Fidler DR, Murphy SE, Courtis K, Antonoudiou P, El-Tohamy R, Ient J, Levine TP. Using HHsearch to tackle proteins of unknown function: A pilot study with PH domains.
Traffic 2016;
17:1214-1226. [PMID:
27601190 PMCID:
PMC5091641 DOI:
10.1111/tra.12432]
[Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
Advances in membrane cell biology are hampered by the relatively high proportion of proteins with no known function. Such proteins are largely or entirely devoid of structurally significant domain annotations. Structural bioinformaticians have developed profile‐profile tools such as HHsearch (online version called HHpred), which can detect remote homologies that are missed by tools used to annotate databases. Here we have applied HHsearch to study a single structural fold in a single model organism as proof of principle. In the entire clan of protein domains sharing the pleckstrin homology domain fold in yeast, systematic application of HHsearch accurately identified known PH‐like domains. It also predicted 16 new domains in 13 yeast proteins many of which are implicated in intracellular traffic. One of these was Vps13p, where we confirmed the functional importance of the predicted PH‐like domain. Even though such predictions require considerable work to be corroborated, they are useful first steps. HHsearch should be applied more widely, particularly across entire proteomes of model organisms, to significantly improve database annotations.
Collapse