights into the pathogenesis of cancer and other diseases, as well as new therapeutic strategies against these diseases. In this review we dissect the concrete regulatory mechanisms of β-catenin from three aspects mentioned above. Then we focus on the role of β-catenin in cancer initiation, progression, dormancy, immunity and cancer stem cell maintenance. At last, we summarize the recent progress in the development of agents for the pharmacological modulation of β-catenin activity in cancer therapy.
Collapse
|
Review |
8 |
466 |
3
|
Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci U S A 2019; 116:7353-7362. [PMID: 30910979 PMCID: PMC6462070 DOI: 10.1073/pnas.1812876116] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As carcinoma cells progress toward high-grade malignancy, they often if not invariably activate the cell-biological program termed the epithelial–mesenchymal transition (EMT). We discovered that, both in vitro and in vivo, certain breast cancer cells can reside stably and thus with low cell plasticity in a highly tumorigenic, hybrid epithelial/mesenchymal state driven by Snail and canonical Wnt signaling. However, if such cells are forced into a fully mesenchymal state, this results in a poorly tumorigenic cell population under the control of Zeb1 and noncanonical Wnt signaling. These findings suggest that the design of future therapeutic approaches will need to consider the various subpopulations of carcinoma cells that reside at various positions along the E–M spectrum. Carcinoma cells residing in an intermediate phenotypic state along the epithelial–mesenchymal (E–M) spectrum are associated with malignant phenotypes, such as invasiveness, tumor-initiating ability, and metastatic dissemination. Using the recently described CD104+/CD44hi antigen marker combination, we isolated highly tumorigenic breast cancer cells residing stably—both in vitro and in vivo—in an intermediate phenotypic state and coexpressing both epithelial (E) and mesenchymal (M) markers. We demonstrate that tumorigenicity depends on individual cells residing in this E/M hybrid state and cannot be phenocopied by mixing two cell populations that reside stably at the two ends of the spectrum, i.e., in the E and in the M state. Hence, residence in a specific intermediate state along the E–M spectrum rather than phenotypic plasticity appears critical to the expression of tumor-initiating capacity. Acquisition of this E/M hybrid state is facilitated by the differential expression of EMT-inducing transcription factors (EMT-TFs) and is accompanied by the expression of adult stem cell programs, notably, active canonical Wnt signaling. Furthermore, transition from the highly tumorigenic E/M state to a fully mesenchymal phenotype, achieved by constitutive ectopic expression of Zeb1, is sufficient to drive cells out of the E/M hybrid state into a highly mesenchymal state, which is accompanied by a substantial loss of tumorigenicity and a switch from canonical to noncanonical Wnt signaling. Identifying the gatekeepers of the various phenotypic states arrayed along the E–M spectrum is likely to prove useful in developing therapeutic approaches that operate by shifting cancer cells between distinct states along this spectrum.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
325 |
4
|
Efficient Derivation of Functional Human Airway Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling. Cell Stem Cell 2017; 20:844-857.e6. [PMID: 28366587 DOI: 10.1016/j.stem.2017.03.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/16/2017] [Accepted: 03/03/2017] [Indexed: 11/20/2022]
Abstract
Effective derivation of functional airway organoids from induced pluripotent stem cells (iPSCs) would provide valuable models of lung disease and facilitate precision therapies for airway disorders such as cystic fibrosis. However, limited understanding of human airway patterning has made this goal challenging. Here, we show that cyclical modulation of the canonical Wnt signaling pathway enables rapid directed differentiation of human iPSCs via an NKX2-1+ progenitor intermediate into functional proximal airway organoids. We find that human NKX2-1+ progenitors have high levels of Wnt activation but respond intrinsically to decreases in Wnt signaling by rapidly patterning into proximal airway lineages at the expense of distal fates. Using this directed approach, we were able to generate cystic fibrosis patient-specific iPSC-derived airway organoids with a defect in forskolin-induced swelling that is rescued by gene editing to correct the disease mutation. Our approach has many potential applications in modeling and drug screening for airway diseases.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
282 |
5
|
Lee JH, Tammela T, Hofree M, Choi J, Marjanovic ND, Han S, Canner D, Wu K, Paschini M, Bhang DH, Jacks T, Regev A, Kim CF. Anatomically and Functionally Distinct Lung Mesenchymal Populations Marked by Lgr5 and Lgr6. Cell 2017; 170:1149-1163.e12. [PMID: 28886383 PMCID: PMC5607351 DOI: 10.1016/j.cell.2017.07.028] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/11/2017] [Accepted: 07/20/2017] [Indexed: 01/10/2023]
Abstract
The diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6+ cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6+ cells impairs airway injury repair in vivo. Distinct Lgr5+ cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung.
Lgr5 and Lgr6 mark mesenchymal cells in adult lungs Single-cell transcriptome analysis defines mesenchymal heterogeneity Distinct mesenchymal niches drive airway and alveolar differentiation Wnt activity affects epithelial differentiation specified by mesenchymal cells
Collapse
|
Journal Article |
8 |
262 |
6
|
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 2013; 5:13-31. [PMID: 23514963 DOI: 10.1177/1759720x12466608] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential.
Collapse
|
Journal Article |
12 |
257 |
7
|
Kalamakis G, Brüne D, Ravichandran S, Bolz J, Fan W, Ziebell F, Stiehl T, Catalá-Martinez F, Kupke J, Zhao S, Llorens-Bobadilla E, Bauer K, Limpert S, Berger B, Christen U, Schmezer P, Mallm JP, Berninger B, Anders S, Del Sol A, Marciniak-Czochra A, Martin-Villalba A. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell 2019; 176:1407-1419.e14. [PMID: 30827680 DOI: 10.1016/j.cell.2019.01.040] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/12/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Abstract
The function of somatic stem cells declines with age. Understanding the molecular underpinnings of this decline is key to counteract age-related disease. Here, we report a dramatic drop in the neural stem cells (NSCs) number in the aging murine brain. We find that this smaller stem cell reservoir is protected from full depletion by an increase in quiescence that makes old NSCs more resistant to regenerate the injured brain. Once activated, however, young and old NSCs show similar proliferation and differentiation capacity. Single-cell transcriptomics of NSCs indicate that aging changes NSCs minimally. In the aging brain, niche-derived inflammatory signals and the Wnt antagonist sFRP5 induce quiescence. Indeed, intervention to neutralize them increases activation of old NSCs during homeostasis and following injury. Our study identifies quiescence as a key feature of old NSCs imposed by the niche and uncovers ways to activate NSCs to repair the aging brain.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
245 |
8
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
|
Review |
6 |
233 |
9
|
Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, Kawasaki K, Togasaki K, Takahashi S, Sukawa Y, Ishida H, Sugimoto S, Kawakubo H, Kim J, Kitagawa Y, Sekine S, Koo BK, Kanai T, Sato T. Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell 2019; 174:856-869.e17. [PMID: 30096312 DOI: 10.1016/j.cell.2018.07.027] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/29/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022]
Abstract
Recent sequencing analyses have shed light on heterogeneous patterns of genomic aberrations in human gastric cancers (GCs). To explore how individual genetic events translate into cancer phenotypes, we established a biological library consisting of genetically engineered gastric organoids carrying various GC mutations and 37 patient-derived organoid lines, including rare genomically stable GCs. Phenotype analyses of GC organoids revealed divergent genetic and epigenetic routes to gain Wnt and R-spondin niche independency. An unbiased phenotype-based genetic screening identified a significant association between CDH1/TP53 compound mutations and the R-spondin independency that was functionally validated by CRISPR-based knockout. Xenografting of GC organoids further established the feasibility of Wnt-targeting therapy for Wnt-dependent GCs. Our results collectively demonstrate that multifaceted genetic abnormalities render human GCs independent of the stem cell niche and highlight the validity of the genotype-phenotype screening strategy in gaining deeper understanding of human cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
218 |
10
|
PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci U S A 2018; 115:E3173-E3181. [PMID: 29559533 PMCID: PMC5889626 DOI: 10.1073/pnas.1713510115] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue stem cells in vivo reside in highly structured niches that provide signals for proliferation and differentiation. Understanding the role of the niche requires identifying the key cell types that provide these regulators. In the intestine, R-spondins and Wnts are essential regulators of the stem-cell niche. Here we identify subepithelial myofibroblasts of the PDGF receptor α lineage as the specific stromal cell type that secretes these ligands. These data demonstrate the close interaction between epithelial stem cells and the underlying regulatory stroma niche and provide insights into both normal homeostasis and tissue recovery after injury. Wnts and R-spondins (RSPOs) support intestinal homeostasis by regulating crypt cell proliferation and differentiation. Ex vivo, Wnts secreted by Paneth cells in organoids can regulate the proliferation and differentiation of Lgr5-expressing intestinal stem cells. However, in vivo, Paneth cell and indeed all epithelial Wnt production is completely dispensable, and the cellular source of Wnts and RSPOs that maintain the intestinal stem-cell niche is not known. Here we investigated both the source and the functional role of stromal Wnts and RSPO3 in regulation of intestinal homeostasis. RSPO3 is highly expressed in pericryptal myofibroblasts in the lamina propria and is several orders of magnitude more potent than RSPO1 in stimulating both Wnt/β-catenin signaling and organoid growth. Stromal Rspo3 ablation ex vivo resulted in markedly decreased organoid growth that was rescued by exogenous RSPO3 protein. Pdgf receptor alpha (PdgfRα) is known to be expressed in pericryptal myofibroblasts. We therefore evaluated if PdgfRα identified the key stromal niche cells. In vivo, Porcn excision in PdgfRα+ cells blocked intestinal crypt formation, demonstrating that Wnt production in the stroma is both necessary and sufficient to support the intestinal stem-cell niche. Mice with Rspo3 excision in the PdgfRα+ cells had decreased intestinal crypt Wnt/β-catenin signaling and Paneth cell differentiation and were hypersensitive when stressed with dextran sodium sulfate. The data support a model of the intestinal stem-cell niche regulated by both Wnts and RSPO3 supplied predominantly by stromal pericryptal myofibroblasts marked by PdgfRα.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
205 |
11
|
Abstract
In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells--embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells--in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects.
Collapse
|
Review |
11 |
191 |
12
|
Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, Wu Y, Divieti Pajevic P, Bonewald LF, Bauman WA, Qin W. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem 2017; 292:11021-11033. [PMID: 28465350 DOI: 10.1074/jbc.m116.770941] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication.
Collapse
|
Journal Article |
8 |
186 |
13
|
Wnt Signaling in Cancer Stem Cell Biology. Cancers (Basel) 2016; 8:cancers8070060. [PMID: 27355964 PMCID: PMC4963802 DOI: 10.3390/cancers8070060] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.
Collapse
|
Review |
9 |
172 |
14
|
Nalapareddy K, Nattamai KJ, Kumar RS, Karns R, Wikenheiser-Brokamp KA, Sampson LL, Mahe MM, Sundaram N, Yacyshyn MB, Yacyshyn B, Helmrath MA, Zheng Y, Geiger H. Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells. Cell Rep 2017; 18:2608-2621. [PMID: 28297666 PMCID: PMC5987258 DOI: 10.1016/j.celrep.2017.02.056] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 12/30/2022] Open
Abstract
Although intestinal homeostasis is maintained by intestinal stem cells (ISCs), regeneration is impaired upon aging. Here, we first uncover changes in intestinal architecture, cell number, and cell composition upon aging. Second, we identify a decline in the regenerative capacity of ISCs upon aging because of a decline in canonical Wnt signaling in ISCs. Changes in expression of Wnts are found in stem cells themselves and in their niche, including Paneth cells and mesenchyme. Third, reactivating canonical Wnt signaling enhances the function of both murine and human ISCs and, thus, ameliorates aging-associated phenotypes of ISCs in an organoid assay. Our data demonstrate a role for impaired Wnt signaling in physiological aging of ISCs and further identify potential therapeutic avenues to improve ISC regenerative potential upon aging.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
166 |
15
|
Zhang Q, Wu X, Chen P, Liu L, Xin N, Tian Y, Dillin A. The Mitochondrial Unfolded Protein Response Is Mediated Cell-Non-autonomously by Retromer-Dependent Wnt Signaling. Cell 2018; 174:870-883.e17. [PMID: 30057120 DOI: 10.1016/j.cell.2018.06.029] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
The mitochondrial unfolded protein response (UPRmt) can be triggered in a cell-non-autonomous fashion across multiple tissues in response to mitochondrial dysfunction. The ability to communicate information about the presence of mitochondrial stress enables a global response that can ultimately better protect an organism from local mitochondrial challenges. We find that animals use retromer-dependent Wnt signaling to propagate mitochondrial stress signals from the nervous system to peripheral tissues. Specifically, the polyQ40-triggered activation of mitochondrial stress or reduction of cco-1 (complex IV subunit) in neurons of C. elegans results in the Wnt-dependent induction of cell-non-autonomous UPRmt in peripheral cells. Loss-of-function mutations of retromer complex components that are responsible for recycling the Wnt secretion-factor/MIG-14 prevent Wnt secretion and thereby suppress cell-non-autonomous UPRmt. Neuronal expression of the Wnt ligand/EGL-20 is sufficient to induce cell-non-autonomous UPRmt in a retromer complex-, Wnt signaling-, and serotonin-dependent manner, clearly implicating Wnt signaling as a strong candidate for the "mitokine" signal.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
165 |
16
|
Deshmukh V, Hu H, Barroga C, Bossard C, Kc S, Dellamary L, Stewart J, Chiu K, Ibanez M, Pedraza M, Seo T, Do L, Cho S, Cahiwat J, Tam B, Tambiah JRS, Hood J, Lane NE, Yazici Y. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 2018; 26:18-27. [PMID: 28888902 DOI: 10.1016/j.joca.2017.08.015] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/18/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is a degenerative disease characterized by loss of cartilage and increased subchondral bone within synovial joints. Wnt signaling affects the pathogenesis of OA as this pathway modulates both the differentiation of osteoblasts and chondrocytes, and production of catabolic proteases. A novel small-molecule Wnt pathway inhibitor, SM04690, was evaluated in a series of in vitro and in vivo animal studies to determine its effects on chondrogenesis, cartilage protection and synovial-lined joint pathology. DESIGN A high-throughput screen was performed using a cell-based reporter assay for Wnt pathway activity to develop a small molecule designated SM04690. Its properties were evaluated in bone-marrow-derived human mesenchymal stem cells (hMSCs) to assess chondrocyte differentiation and effects on cartilage catabolism by immunocytochemistry and gene expression, and glycosaminoglycan breakdown. In vivo effects of SM04690 on Wnt signaling, cartilage regeneration and protection were measured using biochemical and histopathological techniques in a rodent acute cruciate ligament tear and partial medial meniscectomy (ACLT + pMMx) OA model. RESULTS SM04690 induced hMSC differentiation into mature, functional chondrocytes and decreased cartilage catabolic marker levels compared to vehicle. A single SM04690 intra-articular (IA) injection was efficacious in a rodent OA model, with increased cartilage thickness, evidence for cartilage regeneration, and protection from cartilage catabolism observed, resulting in significantly improved Osteoarthritis Research Society International (OARSI) histology scores and biomarkers, compared to vehicle. CONCLUSIONS SM04690 induced chondrogenesis and appeared to inhibit joint destruction in a rat OA model, and is a candidate for a potential disease modifying therapy for OA.
Collapse
|
|
7 |
159 |
17
|
Hayat R, Manzoor M, Hussain A. Wnt Signaling Pathway: A Comprehensive Review. Cell Biol Int 2022; 46:863-877. [PMID: 35297539 DOI: 10.1002/cbin.11797] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Wnt signaling is an evolutionary cell-to-cell coordination mechanism and it is highly critical for a variety of physiological processes of an organism's body, including stem cell regeneration, proliferation, division, migration, polarity of a cell, determining fate of the cell and specification of neural crest, neural symmetry and morphogenesis. Wnts are extracellular secreted glycol proteins, consisted of a family of 19 human proteins that represent the complex nature of the regulatory structure and physiological efficiency of signaling. Moreover, a Wnt/β-catenin-dependent pathway and the β-catenin-independent pathway that is further classified into the Planar Cell Polarity and Wnt/Ca2+ pathways have been established as key signaling nodes downstream of the frizzled (Fz/Fzd) receptor, and these nodes are extensively analyzed at biochemical and molecular levels. Genetic and epigenetic activities that ultimately characterize the pathway and its subsequent responses contribute to Wnt-β-catenin signaling pathway hypo or hyper-activation and is associated with the variety of human disorders progression most significantly cancers. Recognizing how this mechanism operates is crucial to the advancement of cancer prevention therapies or regenerative medicine methods. This article is protected by copyright. All rights reserved.
Collapse
|
Review |
3 |
152 |
18
|
Cao MQ, You AB, Zhu XD, Zhang W, Zhang YY, Zhang SZ, Zhang KW, Cai H, Shi WK, Li XL, Li KS, Gao DM, Ma DN, Ye BG, Wang CH, Qin CD, Sun HC, Zhang T, Tang ZY. miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol 2018; 11:12. [PMID: 29361949 PMCID: PMC5782375 DOI: 10.1186/s13045-018-0555-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High frequency of recurrence is the major cause of the poor outcomes for patients with hepatocellular carcinoma (HCC). microRNA (miR)-182-5p emerged as a high-priority miRNA in HCC and was found to be related to HCC metastasis. Whether the expression of miR-182-5p in tumor tissue correlated with early recurrence in HCC patients underwent curative surgery was unknown. METHODS Real-time PCR (RT-PCR) and in situ hybridization (ISH) were conducted to assess the expression of miR-182-5p in HCC cells and tissues. Cell Counting Kit-8 (CCK-8), transwell assays were performed to detected cells proliferation and migration ability. Flow cytometry assays were used to detect cell apoptosis rate, and xenograft model was employed to study miR-182-5p in HCC growth and lung metastasis. The target of miR-182-5p was validated with a dual-luciferase reporter assay and western blotting. Immunohistochemistry, immumoblotting, and immunoprecipitation were performed to test relative protein expression. RESULTS We showed that high expression of miR-182-5p in tumor tissues correlated with poor prognosis as well as early recurrence in HCC patients underwent curative surgery. miR-182-5p enhanced motility and invasive ability of HCC cells both in vitro and in vivo. miR-182-5p directly targets 3'-UTR of FOXO3a and repressed FOXO3a expression, activating AKT/FOXO3a pathway to promote HCC proliferation. Notably, miR-182-5p activated Wnt/β-catenin signaling by inhibiting the degradation of β-catenin and enhancing the interaction between β-catenin and TCF4 which was mediated by repressed FOXO3a. CONCLUSIONS Consistently, miR-182-5p can be a potential predictor of early recurrence for HCC patients underwent curative surgery, and FOXO3a plays a key mediator in miR-182-5p induced HCC progression.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
152 |
19
|
Gupta SK, Malhotra SS, Malik A, Verma S, Chaudhary P. Cell Signaling Pathways Involved During Invasion and Syncytialization of Trophoblast Cells. Am J Reprod Immunol 2015; 75:361-71. [PMID: 26490782 DOI: 10.1111/aji.12436] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022] Open
Abstract
Implantation involves an extensive cross talk between the trophoblast cells and the receptive endometrium through embryonic as well as endometrial-derived factors that regulate the invasion and migration of trophoblast cells and also syncytia formation. Any aberration in this highly regulated process may lead to pregnancy complications such as preeclampsia, intrauterine growth restriction, or even pregnancy failure. How various cytokines and growth factors act by activating various cell signaling pathways leading to the expression of the effector molecules have been reviewed, which control invasion and migration of trophoblast cells and syncytialization. The gaps in our current understanding of the various signaling pathways, activated by different cytokines/growth factors, their possible cross talk for optimized effector function(s), and future prospects in this field have been discussed.
Collapse
|
Review |
10 |
150 |
20
|
Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 2011; 10:5. [PMID: 21483657 PMCID: PMC3072659 DOI: 10.4103/1477-3163.78111] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/18/2011] [Indexed: 12/13/2022] Open
Abstract
Activation of the Wnt signaling pathway via mutation of the adenomatous polyposis coli gene (APC) is a critical event in the development of colon cancer. For colon carcinogenesis, however, constitutive signaling through the canonical Wnt pathway is not a singular event. Here we review how canonical Wnt signaling is modulated by intracellular LEF/TCF composition and location, the action of different Wnt ligands, and the secretion of Wnt inhibitory molecules. We also review the contributions of non-canonical Wnt signaling and other distinct pathways in the tumor micro environment that cross-talk to the canonical Wnt pathway and thereby influence colon cancer progression. These ‘non-APC’ aspects of Wnt signaling are considered in relation to the development of potential agents for the treatment of patients with colon cancer. Regulatory pathways that influence Wnt signaling highlight how it might be possible to design therapies that target a network of signals beyond that of APC and β-catenin.
Collapse
|
Journal Article |
14 |
150 |
21
|
Wnt Signaling in Ovarian Cancer Stemness, EMT, and Therapy Resistance. J Clin Med 2019; 8:jcm8101658. [PMID: 31614568 PMCID: PMC6832489 DOI: 10.3390/jcm8101658] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancers represent the deadliest among gynecologic malignancies and are characterized by a hierarchical structure with cancer stem cells (CSCs) endowed with self-renewal and the capacity to differentiate. The Wnt/β-catenin signaling pathway, known to regulate stemness in a broad spectrum of stem cell niches including the ovary, is thought to play an important role in ovarian cancer. Importantly, Wnt activity was shown to correlate with grade, epithelial to mesenchymal transition, chemotherapy resistance, and poor prognosis in ovarian cancer. This review will discuss the current knowledge of the role of Wnt signaling in ovarian cancer stemness, epithelial to mesenchymal transition (EMT), and therapy resistance. In addition, the alleged role of exosomes in the paracrine activation of Wnt signaling and pre-metastatic niche formation will be reviewed. Finally, novel potential treatment options based on Wnt inhibition will be highlighted.
Collapse
|
Review |
6 |
146 |
22
|
Volckaert T, Campbell A, Dill E, Li C, Minoo P, De Langhe S. Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 2013; 140:3731-42. [PMID: 23924632 DOI: 10.1242/dev.096560] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Localized Fgf10 expression in the distal mesenchyme adjacent to sites of lung bud formation has long been thought to drive stereotypic branching morphogenesis even though isolated lung epithelium branches in the presence of non-directional exogenous Fgf10 in Matrigel. Here, we show that lung agenesis in Fgf10 knockout mice can be rescued by ubiquitous overexpression of Fgf10, indicating that precisely localized Fgf10 expression is not required for lung branching morphogenesis in vivo. Fgf10 expression in the mesenchyme itself is regulated by Wnt signaling. Nevertheless, we found that during lung initiation simultaneous overexpression of Fgf10 is not sufficient to rescue the absence of primary lung field specification in embryos overexpressing Dkk1, a secreted inhibitor of Wnt signaling. However, after lung initiation, simultaneous overexpression of Fgf10 in lungs overexpressing Dkk1 is able to rescue defects in branching and proximal-distal differentiation. We also show that Fgf10 prevents the differentiation of distal epithelial progenitors into Sox2-expressing airway epithelial cells in part by activating epithelial β-catenin signaling, which negatively regulates Sox2 expression. As such, these findings support a model in which the main function of Fgf10 during lung development is to regulate proximal-distal differentiation. As the lung buds grow out, proximal epithelial cells become further and further displaced from the distal source of Fgf10 and differentiate into bronchial epithelial cells. Interestingly, our data presented here show that once epithelial cells are committed to the Sox2-positive airway epithelial cell fate, Fgf10 prevents ciliated cell differentiation and promotes basal cell differentiation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
139 |
23
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. Hepatic progenitor cells (HPCs) could form the basis of some hepatocellular carcinomas (HCC) and cholangiocarcinomas. Liver CSCs have been reported in multiple subtypes of HCC and are considered as the master regulators of HCC initiation, tumor metastasis, and progression. HPCs activators such as epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin, transforming growth factor-beta (TGF-β), Notch and Hedgehog signaling systems expedite tumorigenesis or conversely, serve as a powerful cancer-prevention tool. Recent work has also identified Sal-like protein 4 (SALL4) and some epigenetic regulations as important molecules, while several therapeutic drugs that directly control HPCs have been tested both in vivo and in vitro. However, liver CSCs clearly have a complex pathogenesis, with the potential for considerable crosstalk and redundancy in signaling pathways. Hence, the targeting of single molecules or pathways may have limited benefit for treatment. In addition to the direct control of liver CSCs, many other factors are needed for CSC maintenance including angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance. Here, we provide a brief review of molecular signaling in liver CSCs and present insights into new therapeutic strategies for their targeting.
Collapse
|
review-article |
11 |
136 |
24
|
NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A 2017; 114:E3632-E3641. [PMID: 28416686 DOI: 10.1073/pnas.1701054114] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sensory nerves emanating from the dorsal root extensively innervate the surfaces of mammalian bone, a privileged location for the regulation of biomechanical signaling. Here, we show that NGF-TrkA signaling in skeletal sensory nerves is an early response to mechanical loading of bone and is required to achieve maximal load-induced bone formation. First, the elimination of TrkA signaling in mice harboring mutant TrkAF592A alleles was found to greatly attenuate load-induced bone formation induced by axial forelimb compression. Next, both in vivo mechanical loading and in vitro mechanical stretch were shown to induce the profound up-regulation of NGF in osteoblasts within 1 h of loading. Furthermore, inhibition of TrkA signaling following axial forelimb compression was observed to reduce measures of Wnt/β-catenin activity in osteocytes in the loaded bone. Finally, the administration of exogenous NGF to wild-type mice was found to significantly increase load-induced bone formation and Wnt/β-catenin activity in osteocytes. In summary, these findings demonstrate that communication between osteoblasts and sensory nerves through NGF-TrkA signaling is essential for load-induced bone formation in mice.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
132 |
25
|
Vermij SH, Abriel H, van Veen TAB. Refining the molecular organization of the cardiac intercalated disc. Cardiovasc Res 2017; 113:259-275. [PMID: 28069669 DOI: 10.1093/cvr/cvw259] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/04/2017] [Indexed: 11/14/2022] Open
Abstract
This review presents an extensively integrated model of the cardiac intercalated disc (ID), a highly orchestrated structure that connects adjacent cardiomyocytes. Classically, three main structures are distinguished: gap junctions (GJs) metabolically and electrically connect cytoplasm of adjacent cardiomyocytes; adherens junctions (AJs) connect the actin cytoskeleton of adjacent cells; and desmosomes function as cell anchors and connect intermediate filaments. Furthermore, ion channels reside in the ID. Mutations in ID proteins have been associated with cardiac arrhythmias such as Brugada syndrome and arrhythmogenic cardiomyopathy. However, rather than being independent, all ID components work together intensively by multifunctional proteins such as ZO-1, Ankyrin G, and β-catenin, integrating mechanical and electrical functions. GJs form a plaque surrounded by the perinexus in which free connexons reside; the connexome integrates NaV channels, the desmosome and GJs; and the area composita hosts AJs and desmosomes, also integrated as adhering junctions. Furthermore, the transitional junction connects sarcomeres to the plasma membrane. Lastly, this review integrates all these findings in comprehensible figures, illustrating the interdependencies of ID proteins.
Collapse
|
Review |
8 |
131 |