Thomas HR, Frank MH. Connecting the pieces: uncovering the molecular basis for long-distance communication through plant grafting.
THE NEW PHYTOLOGIST 2019;
223:582-589. [PMID:
30834529 DOI:
10.1111/nph.15772]
[Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/19/2019] [Indexed: 05/23/2023]
Abstract
Vascular plants are wired with a remarkable long-distance communication system. This network can span from as little as a few centimeters (or less) in species like Arabidopsis, up to 100 m in the tallest giant sequoia, linking distant organ systems into a unified, multicellular organism. Grafting is a fundamental technique that allows researchers to physically break apart and reassemble the long-distance transport system, enabling the discovery of molecular signals that underlie intraorganismal communication. In this review, we highlight how plant grafting has facilitated the discovery of new long-distance signaling molecules that function in coordinating developmental transitions, abiotic and biotic responses, and cross-species interactions. This rapidly expanding area of research offers sustainable approaches for improving plant performance in the laboratory, the field, the orchard, and beyond.
Collapse