1
|
Yttrium oxide nanoparticles reduce the severity of acute pancreatitis caused by cerulein hyperstimulation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:54-65. [PMID: 30851439 DOI: 10.1016/j.nano.2019.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/22/2019] [Accepted: 02/16/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress plays a major role in acute pancreatitis (AP), leading to massive macrophage infiltration. Nanoyttria (NY) possesses potent free radical scavenging activity. As reactive oxygen species and inflammation play major role in AP, we hypothesized that NY may alleviate cerulein induced AP. NY ameliorated LPS induced oxidative stress in vitro. It reduced ROS, superoxide radical generation and restored the mitochondrial membrane potential in macrophages. Interestingly, NY reduced plasma amylase and lipase levels and attenuated the mitochondrial stress and inflammatory markers. NY suppressed the recruitment of inflammatory cells around the damaged pancreatic acinar cells. Furthermore, NY intervention perturbed the course of AP via reduction of endoplasmic reticulum (ER) stress markers (BiP, IRE1 and Ero1-Lα), and molecular chaperones (Hsp27 and Hsp70). We, to the best of our knowledge, report for first time that NY can attenuate experimental AP by restoration of mitochondrial and ER homeostasis through Nrf2/NFκB pathway modulation.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
32 |
2
|
Emad B, WalyEldeen AA, Hassan H, Sharaky M, Abdelhamid IA, Ibrahim SA, Mohamed HR. Yttrium Oxide nanoparticles induce cytotoxicity, genotoxicity, apoptosis, and ferroptosis in the human triple-negative breast cancer MDA-MB-231 cells. BMC Cancer 2023; 23:1151. [PMID: 38012585 PMCID: PMC10680179 DOI: 10.1186/s12885-023-11649-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a lethal mammary carcinoma subtype that affects females and is associated with a worse prognosis. Chemotherapy is the only conventional therapy available for patients with TNBC due to the lack of therapeutic targets. Yttrium oxide (Y2O3) is a rare earth metal oxide, whose nanoparticle (NPs) formulations are used in various applications, including biological imaging, the material sciences, and the chemical synthesis of inorganic chemicals. However, the biological activity of Y2O3-NPs against TNBC cells has not been fully explored. The current study was conducted to assess Y2O3-NPs' anticancer activity against the human TNBC MDA-MB-231 cell line. METHODS Transmission electron microscopy (TEM), X-ray diffraction, Zeta potential, and dynamic light scattering (DLS) were used to characterize the Y2O3-NPs. SRB cell viability, reactive oxygen species (ROS) measurement, single-cell gel electrophoresis (comet assay), qPCR, flow cytometry, and Western blot were employed to assess the anticancer activity of the Y2O3-NPs. RESULTS Our results indicate favorable physiochemical properties of Y2O3-NPs (with approximately average size 14 nm, Zeta Potential about - 53.2 mV, and polydispersity index = 0.630). Y2O3-NPs showed a potent cytotoxic effect against MDA-MB-231 cells, with IC50 values of 74.4 µg/mL, without cytotoxic effect on the normal retina REP1 and human dermal fibroblast HDF cell lines. Further, treatment of MDA-MB-231 cells with IC50 Y2O3-NPs resulted in increased oxidative stress, accumulation of intracellular ROS levels, and induced DNA damage assessed by Comet assay. Upon Y2O3-NPs treatment, a significant increase in the early and late phases of apoptosis was revealed in MDA-MB-231 cells. qPCR results showed that Y2O3-NPs significantly upregulated the pro-apoptotic genes CASP3 and CASP8 as well as ferroptosis-related gene heme oxygenase-1 (HO-1), whereas the anti-apoptotic gene BCL2 was significantly downregulated. CONCLUSION This study suggests that Y2O3-NPs are safe on normal REP1 and HDF cells and exhibited a potent selective cytotoxic effect against the TNBC MDA-MB-231 cells through increasing levels of ROS generation with subsequent DNA damage, and induction of apoptosis and ferroptosis.
Collapse
|
research-article |
2 |
9 |
3
|
Wang X, Liu X, Yang X, Wang L, Yang J, Yan X, Liang T, Bruun Hansen HC, Yousaf B, Shaheen SM, Bolan N, Rinklebe J. In vivo phytotoxic effect of yttrium-oxide nanoparticles on the growth, uptake and translocation of tomato seedlings (Lycopersicon esculentum). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113939. [PMID: 35930836 DOI: 10.1016/j.ecoenv.2022.113939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 05/09/2023]
Abstract
The potential toxicity and ecological risks of rare-earth nanoparticles in the environment have become a concern due to their widespread application and inevitable releases. The integration of hydroponics experiments, partial least squares structural equation modeling (PLS-SEM), and Transmission Electron Microscopy (TEM) were utilized to investigate the physiological toxicity, uptake and translocation of yttrium oxide nanoparticles (Y2O3 NPs) under different hydroponic treatments (1, 5, 10, 20, 50 and 100 mg·L-1 of Y2O3 NPs, 19.2 mg·L-1 Y(NO3)3 and control) in tomato (Lycopersicon esculentum) seedlings. The results indicated that Y2O3 NPs had a phytotoxic effect on tomato seedlings' germination, morphology, physiology, and oxidative stress. The Y2O3 NPs and soluble YIII reduced the root elongation, bud elongation, root activity, chlorophyll, soluble protein content and superoxide dismutase and accelerated the proline and malondialdehyde in the plant with increasing concentrations. The phytotoxic effects of Y2O3 NPs on tomato seedlings had a higher phytotoxic effect than soluble YIII under the all treatments. The inhibition rates of different levels of Y2O3 NPs in shoot and root biomass ranged from 0.2% to 6.3% and 1.0-11.3%, respectively. The bioaccumulation and translocation factors were less than 1, which suggested that Y2O3 NPs significantly suppressed shoot and root biomass of tomato seedlings and easily bioaccumulated in the root. The observations were consistent with the process of concentration-dependent uptake and translocation factor and confirmed by TEM. Y2O3 NPs penetrate the epidermis, enter the cell wall, and exist in the intercellular space and cytoplasm of mesophyll cells of tomato seedlings by endocytic pathway. Moreover, PLS-SEM revealed that the concentration of NPs significantly negatively affects the morphology and physiology, leading to the change in biomass of plants. This study demonstrated the possible pathway of Y2O3 NPs in uptake, phytotoxicity and translocation of Y2O3 NPs in tomato seedlings.
Collapse
|
|
3 |
9 |
4
|
A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:278-284. [PMID: 27207064 DOI: 10.1016/j.msec.2016.04.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/30/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
An electrochemical sensor was prepared by modifying a glassy carbon electrode (GCE) with a composite of yttrium (III) oxide nanoparticles (Y2O3NPs) and carbon nanotubes (CNTs) for the determination of acetaminophen (ACT). Compared with a bare GCE and CNTs/GCE, the Y2O3NPs/CNTs/GCE exhibited a well-defined redox couple for ACT and highly enhanced the current response. The separations in the anodic and cathodic peak potentials (ΔEp) for ACT were 552mV, 24mV and 10mV at ba4re GCE, CNTs/GCE and Y2O3NPs/CNTs/GCE, respectively. The observation of only 10mV of ΔEp for ACT at Y2O3NPs/CNTs/GCE was a clear indication of a great acceleration of the electrode process compared to bare GCE and GCE modified with CNTs. Also, l-ascorbic acid (l-AA) and l-tyrosine (l-TRY) did not interfere with the selective determination of ACT. Square wave voltammetry (SWV) was performed for the quantification of ACT. A linear plot was obtained for current responses versus the concentrations of ACT over the range from 1.0×10(-10) to 1.8×10(-8)M with a detection limit of 3.0×10(-11)M (based on 3Sb/m). The proposed composite material provided high electrocatalytic activity, improved voltammetric behavior, good selectivity and good reproducibility. The accurate quantification of ACT makes the proposed electrode of great interest for the public health.
Collapse
|
Journal Article |
9 |
9 |
5
|
Khurana A, Saifi MA, Godugu C. Yttrium Oxide Nanoparticles Attenuate L-Arginine Induced Chronic Pancreatitis. Biol Trace Elem Res 2022; 201:3404-3417. [PMID: 36319828 DOI: 10.1007/s12011-022-03446-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 04/17/2023]
Abstract
In this work, we tested the efficacy of yttrium oxide nanoparticles (NY), a promising antioxidant and anti-inflammatory agent, in L-arginine (L-Arg) induced chronic pancreatitis (CP) model. The nanoparticles were characterized using multiple techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (pXRD), and Energy dispersive X-ray analysis (EDX). The rats were divided into three groups: normal control, L-Arg control, L-Arg + NY (1 mg/kg). We probed the mechanistic effects of the NY by ELISA, multiplex analysis of TGF-β pathway and inflammatory cytokines and immunoblotting. NY treatment significantly reduced pancreatic oxidative-nitrosative stress. In addition, NY intervention also reduced inflammatory cytokines and chemokines resulting in the inhibition of fibrosis signaling. Further, NY treatment suppressed the TGF-β signaling and epithelial-mesenchymal transition (EMT). We conclude that NY shows potential antioxidant, anti-inflammatory, and anti-fibrotic effects against CP and associated fibrosis.
Collapse
|
|
3 |
5 |
6
|
Zhang F, Wang Z, Wang S, Fang H, Chen M, Xu D, Tang L, Wang D. Physicochemical properties and ecotoxicological effects of yttrium oxide nanoparticles in aquatic media: Role of low molecular weight natural organic acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:113-120. [PMID: 26840524 DOI: 10.1016/j.envpol.2016.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Understanding how engineered nanoparticles (ENPs) interact with natural organic acids is important to ecological risk assessment of ENPs, but this interaction remains poorly studied. Here, we investigate the dispersion stability, ion release, and toxicity of yttrium oxide nanoparticles (nY2O3) suspensions after exposure to two low molecular weight natural organic acids (LOAs), namely benzoic acid and gallic acid. We find that in the presence of LOAs the nY2O3 suspensions become more stable with surface zeta potential more positive or negative, accompanied by small agglomerated size. LOA interaction with nY2O3 is shown to promote the release of dissolved yttrium from the nanoparticles, depending on the concentrations of LOAs. Toxic effects of the nY2O3 suspensions incubated with LOAs on Scenedesmus obliquus as a function of their mixture levels show three types of signs: stimulation, inhibition, and alleviation. The mechanism of the effects of LOAs on the nY2O3 toxicity may be mainly associated with the degree of agglomeration, particle-induced oxidative stress, and dissolved yttrium. Our results stressed the importance of LOA impacts on the fate and toxicity of ENPs in the aquatic environment.
Collapse
|
|
9 |
4 |
7
|
Sayour H, Kassem S, Canfarotta F, Czulak J, Mohamed M, Piletsky S. Biocompatibility and biodistribution of surface-modified yttrium oxide nanoparticles for potential theranostic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19095-19107. [PMID: 30710327 DOI: 10.1007/s11356-019-04309-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The surface of ultrafine yttrium oxide nanoparticles (NPs) with mean size of 7-8 nm was modified with a functional polymer layer to improve their dispersion and impart fluorescent properties for imaging purposes. Surface functionalization was achieved by silanization of yttrium oxide NPs with 3-trimethoxysilylpropyl methacrylate followed by grafting of a co-polymer made of acrylic acid (AA) and ethylene glycol methacrylate phosphate (EGMP). The polymer shell decreases the surface energy of NPs, enhances their polarity, and, as a result, improves their colloidal stability. The synthesized NPs are capable of scavenging free radicals and for this reason have therapeutic potential that warrants further investigations. Furthermore, these stabilized core-shell NPs showed a very low cytotoxicity, confirming that the polymer shell sensibly improves the biocompatibility of bare yttrium oxide NPs, which are otherwise toxic on their own. Poly-EGMP yttrium NPs proved to be safe up to 0.1 mg/g body weight in 1 month old Sprague-Dawley rats, showing also the ability to cross the blood-brain barrier short time after tail injection. The surface modification of yttrium NPs here described allows these NPs to be potentially used in theranostics to reduce neurodegenerative damage due to the heat stress.
Collapse
|
|
5 |
4 |
8
|
Wang J, Zhao S, Li Z, Chai J, Feng J, Han R. Phytotoxicity and the molecular response in yttrium oxide nanoparticle-treated Arabidopsis thaliana seedlings. PROTOPLASMA 2023; 260:955-966. [PMID: 36445485 DOI: 10.1007/s00709-022-01826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Due to the widespread application of rare earth oxide nanoparticles in various fields, their release into the environment is inevitable, and their potential toxicity and ecological impact have become a concern. Yttrium oxide nanoparticles are important rare earth oxide nanoparticles; however, their impact on plants and the molecular mechanism underlying their influence on plant growth and development are unclear. In this study, we found that yttrium oxide nanoparticles at concentrations exceeding 2 mM significantly inhibited the growth of Arabidopsis seedlings. Using Arabidopsis marker lines for auxin signaling, we found that the application of yttrium oxide nanoparticles resulted in disordered auxin signaling in root cells. Auxin signaling in the cells of the quiescent center and columella stem cells decreased, while auxin signaling in the cells of the stele was enhanced. In addition, trypan blue staining showed that yttrium oxide nanoparticles induced root cell death. Transcriptome analysis showed that the nanoparticles specifically inhibited the expression of lignin synthesis-related genes, activated the MAPK signaling pathway, and enhanced the ethylene and abscisic acid signaling pathways in plants. This study demonstrates the phytotoxicity of yttrium oxide nanoparticles at the molecular level in Arabidopsis, and it provides a new perspective on how plants respond to rare earth oxide stress.
Collapse
|
|
2 |
2 |
9
|
Cui S, Yang L, Lu H, Guo L, Wang Y, Lan J, Ren YX, Li YY. Elucidation of the stress mechanisms on activated sludge stability induced by yttrium oxide nanoparticles with cytotoxicity: Performance deterioration, biointerface variation and microbial response. BIORESOURCE TECHNOLOGY 2025; 422:132217. [PMID: 39952619 DOI: 10.1016/j.biortech.2025.132217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
As technoscience advances, widespread use of nanoparticles (NPs) has resulted in environmental risks. This study focuses on the potential stress of 0-200 mg/L yttrium oxide (Y2O3) NPs on the activated sludge stability. Y2O3 NPs progressively suppressed nitrification, caused significant NO2- accumulation (200 mg/L) and diminished activities of key functional enzymes. Deteriorated flocculation corroborates the Y2O3 NPs' destruction. Extracellular polymeric substances were lessened, yet amplified microbial metabolites prove the microbial counteraction coping with Y2O3 NPs' cytotoxicity. Plausible blockage of different protein channels contributed to the wane in biological nitrogen-removal capacity. Plus, 50 mg/L Y2O3 NPs stimulated the β-glucan production. When exceeding 100 mg/L, plentiful Y2O3 NPs aggregate on sludge-surface, which inhibits nutrients transfer and metabolism. Furthermore, ammonia-oxidizing bacteria shifted from Nitrosomonas to Nitrosospira with Y2O3 NPs increase. Reduction in Nitrospira, Saccharimonada-genera, and Microlunatus further corroborates the impairment of pollutants removal. PICRUSt2 prediction demonstrates Y2O3 NPs impedes nitrogen and glycolytic metabolic pathway.
Collapse
|
|
1 |
|
10
|
Baghaee P, Yoonesi M, Esfahani DE, Beirami E, Dargahi L, Rashidi FS, Valian N. Yttrium oxide nanoparticles alleviate cognitive deficits, neuroinflammation, and mitochondrial biogenesis impairment induced by streptozotocin. Neurosci Lett 2024; 837:137895. [PMID: 39025434 DOI: 10.1016/j.neulet.2024.137895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by progressive cognitive decline. Yttrium oxide nanoparticles (Y2O3NPs) have recently attracted much attention for their potential anti-inflammatory and antioxidant properties. However, the effects of Y2O3NPs in animal models of AD are less studied. This study aimed to investigate the potential therapeutic effects of Y2O3NPs in streptozotocin (STZ)-treated rats, a reliable animal model of AD, with special emphasis on cognitive function, neuroinflammation, and mitochondrial biogenesis in the hippocampus. Male Wistar rats were stereotaxically injected with STZ (3 mg/kg, 3 µl/ventricle). Three weeks after STZ injection, cognitive function was assessed using the Morris water maze, elevated plus maze, and passive avoidance tasks. Intraperitoneal treatment with Y2O3NPs (0.1, 0.3, or 0.5 mg/kg) was started 24 h after the STZ injection and continued for 21 days. The mRNA and protein levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and components involved in mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM) were measured in the hippocampus. The results indicated that STZ induced cognitive impairment and led to neuroinflammation and mitochondrial biogenesis impairment in the hippocampus of rats. Interestingly, treatment with Y2O3NPs effectively reduced STZ-induced cognitive deficits in a dose-dependent manner, possibly by attenuating neuroinflammation and mitochondrial biogenesis impairment. These findings suggest that Y2O3NPs can be considered as a promising therapeutic agent for treating or ameliorating the neuropathological effects associated with AD.
Collapse
|
|
1 |
|
11
|
Mohamed HR, Hemdan SHA, El-Sherif AA. Y 2O 3NPs induce selective cytotoxicity, genomic instability, oxidative stress and ROS mediated mitochondrial apoptosis in human epidermoid skin A-431 Cancer cells. Sci Rep 2025; 15:1543. [PMID: 39789066 PMCID: PMC11718274 DOI: 10.1038/s41598-024-82376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
Yttrium oxide nanoparticles (Y2O3NPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of Y2O3NPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of Y2O3NPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects. Cell viability and apoptosis induction were assessed using the Sulforhodamine B and chromatin diffusion assay, respectively. Reactive oxygen species (ROS) level, mitochondrial membrane potential integrity, oxidative stress markers and expression level of apoptotic and mitochondrial genes were also estimated. Our findings highlight the selective and significant cytotoxicity of Y2O3NPs against human epidermoid A-431 cancer cells. Notably, exposure to five Y2O3NPs concentrations (0.1, 1, 10, 100 and 1000 µg/ml) resulted in a high concentration-dependent reduction in cell viability and a corresponding increase in cell death observed 72 h post-treatment specifically in A-431 cancer cells, while normal skin fibroblast (HSF) cells exhibited minimal toxicity. When A-431 cancer cells were treated with the half-maximal inhibitory concentration (IC50) of Y2O3NPs for 72 h, a significant increase in ROS generation was noted. This led to oxidative stress, along with severe damage to genomic DNA and mitochondrial membrane potential, triggering substantial apoptosis. Furthermore, a concurrent significant upregulation of apoptotic p53 and mitochondrial ND3 genes was observed, coupled with a notable decrease in the anti-apoptotic Bcl2 gene expression.Overall, Y2O3NPs demonstrate considerable promise as a therapeutic agent for skin epidermoid cancer due to their ability to selectively target and induce cytotoxic effects in A-431 cancer cells, all while causing minimal harm to normal HSF cells. This selective cytotoxicity appears to be associated with Y2O3NPs' ability to induce excessive ROS production and subsequent oxidative stress, leading to significant genomic DNA fragmentation, loss of mitochondrial permeability, and alterations in apoptotic and mitochondrial genes' expression, ultimately promoting apoptosis in A-431 cancer cells. These findings establish a foundation for further research into the utilization of Y2O3NPs in targeted cancer therapies and underscore the necessity for ongoing investigation into their safety and efficacy in clinical applications.
Collapse
|
research-article |
1 |
|
12
|
Mohamed HRH, Essam R, Mohamed BA, Hakeem GM, Elnawasani SH, Nagy M, Safwat G, Diab A. Potent cytotoxicity and induction of ROS-mediated genomic instability, mitochondrial dysfunction, and apoptosis by Y 2O 3 NPs in Hep-G2 hepatic cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04051-9. [PMID: 40208319 DOI: 10.1007/s00210-025-04051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
Hepatic cancer, one of the most prevalent and lethal cancers globally, remains a significant health challenge, with limited treatment options underscoring the urgent need for novel, more effective therapies. Yttrium oxide nanoparticles (Y2O3 NPs) have attracted attention in nanomedicine due to their promising properties, including enhanced drug delivery, imaging capabilities, and therapeutic effects. However, the specific impact of Y2O3 NPs on hepatic cancer is largely unexplored. Therefore, this study was conducted to assess the cytotoxic effects of Y2O3 NPs on cell viability, reactive oxygen species (ROS) generation, genomic stability, mitochondrial integrity, and apoptosis induction in Hep-G2 hepatic cancer cells. The results from the SRB cytotoxicity assay demonstrated a strong concentration-dependent decrease in Hep-G2 cell viability, with a notably low half-maximal inhibitory concentration (IC50) value of 13.15 µg/ml. Exposure to the IC50 concentration of Y2O3 NPs led to increased ROS generation, DNA damage induction, and loss of mitochondrial membrane potential. Furthermore, the expression of pro-apoptotic p53 and mitochondrial ND3 genes was significantly upregulated, while the anti-apoptotic Bcl-2 gene was markedly downregulated, triggering apoptosis in Hep-G2 cells after 72 h of exposure to Y2O3 NPs. Collectively, these findings highlight the therapeutic potential of Y2O3 NPs in hepatic cancer, emphasizing the need for further research to fully explore their efficacy as a treatment option for liver cancer.
Collapse
|
|
1 |
|
13
|
Chen Z, Liu J, Zheng M, Mo M, Hu X, Liu C, Pathak JL, Wang L, Chen L. TRIM24-DTNBP1-ATP7A mediated astrocyte cuproptosis in cognition and memory dysfunction caused by Y 2O 3 NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176353. [PMID: 39304169 DOI: 10.1016/j.scitotenv.2024.176353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Yttrium oxide nanoparticles (Y2O3 NPs), extensively utilized rare earth nanoparticles, exhibited a diverse range of applications across various fields, which leading to increased human exposure. Moreover, potential neurotoxic risks have been associated with their use, yet the underlying mechanism remains unclear. The present study aimed to investigate the effects of Y2O3 NPs on cognitive function in rats with a particular focus on elucidating the pivotal role played by astrocytes in this process. The results demonstrated that Y2O3 NPs induced cognitive and memory impairment in rats, copper (Cu) accumulation and cuproptosis of astrocytes as contributing factors. Furthermore, we elucidated that Y2O3 NPs induced astrocytes cuproptosis by inhibiting TRIM24/DTNBP1/ATP7A signaling pathway-mediated cellular Cu efflux. We provide, for the first time, the important involvement of astrocytes in Y2O3 NPs-induced neurotoxicity, elucidating that cuproptosis as the primary mode of cell death. These results offer valuable insights for the future safe application of rare earth nanoparticles in field of neurology.
Collapse
|
|
1 |
|