1
|
Miguet M, Faivre L, Amiel J, Nizon M, Touraine R, Prieur F, Pasquier L, Lefebvre M, Thevenon J, Dubourg C, Julia S, Sarret C, Remerand G, Francannet C, Laffargue F, Boespflug-Tanguy O, David A, Isidor B, Vigneron J, Leheup B, Lambert L, Philippe C, Béri-Dexheimer M, Cuisset JM, Andrieux J, Plessis G, Toutain A, Guibaud L, Cormier-Daire V, Rio M, Bonnefont JP, Echenne B, Journel H, Burglen L, Chantot-Bastaraud S, Bienvenu T, Baumann C, Perrin L, Drunat S, Jouk PS, Dieterich K, Devillard F, Lacombe D, Philip N, Sigaudy S, Moncla A, Missirian C, Badens C, Perreton N, Thauvin-Robinet C, AChro-Puce R, Pedespan JM, Rooryck C, Goizet C, Vincent-Delorme C, Duban-Bedu B, Bahi-Buisson N, Afenjar A, Maincent K, Héron D, Alessandri JL, Martin-Coignard D, Lesca G, Rossi M, Raynaud M, Callier P, Mosca-Boidron AL, Marle N, Coutton C, Satre V, Caignec CL, Malan V, Romana S, Keren B, Tabet AC, Kremer V, Scheidecker S, Vigouroux A, Lackmy-Port-Lis M, Sanlaville D, Till M, Carneiro M, Gilbert-Dussardier B, Willems M, Van Esch H, Portes VD, El Chehadeh S. Further delineation of the MECP2 duplication syndrome phenotype in 59 French male patients, with a particular focus on morphological and neurological features. J Med Genet 2018; 55:359-371. [PMID: 29618507 DOI: 10.1136/jmedgenet-2017-104956] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/04/2018] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
Abstract
The Xq28 duplication involving the MECP2 gene (MECP2 duplication) has been mainly described in male patients with severe developmental delay (DD) associated with spasticity, stereotypic movements and recurrent infections. Nevertheless, only a few series have been published. We aimed to better describe the phenotype of this condition, with a focus on morphological and neurological features. Through a national collaborative study, we report a large French series of 59 affected males with interstitial MECP2 duplication. Most of the patients (93%) shared similar facial features, which evolved with age (midface hypoplasia, narrow and prominent nasal bridge, thick lower lip, large prominent ears), thick hair, livedo of the limbs, tapered fingers, small feet and vasomotor troubles. Early hypotonia and global DD were constant, with 21% of patients unable to walk. In patients able to stand, lower limbs weakness and spasticity led to a singular standing habitus: flexion of the knees, broad-based stance with pseudo-ataxic gait. Scoliosis was frequent (53%), such as divergent strabismus (76%) and hypermetropia (54%), stereotypic movements (89%), without obvious social withdrawal and decreased pain sensitivity (78%). Most of the patients did not develop expressive language, 35% saying few words. Epilepsy was frequent (59%), with a mean onset around 7.4 years of age, and often (62%) drug-resistant. Other medical issues were frequent: constipation (78%), and recurrent infections (89%), mainly lung. We delineate the clinical phenotype of MECP2 duplication syndrome in a large series of 59 males. Pulmonary hypertension appeared as a cause of early death in these patients, advocating its screening early in life.
Collapse
|
Journal Article |
7 |
46 |
2
|
Andersen EF, Baldwin EE, Ellingwood S, Smith R, Lamb AN. Xq28 duplication overlapping the int22h-1/int22h-2 region and including RAB39B and CLIC2 in a family with intellectual and developmental disability. Am J Med Genet A 2014; 164A:1795-801. [PMID: 24700761 DOI: 10.1002/ajmg.a.36524] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/13/2014] [Indexed: 11/08/2022]
Abstract
Duplications involving terminal Xq28 are a known cause of intellectual disability (ID) in males and in females with unfavorable X-inactivation patterns. Within Xq28, functional disomy of MECP2 causes a severe ID syndrome, however the dosage sensitivity of other Xq28 duplicated genes is less certain. Duplications involving the int22h-1/int22h-2 LCR-flanked region in distal Xq28 have recently been linked to a novel ID-associated phenotype. While evidence for the dosage sensitivity of this region is emerging, the phenotypic contribution of individual genes within the int22h-1/int22h-2-flanked region has yet to be determined. We report a familial case of a novel 774 kb Xq28-qter duplication, detected by cytogenomic microarray analysis, that partially overlaps the int22h-1/int22h-2-flanked region. This duplication and a 570 kb Xpter-p22.33 loss within the pseudoautosomal region were identified in three siblings, one female and two males, who presented with developmental delays/intellectual disability, mild dysmorphic features and short stature. Although unconfirmed, these results are suggestive of maternal inheritance of a recombinant X. We compare our clinical findings to patients with int22h-1/int22h-2-mediated duplications and discuss the potential pathogenicity of genes within the duplicated region, including those within the shared region of overlap, RAB39B and CLIC2.
Collapse
|
Journal Article |
11 |
34 |
3
|
Fukushi D, Yamada K, Nomura N, Naiki M, Kimura R, Yamada Y, Kumagai T, Yamaguchi K, Miyake Y, Wakamatsu N. Clinical characterization and identification of duplication breakpoints in a Japanese family with Xq28 duplication syndrome including MECP2. Am J Med Genet A 2014; 164A:924-33. [PMID: 24478188 DOI: 10.1002/ajmg.a.36373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/03/2013] [Indexed: 11/05/2022]
Abstract
Xq28 duplication syndrome including MECP2 is a neurodevelopmental disorder characterized by axial hypotonia at infancy, severe intellectual disability, developmental delay, mild characteristic facial appearance, epilepsy, regression, and recurrent infections in males. We identified a Japanese family of Xq28 duplications, in which the patients presented with cerebellar ataxia, severe constipation, and small feet, in addition to the common clinical features. The 488-kb duplication spanned from L1CAM to EMD and contained 17 genes, two pseudo genes, and three microRNA-coding genes. FISH and nucleotide sequence analyses demonstrated that the duplication was tandem and in a forward orientation, and the duplication breakpoints were located in AluSc at the EMD side, with a 32-bp deletion, and LTR50 at the L1CAM side, with "tc" and "gc" microhomologies at the duplication breakpoints, respectively. The duplicated segment was completely segregated from the grandmother to the patients. These results suggest that the duplication was generated by fork-stalling and template-switching at the AluSc and LTR50 sites. This is the first report to determine the size and nucleotide sequences of the duplicated segments at Xq28 of three generations of a family and provides the genotype-phenotype correlation of the patients harboring the specific duplicated segment.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
9 |
4
|
Yon DK, Park JE, Kim SJ, Shim SH, Chae KY. A sibship with duplication of Xq28 inherited from the mother; genomic characterization and clinical outcomes. BMC MEDICAL GENETICS 2017; 18:30. [PMID: 28302064 PMCID: PMC5356410 DOI: 10.1186/s12881-017-0394-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Loss-of-function mutations in methyl-CpG-binding protein 2 (MECP2; MIM *300005) results in the Rett syndrome, whereas gain-of-function mutations are associated with the MECP2 duplication syndrome. METHODS We did research on a family with two brothers showing Xq28 duplication syndrome using various molecular cytogenetic techniques such as multiplex ligation-dependent probe amplification and array-based genomic hybridization. RESULTS The duplicated region had several genes including MECP2 and interleukin-1 receptor associated kinase 1 (IRAK1; MIM *300283). MECP2 and IRAK1 were associated with the neurological phenotypes in dose-sensitive and dose-critical manner. The brothers demonstrated severe intellectual disability, autistic features, generalized hypotonia, recurrent infections, epilepsy, choreiform movements such as hand-wringing movement, and moderate increased spasticity with the lower limbs. The X-inactivation test showed a complete skewed X inactivation pattern of mother. In this reason, the mother had the same loci duplication but showed significantly little neurological manifestation compared to the two sons. CONCLUSIONS MECP2/IRAK1 duplication at Xq28 is inherited as an X-linked recessive trait and male-specific disorder associated with severe intellectual disability. We tried to analyze the information of the relationship between neuropsychiatric phenotype and the extent of duplication at Xq28 by comparing with previous reports.
Collapse
|
research-article |
8 |
9 |
5
|
Ha K, Shen Y, Graves T, Kim CH, Kim HG. The presence of two rare genomic syndromes, 1q21 deletion and Xq28 duplication, segregating independently in a family with intellectual disability. Mol Cytogenet 2016; 9:74. [PMID: 27708714 PMCID: PMC5041540 DOI: 10.1186/s13039-016-0286-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 01/21/2023] Open
Abstract
Background 1q21 microdeletion syndrome is a rare contiguous gene deletion disorder with de novo or autosomal dominant inheritance patterns and its phenotypic features include intellectual disability, distinctive facial dysmorphism, microcephaly, cardiac abnormalities, and cataracts. MECP2 duplication syndrome is an X-linked recessive neurodevelopmental disorder characterized by intellectual disability, global developmental delay, and other neurological complications including late-onset seizures. Previously, these two different genetic syndromes have not been reported segregating independently in a same family. Case presentation Here we describe two siblings carrying either a chromosome 1q21 microdeletion or a chromosome Xq28 duplication. Using a comparative genomic hybridization (CGH) array, we identified a 1.24 Mb heterozygous deletion at 1q21 resulting in the loss of 9 genes in a girl with learning disability, hypothyroidism, short stature, sensory integration disorder, and soft dysmorphic features including cupped ears and a unilateral ear pit. We also characterized a 508 kb Xq28 duplication encompassing MECP2 in her younger brother with hypotonia, poor speech, cognitive and motor impairment. The parental CGH and quantitative PCR (qPCR) analyses revealed that the 1q21 deletion in the elder sister is de novo, but the Xq28 duplication in the younger brother was originally inherited from the maternal grandmother through the mother, both of whom are asymptomatic carriers. RT-qPCR assays revealed that the affected brother has almost double the amount of MECP2 mRNA expression compared to other family members of both genders including maternal grandmother and mother who have the same Xq28 duplication with no phenotype. This suggests the X chromosome with an Xq28 duplication in the carrier females is preferentially silenced. Conclusion From our understanding, this would be the first report showing the independent segregation of two genetically unrelated syndromes, 1q21 microdeletion and Xq28 duplication, in a same family, especially in siblings. Although these two chromosomal abnormalities share some similar phenotypes such as intellectual disability, mild dysmorphic features, and cardiac abnormalities, the presence of two unrelated and rare syndromes in siblings is very unusual. Therefore, further comprehensive investigations in similar cases are required for future studies.
Collapse
|
Case Reports |
9 |
6 |
6
|
Ward DI, Buckley BA, Leon E, Diaz J, Galegos MF, Hofherr S, Lewanda AF. Intellectual disability and epilepsy due to the K/L-mediated Xq28 duplication: Further evidence of a distinct, dosage-dependent phenotype. Am J Med Genet A 2018; 176:551-559. [PMID: 29341460 DOI: 10.1002/ajmg.a.38524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/27/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022]
Abstract
Copy number variants of the X-chromosome are a common cause of X-linked intellectual disability in males. Duplication of the Xq28 band has been known for over a decade to be the cause of the Lubs X-linked Mental Retardation Syndrome (OMIM 300620) in males and this duplication has been narrowed to a critical region containing only the genes MECP2 and IRAK1. In 2009, four families with a distal duplication of Xq28 not including MECP2 and mediated by low-copy repeats (LCRs) designated "K" and "L" were reported with intellectual disability and epilepsy. Duplication of a second more distal region has been described as the cause of the Int22h-1/Int22h-2 Mediated Xq28 Duplication Syndrome, characterized by intellectual disability, psychiatric problems, and recurrent infections. We report two additional families possessing the K/L-mediated Xq28 duplication with affected males having intellectual disability and epilepsy similar to the previously reported phenotype. To our knowledge, this is the second cohort of individuals to be reported with this duplication and therefore supports K/L-mediated Xq28 duplications as a distinct syndrome.
Collapse
|
Journal Article |
7 |
5 |
7
|
Hu CC, Sun YJ, Liu CX, Zhou BR, Li CY, Xu Q, Xu X. NSDHL-containing duplication at Xq28 in a male patient with autism spectrum disorder: a case report. BMC MEDICAL GENETICS 2018; 19:192. [PMID: 30376821 PMCID: PMC6208182 DOI: 10.1186/s12881-018-0705-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/11/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder in which genetics plays a key aetiological role. The gene encoding NAD(P)H steroid dehydrogenase-like protein (NSDHL) is expressed in developing cortical neurons and glia, and its mutation may result in intellectual disability or congenital hemidysplasia. CASE PRESENTATION An 8-year-old boy presented with a 260-kb NSDHL-containing duplication at Xq28 (151,868,909 - 152,129,300) inherited from his mother. His clinical features included defects in social communication and interaction, restricted interests, attention deficit, impulsive behaviour, minor facial anomalies and serum free fatty acid abnormality. CONCLUSION This is the first report of an ASD patient with a related NSDHL-containing duplication at Xq28. Further studies and case reports are required for genetic research to demonstrate that duplication as well as mutation can cause neurodevelopmental diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
2 |
8
|
Tekendo-Ngongang C, Dahoun S, Nguefack S, Moix I, Gimelli S, Zambo H, Morris MA, Sloan-Béna F, Wonkam A. MECP2 duplication syndrome in a patient from Cameroon. Am J Med Genet A 2020; 182:619-622. [PMID: 32052928 PMCID: PMC7450984 DOI: 10.1002/ajmg.a.61510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/27/2019] [Accepted: 01/23/2020] [Indexed: 11/07/2022]
Abstract
MECP2 duplication syndrome (MDS; OMIM 300260) is an X-linked neurodevelopmental disorder caused by nonrecurrent duplications of the Xq28 region involving the gene methyl-CpG-binding protein 2 (MECP2; OMIM 300005). The core phenotype of affected individuals includes infantile hypotonia, severe intellectual disability, very poor-to-absent speech, progressive spasticity, seizures, and recurrent infections. The condition is 100% penetrant in males, with observed variability in phenotypic expression within and between families. Features of MDS in individuals of African descent are not well known. Here, we describe a male patient from Cameroon, with MDS caused by an inherited 610 kb microduplication of Xq28 encompassing the genes MECP2, IRAK1, L1CAM, and SLC6A8. This report supplements the public data on MDS and contributes by highlighting the phenotype of this condition in affected individuals of African descent.
Collapse
|
Case Reports |
5 |
2 |
9
|
Xing XH, Takam R, Bao XY, Ba-alwi NA, Ji H. Methyl-CpG-Binding protein 2 duplication syndrome in a Chinese patient: A case report and review of the literature. World J Clin Cases 2023; 11:6505-6514. [PMID: 37900250 PMCID: PMC10600989 DOI: 10.12998/wjcc.v11.i27.6505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Chromosomal Xq28 region duplication encompassing methyl-CpG-binding protein 2 (MECP2) results in an identifiable phenotype and global developmental delay known as MECP2 duplication syndrome (MDS). This syndrome has a wide range of clinical manifestations, including abnormalities in appearance, neurodevelopment, and gastrointestinal motility; recurrent infections; and spasticity. Here, we report a case of confirmed MDS at our institution. CASE SUMMARY A 12-year-old Chinese boy presented with intellectual disability (poor intellectual [reasoning, judgment, abstract thinking, and learning] and adaptive [lack of communication and absent social skills, apraxia, and ataxia] functioning) and dysmorphism. He had no history of recurrent infections, seizures, or bowel dysfunction, which is different from that in reported cases. Microarray comparative genomic hybridization confirmed MECP2 duplication in the patient and his mother who is a carrier. The duplication size was the same in the patient and his mother. No prophylactic antibiotic or anti-seizure therapy was offered to the patient or his mother before or after the consultation. CONCLUSION MDS is rare and has various clinical presentations. Clinical suspicion is critical in patients presenting with developmental delays.
Collapse
|
Case Report |
2 |
1 |
10
|
Fonova EA, Tolmacheva EN, Kashevarova AA, Sazhenova EA, Nikitina TV, Lopatkina ME, Vasilyeva OY, Zarubin AА, Aleksandrova TN, Yuriev SY, Skryabin NA, Stepanov VA, Lebedev IN. Skewed X-Chromosome Inactivation as a Possible Marker of X-Linked CNV in Women with Pregnancy Loss. Cytogenet Genome Res 2022; 162:97-108. [PMID: 35636401 DOI: 10.1159/000524342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Skewed X-chromosome inactivation (sXCI) can be a marker of lethal genetic variants on the X chromosome in a woman since sXCI modifies the pathological phenotype. The aim of this study was to search for CNVs in women with miscarriages and sXCI. XCI was assayed using the classical method based on the amplification of highly polymorphic exon 1 of the androgen receptor (AR) gene. The XCI status was analysed in 313 women with pregnancy loss and in 87 spontaneously aborted embryos with 46,XX karyotype, as well as in control groups of 135 women without pregnancy loss and 64 embryos with 46,XX karyotype from induced abortions in women who terminated a normal pregnancy. The frequency of sXCI differed significantly between women with miscarriages and women without pregnancy losses (6.3% and 2.2%, respectively; p = 0.019). To exclude primary causes of sXCI, sequencing of the XIST and XACT genes was performed. The XIST and XACT gene sequencing revealed no known pathogenic variants that could lead to sXCI. Molecular karyotyping was performed using aCGH, followed by verification of X-linked CNVs by RT-PCR and MLPA. Microdeletions at Xp11.23 and Xq24 as well as gains of Xq28 were detected in women with sXCI and pregnancy loss.
Collapse
|
|
3 |
1 |
11
|
Billes A, Pujalte M, Jedraszak G, Amsallem D, Boudry-Labis E, Boute O, Bouquillon S, Brischoux-Boucher E, Callier P, Coutton C, Denizet ALA, Dieterich K, Kuentz P, Lespinasse J, Mazel B, Morin G, Amram F, Pennamen P, Rio M, Piard J, Putoux A, Rama M, Roze-Guillaumey V, Schluth-Bolard C, Till M, Trouvé C, Vieville G, Rooryck C, Sanlaville D, Chatron N. Possible incomplete penetrance of Xq28 int22h-1/int22h-2 duplication. Clin Genet 2024; 106:234-246. [PMID: 38561231 DOI: 10.1111/cge.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Xq28 int22h-1/int22h-2 duplication is the result of non-allelic homologous recombination between int22h-1/int22h-2 repeats separated by 0.5 Mb. It is responsible for a syndromic form of intellectual disability (ID), with recurrent infections and atopic diseases. Minor defects, nonspecific facial dysmorphic features, and overweight have also been described. Half of female carriers have been reported with ID, whereas all reported evaluated born males present mild to moderate ID, suggesting complete penetrance. We collected data on 15 families from eight university hospitals. Among them, 40 patients, 21 females (one fetus), and 19 males (two fetuses), were carriers of typical or atypical Xq28 int22h-1/int22h-2 duplication. Twenty-one individuals were considered asymptomatic (16 females and 5 males), without significantly higher rate of recurrent infections, atopia, overweight, or facial dysmorphism. Approximately 67% live-born males and 23% live-born female carriers of the typical duplication did not have obvious signs of intellectual disability, suggesting previously undescribed incomplete penetrance or low expression in certain carriers. The possibility of a second-hit or modifying factors to this possible susceptibility locus is yet to be studied but a possible observational bias should be considered in assessing such challenging X-chromosome copy number gains. Additional segregation studies should help to quantify this newly described incomplete penetrance.
Collapse
|
|
1 |
|
12
|
Akahoshi K, Nakagawa E, Goto YI, Inoue K. Duplication within two regions distal to MECP2: clinical similarity with MECP2 duplication syndrome. BMC Med Genomics 2023; 16:43. [PMID: 36879246 PMCID: PMC9987063 DOI: 10.1186/s12920-023-01465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND X-linked methyl-CpG-binding protein 2 (MECP2) duplication syndrome is prevalent in approximately 1% of X-linked intellectual disabilities. Accumulating evidence has suggested that MECP2 is the causative gene of MECP2 duplication syndrome. We report a case of a 17-year-old boy with a 1.2 Mb duplication distal to MECP2 on chromosome Xq28. Although this region does not contain MECP2, the clinical features and course of the boy are remarkably similar to those observed in MECP2 duplication syndrome. Recently, case reports have described duplication in the region distal to, and not containing, MECP2. These regions have been classified as the K/L-mediated Xq28 duplication region and int22h1/int22h2-mediated Xq28 duplication region. The case reports also described signs similar to those of MECP2 duplication syndrome. To the best of our knowledge, ours is the first case to include these two regions. CASE PRESENTATION The boy presented with a mild to moderate regressive intellectual disability and progressive neurological disorder. He developed epilepsy at the age of 6 years and underwent a bilateral equinus foot surgery at 14 years of age because of the increasing spasticity in lower extremities since the age of 11. Intracranial findings showed hypoplasia of the corpus callosum, cerebellum, and brain stem; linear hyperintensity in the deep white matter; and decreased white matter capacity. During his childhood, he suffered from recurrent infection. However, genital problems, skin abnormalities and gastrointestinal manifestations (gastroesophageal reflux) were not observed. CONCLUSIONS Cases in which duplication was observed in the region of Xq28 that does not include MECP2 also showed symptoms similar to those of MECP2 duplication syndrome. We compared four pathologies: MECP2 duplication syndrome with minimal regions, duplication within the two distal regions without MECP2, and our case including both regions. Our results suggest that MECP2 alone may not explain all symptoms of duplication in the distal part of Xq28.
Collapse
|
Case Reports |
2 |
|