1
|
Eberlein U, Cremonesi M, Lassmann M. Individualized Dosimetry for Theranostics: Necessary, Nice to Have, or Counterproductive? J Nucl Med 2017; 58:97S-103S. [PMID: 28864620 DOI: 10.2967/jnumed.116.186841] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/10/2017] [Indexed: 11/16/2022] Open
Abstract
In 2005, the term theragnostics (theranostics) was introduced for describing the use of imaging for therapy planning in radiation oncology. In nuclear medicine, this expression describes the use of tracers for predicting the absorbed doses in molecular radiotherapy and, thus, the safety and efficacy of a treatment. At present, the most successful groups of isotopes for this purpose are 123I/124I/131I, 68Ga/177Lu, and 111In/86Y/90Y. The purpose of this review is to summarize available data on the dosimetry and dose-response relationships of several theranostic compounds, with a special focus on radioiodine therapy for differentiated thyroid cancer and peptide receptor radionuclide therapy. These are treatment modalities for which dose-response relationships for healthy tissues and tumors have been demonstrated. In addition, available data demonstrate that posttherapeutic dosimetry after a first treatment cycle predicts the absorbed doses in further cycles. Both examples show the applicability of the concept of theranostics in molecular radiotherapies. Nevertheless, unanswered questions need to be addressed in clinical trials incorporating dosimetry-related concepts for determining the amount of therapeutic activity to be administered.
Collapse
|
Review |
8 |
70 |
2
|
Roth D, Gustafsson JR, Warfvinge CF, Sundlöv A, Åkesson A, Tennvall J, Sjögreen Gleisner K. Dosimetric quantities of neuroendocrine tumors over treatment cycles with 177Lu-DOTA-TATE. J Nucl Med 2021; 63:399-405. [PMID: 34272319 DOI: 10.2967/jnumed.121.262069] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor dosimetry was performed for 177Lu-DOTA-TATE with the aims of better understanding i) the range and variation of the tumor absorbed doses (ADs), ii) how different dosimetric quantities evolve over the treatment cycles, and iii) whether this evolution differs depending on the tumor grade. Such information is important for radiobiological interpretation and may inform the design of alternative administration schemes. Methods: Data come from 41 patients with neuroendocrine tumors (NETs) of grade 1 (n = 23) or 2 (n = 18), that had received between 2 and 9 treatment cycles. Dosimetry was performed for 182 individual lesions, giving in total 880 individual AD assessments across all cycles. Hybrid planar-SPECT/CT imaging was used, including quantitative SPECT reconstruction, voxel-based absorbed-dose-rate calculation, semi-automatic image segmentation, and partial-volume correction. Linear mixed-effect models were used to analyze changes over cycles in tumor ADs, absorbed-dose rates and activity concentrations at day-1, effective half-times, and tumor volumes. Tumors smaller than 8 ml were excluded from analyses. Results: Tumor ADs ranged between 2 and 77 Gy per cycle. On average the AD decreased over the cycles, with significantly different rates (P < 0.05) for grade 1 and 2 NETs of 6% and 14% per cycle, respectively. The absorbed-dose rates and activity concentrations at day-1 decreased by similar amounts. The effective half-times were less variable but shorter for grade 2 than grade 1 (P < 0.001). For grade 2 NETS the tumor volumes decreased, with a similar tendency in grade 1. Conclusion: The tumor AD, absorbed-dose rate and activity uptake decrease, in parallel with tumor volumes, between 177Lu-DOTA-TATE treatment cycles, particularly for grade 2 NETs. The effective half-times vary less but are lower for grade 2 than grade 1 NETs. These results may indicate the development of radiation-induced fibrosis and could have implications for the design of future treatment and dosimetry protocols.
Collapse
|
Journal Article |
4 |
42 |
3
|
Woo SK, Jang SJ, Seo MJ, Park JH, Kim BS, Kim EJ, Lee YJ, Lee TS, An GI, Song IH, Seo Y, Kim KI, Kang JH. Development of 64Cu-NOTA-Trastuzumab for HER2 Targeting: A Radiopharmaceutical with Improved Pharmacokinetics for Human Studies. J Nucl Med 2018; 60:26-33. [PMID: 29777007 DOI: 10.2967/jnumed.118.210294] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was to develop 64Cu-labeled trastuzumab with improved pharmacokinetics for human epidermal growth factor receptor 2 (HER2). Methods: Trastuzumab was conjugated with SCN-Bn-NOTA and radiolabeled with 64Cu. Serum stability and immunoreactivity of 64Cu-NOTA-trastuzumab were tested. Small-animal PET imaging and biodistribution studies were performed in a HER2-positive breast cancer xenograft model (BT-474). The internal dosimetry for experimental animals was determined using the image-based approach with the Monte Carlo N-particle code. Results: 64Cu-NOTA-trastuzumab was prepared with high radiolabeling yield and radiochemical purity (>98%) and showed high stability in serum and good immunoreactivity. Uptake of 64Cu-NOTA-trastuzumab was highest at 48 h after injection as determined by PET imaging and biodistribution results in BT-474 tumors. The blood radioactivity concentrations of 64Cu-NOTA-trastuzumab decreased biexponentially with time in both mice with and mice without BT-474 tumor xenografts. The calculated absorbed dose of 64Cu-NOTA-trastuzumab was 0.048 mGy/MBq for the heart, 0.079 mGy/MBq for the liver, and 0.047 mGy/MBq for the spleen. Conclusion: 64Cu-NOTA-trastuzumab was effectively targeted to the HER2-expressing tumor in vitro and in vivo, and it exhibited a relatively low absorbed dose due to a short residence time. Therefore, 64Cu-NOTA-trastuzumab could be applied to select the right patients and right timing for HER2 therapy, to monitor the treatment response after HER2-targeted therapy, and to detect distal or metastatic spread.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
42 |
4
|
Makris NE, Boellaard R, van Lingen A, Lammertsma AA, van Dongen GAMS, Verheul HM, Menke CW, Huisman MC. PET/CT-derived whole-body and bone marrow dosimetry of 89Zr-cetuximab. J Nucl Med 2015; 56:249-54. [PMID: 25613538 DOI: 10.2967/jnumed.114.147819] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED PET/CT imaging allows for image-based estimates of organ and red marrow (RM) residence times. The aim of this study was to derive PET/CT-based radiation dosimetry for (89)Zr-cetuximab, with special emphasis on determining RM-absorbed dose. METHODS Seven patients with colorectal cancer received 36.9 ± 0.8 MBq of (89)Zr-cetuximab within 2 h after administration of a therapeutic dose of 500 mg·m(-2) of cetuximab. Whole-body PET/CT scans and blood samples were obtained at 1, 24, 48, 94, and 144 h after injection. RM activity concentrations were calculated from manual delineation of the lumbar vertebrae and blood samples, assuming a fixed RM-to-plasma activity concentration ratio (RMPR) of 0.19. The cumulated activity was calculated as the area under the curve of the organ time-activity data (liver, lungs, kidneys, spleen, and RM), assuming physical decay after the last scan. The residence time for each organ was derived by dividing the cumulated activity with the total injected activity. The residence time in the remainder of the body was calculated as the maximum possible residence time minus the sum of residence time of source organs, assuming no excretion during the time course of the scans. The (self and total) RM- and organ-absorbed doses and effective whole-body radiation dose were obtained using dose conversion factors from OLINDA/EXM 1.1. Several simplified 3-time-point dosimetry approaches were also evaluated. RESULTS The first approach yielded self and total RM doses of 0.17 ± 0.04 and 0.51 ± 0.06 mGy·MBq(-1), respectively. The second approach deviated by -21% in self-dose and -6% in total dose. RMPR increased over time in 5 of 7 patients. The highest (89)Zr-absorbed dose was observed in the liver with 2.60 ± 0.78 mGy·MBq(-1), followed by the kidneys, spleen, and lungs, whereas the effective whole-body dose was 0.61 ± 0.09 mSv·MBq(-1). The simplified 3-time-point (1, 48, and 144 h) dosimetry approach deviated by at most 4% in both organ-absorbed doses and effective dose. CONCLUSION Although the total RM dose estimates obtained with the 2 approaches differed only by at most 6%, the image-based approach is preferred because it accounts for nonconstant RMPR. The number of successive scans can be reduced to 3 without affecting effective dose estimates.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
34 |
5
|
Domen SR. A Sealed Water Calorimeter for Measuring Absorbed Dose. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 1994; 99:121-141. [PMID: 37404710 PMCID: PMC8345238 DOI: 10.6028/jres.099.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/02/1993] [Indexed: 07/06/2023]
Abstract
The NIST sealed water calorimeter is intended for direct measurement of absorbed dose to water. This calorimeter was used for a series of approximately 3700 measurements to investigate the so-called heat defect, that is, anomalous endothermic or exothermic effects caused by dissolved gases. The three systems investigated were "high-purity" water saturated with N2, H2, and mixtures of H2/O2. The repeatability of the measurements of absorbed dose rates for the 60Co teletherapy beam was studied with different water fillings and accumulated absorbed dose. Measurements with the H2/O2 system varied with accumulated absorbed dose. Based on the measurements and theoretical considerations, it appears that the H2-saturated system is the best choice for eliminating the heat defect. Measurements with both the N2- and H2-saturated systems are in good agreement with those determined with a graphite and graphite-water calorimeter (for which there is no heat defect).
Collapse
|
research-article |
31 |
33 |
6
|
Owen RL, Holton JM, Schulze-Briese C, Garman EF. Determination of X-ray flux using silicon pin diodes. JOURNAL OF SYNCHROTRON RADIATION 2009; 16:143-51. [PMID: 19240326 PMCID: PMC2651761 DOI: 10.1107/s0909049508040429] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/26/2008] [Indexed: 05/17/2023]
Abstract
Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced.
Collapse
|
Evaluation Study |
16 |
29 |
7
|
Domen SR. An Absorbed Dose Water Calorimeter: Theory, Design, and Performance. J Res Natl Bur Stand (1977) 1982; 87:211-235. [PMID: 34566082 PMCID: PMC6768002 DOI: 10.6028/jres.087.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Two calibrated thermistors sandwiched between two insulative polyethylene films were immersed in a 30 cm cube of water having a low thermal diffusivity. The product of the specific heat of water and temperature rise gave the combined effect of the local absorbed dose and any heat defect at a position along a temperature profile produced by cobalt-60 irradiation. The dose rate was near 18 mGy/s and exposure times were 3 min. The standard deviation for a daily set of measurements was about 0.6 percent. Calculations showed that conductive heat transfer produced a negligible effect at the position of measurement along the beam axis. Tests showed the absence of convection. Temperature drifts before irradiation were quickly controlled by changing the power dissipated in the water between two immersed electrodes. Reproducible measurements were obtained in distilled water supplies that had a wide range of impurities. Measurements, after saturating the water with nitrogen or oxygen, showed no difference. A difference of 0.6 percent would have been easily detectable. Tests with several chemicals added to water showed some unexpected results and changes in the measured absorbed dose rate versus accumulated dose. The measured absorbed dose rate in distilled water under the conditions described was 3.5 percent higher than that determined from measurements with a graphite calorimeter.
Collapse
|
research-article |
43 |
18 |
8
|
George SC, Samuel EJJ. Developments in 177Lu-based radiopharmaceutical therapy and dosimetry. Front Chem 2023; 11:1218670. [PMID: 37583569 PMCID: PMC10424930 DOI: 10.3389/fchem.2023.1218670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023] Open
Abstract
177Lu is a radioisotope that has become increasingly popular as a therapeutic agent for treating various conditions, including neuroendocrine tumors and metastatic prostate cancer. 177Lu-tagged radioligands are molecules precisely designed to target and bind to specific receptors or proteins characteristic of targeted cancer. This review paper will present an overview of the available 177Lu-labelled radioligands currently used to treat patients. Based on recurring, active, and completed clinical trials and other available literature, we evaluate current status, interests, and developments in assessing patient-specific dosimetry, which will define the future of this particular treatment modality. In addition, we will discuss the challenges and opportunities of the existing dosimetry standards to measure and calculate the radiation dose delivered to patients, which is essential for ensuring treatments' safety and efficacy. Finally, this article intends to provide an overview of the current state of 177Lu- tagged radioligand therapy and highlight the areas where further research can improve patient treatment outcomes.
Collapse
|
Review |
2 |
18 |
9
|
McDougald W, Vanhove C, Lehnert A, Lewellen B, Wright J, Mingarelli M, Corral CA, Schneider JE, Plein S, Newby DE, Welch A, Miyaoka R, Vandenberghe S, Tavares AAS. Standardization of Preclinical PET/CT Imaging to Improve Quantitative Accuracy, Precision, and Reproducibility: A Multicenter Study. J Nucl Med 2019; 61:461-468. [PMID: 31562220 PMCID: PMC7067528 DOI: 10.2967/jnumed.119.231308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Preclinical PET/CT is a well-established noninvasive imaging tool for studying disease development/progression and the development of novel radiotracers and pharmaceuticals for clinical applications. Despite this pivotal role, standardization of preclinical PET/CT protocols, including CT absorbed dose guidelines, is essentially nonexistent. This study (1) quantitatively assesses the variability of current preclinical PET/CT acquisition and reconstruction protocols routinely used across multiple centers and scanners; and (2) proposes acquisition and reconstruction PET/CT protocols for standardization of multicenter data, optimized for routine scanning in the preclinical PET/CT laboratory. Methods: Five different commercial preclinical PET/CT scanners in Europe and the United States were enrolled. Seven different PET/CT phantoms were used for evaluating biases on default/general scanner protocols, followed by developing standardized protocols. PET, CT, and absorbed dose biases were assessed. Results: Site default CT protocols were the following: greatest extracted Hounsfield units (HU) were 133 HU for water and −967 HU for air; significant differences in all tissue equivalent material (TEM) groups were measured. The average CT absorbed doses for mouse and rat were 72 mGy and 40 mGy, respectively. Standardized CT protocol were the following: greatest extracted HU were −77 HU for water and −990 HU for air; TEM precision improved with a reduction in variability for each tissue group. The average CT absorbed dose for mouse and rat decreased to 37 mGy and 24 mGy, respectively. Site default PET protocols were the following: uniformity was substandard in one scanner, recovery coefficients (RCs) were either over- or underestimated (maximum of 43%), standard uptake values (SUVs) were biased by a maximum of 44%. Standardized PET protocols were the following: scanner with substandard uniformity improved by 36%, RC variability decreased by 13% points, and SUV accuracy improved to 10%. Conclusion: Data revealed important quantitative biases in preclinical PET/CT and absorbed doses with default protocols. Standardized protocols showed improvements in measured PET/CT accuracy and precision with reduced CT absorbed dose across sites. Adhering to standardized protocols generates reproducible and consistent preclinical imaging datasets, thus augmenting translation of research findings to the clinic.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
18 |
10
|
Ljungberg M, Gleisner KS. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy. Diagnostics (Basel) 2015; 5:296-317. [PMID: 26854156 PMCID: PMC4665601 DOI: 10.3390/diagnostics5030296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022] Open
Abstract
Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions.
Collapse
|
Review |
10 |
17 |
11
|
Schneider CW, Newhauser WD, Wilson LJ, Schneider U, Kaderka R, Miljanić S, Knežević Ž, Stolarcyzk L, Durante M, Harrison RM. A descriptive and broadly applicable model of therapeutic and stray absorbed dose from 6 to 25 MV photon beams. Med Phys 2017; 44:3805-3814. [PMID: 28429827 DOI: 10.1002/mp.12286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/09/2017] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To develop a simple model of therapeutic and stray absorbed dose for a variety of treatment machines and techniques without relying on proprietary machine-specific parameters. METHODS Dosimetry measurements conducted in this study and from the literature were used to develop an analytical model of absorbed dose from a variety of treatment machines and techniques in the 6 to 25 MV interval. A modified one-dimensional gamma-index analysis was performed to evaluate dosimetric accuracy of the model on an independent dataset consisting of measured dose profiles from seven treatment units spanning four manufacturers. RESULTS The average difference between the calculated and measured absorbed dose values was 9.9% for those datasets on which the model was trained. Additionally, these results indicate that the model can provide accurate calculations of both therapeutic and stray radiation dose from a wide variety of radiotherapy units and techniques. CONCLUSIONS We have developed a simple analytical model of absorbed dose from external beam radiotherapy treatments in the 6 to 25 MV beam energy range. The model has been tested on measured data from multiple treatment machines and techniques, and is broadly applicable to contemporary external beam radiation therapy.
Collapse
|
Journal Article |
8 |
13 |
12
|
Son K, Cho S, Kim JS, Han Y, Ju SG, Choi DH. Evaluation of radiation dose to organs during kilovoltage cone-beam computed tomography using Monte Carlo simulation. J Appl Clin Med Phys 2014; 15:4556. [PMID: 24710444 PMCID: PMC5875477 DOI: 10.1120/jacmp.v15i2.4556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/15/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022] Open
Abstract
Image-guided techniques for radiation therapy have improved the precision of radiation delivery by sparing normal tissues. Cone-beam computed tomography (CBCT) has emerged as a key technique for patient positioning and target localization in radiotherapy. Here, we investigated the imaging radiation dose delivered to radiosensitive organs of a patient during CBCT scan. The 4D extended cardiac-torso (XCAT) phantom and Geant4 Application for Tomographic Emission (GATE) Monte Carlo (MC) simulation tool were used for the study. A computed tomography dose index (CTDI) standard polymethyl methacrylate (PMMA) phantom was used to validate the MC-based dosimetric evaluation. We implemented an MC model of a clinical on-board imager integrated with the Trilogy accelerator. The MC model's accuracy was validated by comparing its weighted CTDI (CTDIw) values with those of previous studies, which revealed good agreement. We calculated the absorbed doses of various human organs at different treatment sites such as the head-and-neck, chest, abdomen, and pelvis regions, in both standard CBCT scan mode (125 kVp, 80 mA, and 25 ms) and low-dose scan mode (125 kVp, 40 mA, and 10 ms). In the former mode, the average absorbed doses of the organs in the head and neck and chest regions ranged 4.09-8.28 cGy, whereas those of the organs in the abdomen and pelvis regions were 4.30-7.48 cGy. In the latter mode, the absorbed doses of the organs in the head and neck and chest regions ranged 1.61-1.89 cGy, whereas those of the organs in the abdomen and pelvis region ranged between 0.79-1.85 cGy. The reduction in the radiation dose in the low-dose mode compared to the standard mode was about 20%, which is in good agreement with previous reports. We opine that the findings of this study would significantly facilitate decisions regarding the administration of extra imaging doses to radiosensitive organs.
Collapse
|
research-article |
11 |
13 |
13
|
Wrzesień M, Olszewski J. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT. Int J Occup Med Environ Health 2017; 30:705-713. [PMID: 28584324 DOI: 10.13075/ijomeh.1896.00960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient's exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT). MATERIAL AND METHODS The thermoluminescent dosimetry and anthropomorphic phantom was used for measuring the doses. The 15 panoramic, 4 cephalometric and 4 CBCT exposures were performed by placing high-sensitivity thermoluminescent detectors (TLD) in 18 anatomical points of the phantom. RESULTS The maximum absorbed dose recorded during performed measurements corresponds to the point representing the brainstem and it is 10 mGy. The dose value recorded by the TLD placed in the thyroid during CBCT imaging in relation to the panoramic radiography differs by a factor of 13.5. CONCLUSIONS Cone beam computed tomography, in comparison with panoramic or cephalometric imaging technique, provides higher radiation doses to the patients. Int J Occup Med Environ Health 2017;30(5):705-713.
Collapse
|
Journal Article |
8 |
11 |
14
|
Integral T-shaped phantom-dosimeter system to measure transverse and longitudinal dose distributions simultaneously for stereotactic radiosurgery dosimetry. SENSORS 2012; 12:6404-14. [PMID: 22778649 PMCID: PMC3386748 DOI: 10.3390/s120506404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 11/29/2022]
Abstract
A T-shaped fiber-optic phantom-dosimeter system was developed using square scintillating optical fibers, a lens system, and a CMOS image camera. Images of scintillating light were used to simultaneously measure the transverse and longitudinal distributions of absorbed dose of a 6 MV photon beam with field sizes of 1 × 1 and 3 × 3 cm2. Each optical fiber has a very small sensitive volume and the sensitive material is water equivalent. This allows the measurements of cross-beam profile as well as the percentage depth dose of small field sizes. In the case of transverse dose distribution, the measured beam profiles were gradually become uneven and the beam edge had a gentle slope with increasing depth of the PMMA phantom. In addition, the maximum dose values of longitudinal dose distribution for 6 MV photon beam with field sizes of 1 × 1 and 3 × 3 cm2 were found to be at a depth of approximately 15 mm and the percentage depth dose of both field sizes were nearly in agreement at the skin dose level. Based on the results of this study, it is anticipated that an all-in-one phantom-dosimeter can be developed to accurately measure beam profiles and dose distribution in a small irradiation fields prior to carrying out stereotactic radiosurgery.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
10 |
15
|
Gupta A, Shin JH, Lee MS, Park JY, Kim K, Kim JH, Suh M, Park CR, Kim YJ, Song MG, Jeong JM, Lee DS, Lee YS, Lee JS. Voxel-Based Dosimetry of Iron Oxide Nanoparticle-Conjugated 177Lu-Labeled Folic Acid Using SPECT/CT Imaging of Mice. Mol Pharm 2019; 16:1498-1506. [PMID: 30821463 DOI: 10.1021/acs.molpharmaceut.8b01125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several radiolabeled folic acid conjugates have been developed for targeted imaging and therapy. However, the therapeutic concept with radiolabeled folate conjugates has not yet been applied to clinical applications owing to the high renal absorbed dose. The effectiveness of targeted radionuclide therapy (TRT) depends primarily on the absorbed dose rate and on the total absorbed dose delivered to the tumor and to normal tissue. Owing to various limitations associated with organ level dosimetry, voxel-based dosimetry has become essential for the assessment of a more accurate absorbed dose during TRT. In this study, we synthesized iron oxide nanoparticle (IONP)-conjugated radiolabeled folate (177Lu-IONP-Folate) and performed voxel-based dosimetry using SPECT/CT images of normal mice through direct Geant4 application for emission tomography (GATE) Monte Carlo (MC) simulation. We also prepared 177Lu-Folate and 177Lu-IONPs for the comparison of absorbed doses with that of 177Lu-IONP-Folate. In addition, we calculated the mean absorbed dose at the organ-level using the medical internal radiation dose (MIRD) schema. The radioactivities of all three radiotracers were mainly accumulated in the liver and kidneys immediately after injection. For the kidneys, the voxel-based absorbed doses obtained with 177Lu-IONP-Folate, 177Lu-Folate, and 177Lu-IONPs were 1.01 ± 0.17, 2.46 ± 0.50, and 0.52 ± 0.08 Gy/MBq, respectively. The renal absorbed dose decreased significantly (∼half) when 177Lu-IONP-Folate was used compared with when the 177Lu-Folate only was used. The mean absorbed dose values obtained at organ-level using the MIRD schema were comparable to voxel-based absorbed doses estimated with GATE MC. The voxel-based absorbed dose values obtained in this study of individualized activity show that the renal absorbed dose could be reduced to almost half with 177Lu-IONP-Folate. Therefore, 177Lu-IONP-Folate could be clinically applicable in the TRT of folate receptor-positive cancers in a personalized manner when using the voxel-based dosimetry method.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
10 |
16
|
Andreev DV, Bondarenko GG, Andreev VV, Stolyarov AA. Use of High-Field Electron Injection into Dielectrics to Enhance Functional Capabilities of Radiation MOS Sensors. SENSORS 2020; 20:s20082382. [PMID: 32331462 PMCID: PMC7219320 DOI: 10.3390/s20082382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
The paper suggests a design of radiation sensors based on metal-oxide-semiconductor (MOS) structures and p-channel radiation sensitive field effect transistors (RADFET) which are capable to function under conditions of high-field tunnel injection of electrons into the dielectric. We demonstrate that under these conditions, the dose sensitivity of the sensor can be significantly raised, and, besides, the intensity of radiation can be monitored in situ on the basis of determining the ionization current arising in the dielectric film. The paper proposes the model allowing to make a quantitative analysis of charge effects taking place in the radiation MOS sensors under concurrent influence of ionization radiation and high-field tunnel injection of electrons. Use of the model allows to properly interpret results of the radiation control. In order to test the designed sensors experimentally, we have utilized γ-rays, α-particle radiation, and proton beams. We have acquired experimental results verifying the enhancement of function capabilities of the radiation MOS sensors when these have been under high-field injection of electrons into the dielectric.
Collapse
|
Journal Article |
5 |
9 |
17
|
Zaboronok A, Taskaev S, Volkova O, Mechetina L, Kasatova A, Sycheva T, Nakai K, Kasatov D, Makarov A, Kolesnikov I, Shchudlo I, Bykov T, Sokolova E, Koshkarev A, Kanygin V, Kichigin A, Mathis BJ, Ishikawa E, Matsumura A. Gold Nanoparticles Permit In Situ Absorbed Dose Evaluation in Boron Neutron Capture Therapy for Malignant Tumors. Pharmaceutics 2021; 13:pharmaceutics13091490. [PMID: 34575566 PMCID: PMC8466622 DOI: 10.3390/pharmaceutics13091490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is an anticancer modality realized through 10B accumulation in tumor cells, neutron irradiation of the tumor, and decay of boron atoms with the release of alpha-particles and lithium nuclei that damage tumor cell DNA. As high-LET particle release takes place inside tumor cells absorbed dose calculations are difficult, since no essential extracellular energy is emitted. We placed gold nanoparticles inside tumor cells saturated with boron to more accurately measure the absorbed dose. T98G cells accumulated ~50 nm gold nanoparticles (AuNPs, 50 µg gold/mL) and boron-phenylalanine (BPA, 10, 20, 40 µg boron-10/mL), and were irradiated with a neutron flux of 3 × 108 cm−2s−1. Gamma-rays (411 keV) emitted by AuNPs in the cells were measured by a spectrometer and the absorbed dose was calculated using the formula D = (k × N × n)/m, where D was the absorbed dose (GyE), k—depth-related irradiation coefficient, N—number of activated gold atoms, n—boron concentration (ppm), and m—the mass of gold (g). Cell survival curves were fit to the linear-quadratic (LQ) model. We found no influence from the presence of the AuNPs on BNCT efficiency. Our approach will lead to further development of combined boron and high-Z element-containing compounds, and to further adaptation of isotope scanning for BNCT dosimetry.
Collapse
|
|
4 |
8 |
18
|
Larouze A, Alcocer-Ávila M, Morgat C, Champion C, Hindié E. Membrane and Nuclear Absorbed Doses from 177Lu and 161Tb in Tumor Clusters: Effect of Cellular Heterogeneity and Potential Benefit of Dual Targeting-A Monte Carlo Study. J Nucl Med 2023; 64:1619-1624. [PMID: 37321819 DOI: 10.2967/jnumed.123.265509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Early use of targeted radionuclide therapy to eradicate tumor cell clusters and micrometastases might offer cure. However, there is a need to select appropriate radionuclides and assess the potential impact of heterogeneous targeting. Methods: The Monte Carlo code CELLDOSE was used to assess membrane and nuclear absorbed doses from 177Lu and 161Tb (β--emitter with additional conversion and Auger electrons) in a cluster of 19 cells (14-μm diameter, 10-μm nucleus). The radionuclide distributions considered were cell surface, intracytoplasmic, or intranuclear, with 1,436 MeV released per labeled cell. To model heterogeneous targeting, 4 of the 19 cells were unlabeled, their position being stochastically determined. We simulated situations of single targeting, as well as dual targeting, with the 2 radiopharmaceuticals aiming at different targets. Results: 161Tb delivered 2- to 6-fold higher absorbed doses to cell membranes and 2- to 3-fold higher nuclear doses than 177Lu. When all 19 cells were targeted, membrane and nuclear absorbed doses were dependent mainly on radionuclide location. With cell surface location, membrane absorbed doses were substantially higher than nuclear absorbed doses, both with 177Lu (38-41 vs. 4.7-7.2 Gy) and with 161Tb (237-244 vs. 9.8-15.1 Gy). However, when 4 cells were not targeted by the cell surface radiopharmaceutical, the membranes of these cells received on average only 9.6% of the 177Lu absorbed dose and 2.9% of the 161Tb dose, compared with a cluster with uniform cell targeting, whereas the impact on nuclear absorbed doses was moderate. With an intranuclear radionuclide location, the nuclei of unlabeled cells received only 17% of the 177Lu absorbed dose and 10.8% of the 161Tb dose, compared with situations with uniform targeting. With an intracytoplasmic location, nuclear and membrane absorbed doses to unlabeled cells were one half to one quarter those obtained with uniform targeting, both for 177Lu and for 161Tb. Dual targeting was beneficial in minimizing absorbed dose heterogeneities. Conclusion: To eradicate tumor cell clusters, 161Tb may be a better candidate than 177Lu. Heterogeneous cell targeting can lead to substantial heterogeneities in absorbed doses. Dual targeting was helpful in reducing dose heterogeneity and should be explored in preclinical and clinical studies.
Collapse
|
|
2 |
8 |
19
|
Hardiansyah D, Kletting P, Begum NJ, Eiber M, Beer AJ, Pawiro SA, Glatting G. Important pharmacokinetic parameters for individualization of 177 Lu-PSMA therapy: A global sensitivity analysis for a physiologically-based pharmacokinetic model. Med Phys 2020; 48:556-568. [PMID: 33244792 DOI: 10.1002/mp.14622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The knowledge of the contribution of anatomical and physiological parameters to interindividual pharmacokinetic differences could potentially be used to improve individualized treatment planning for radionuclide therapy. The aim of this study was therefore to identify the physiologically based pharmacokinetic (PBPK) model parameters that determine the interindividual variability of absorbed doses (ADs) to kidneys and tumor lesions in therapy with 177 Lu-labeled PSMA-targeting radioligands. METHODS A global sensitivity analysis (GSA) with the extended Fourier Amplitude Sensitivity Test (eFAST) algorithm was performed. The whole-body PBPK model for PSMA-targeting radioligand therapy from our previous studies was used in this study. The model parameters of interest (input of the GSA) were the organ receptor densities [R0 ], the organ blood flows f, and the organ release rates λ. These parameters were systematically sampled NE times according to their distribution in the patient population. The corresponding pharmacokinetics were simulated and the ADs (model output) to kidneys and tumor lesions were collected. The main effect S i and total effect S Ti were calculated using the eFAST algorithm based on the variability of the model output: The main effect S i of input parameter i represents the reduction in variance of the output if the "true" value of parameter i would be known. The total effect S Ti of an input parameter i represents the proportion of variance remaining if the "true" values of all other input parameters except for i are known. The numbers of samples NE were increased up to 8193 to check the stability (i.e., convergence) of the calculated main effects S i and total effects S Ti . RESULTS From the simulations, the relative interindividual variability of ADs in the kidneys (coefficient of variation CV = 31%) was lower than that of ADs in the tumors (CV up to 59%). Based on the GSA, the most important parameters that determine the ADs to the kidneys were kidneys flow ( S i = 0.36, S Ti = 0.43) and kidneys receptor density ( S i = 0.25, S Ti = 0.30). Tumor receptor density was identified as the most important parameter determining the ADs to tumors ( S i and S Ti up to 0.72). CONCLUSIONS The results suggest that an accurate measurement of receptor density and flow before therapy could be a promising approach for developing an individualized treatment with 177 Lu-labeled PSMA-targeting radioligands.
Collapse
|
Journal Article |
5 |
7 |
20
|
Hosseini Pooya SM, Hafezi L, Manafi F, Talaeipour AR. Assessment of the radiological safety of a Genoray portable dental X-ray unit. Dentomaxillofac Radiol 2014; 44:20140255. [PMID: 25343709 PMCID: PMC4614165 DOI: 10.1259/dmfr.20140255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The portable dental radiographic systems are generally used in emergency situations (e.g. during natural disasters) for disabled/aged patients and in patient rooms. This study assesses the output exposure of a portable dental radiographic system measured using thermoluminescent dosemeters (TLDs). METHODS Occupational exposure of the operator was determined when the portable dental unit was used for mandibular and maxillary teeth exposure. RESULTS The doses of some critical organs of an operator were measured using TLDs implanted within the Rando phantom. CONCLUSIONS Considering the annual organ dose limits, the eye lens dose limit is the main factor determining the frequency of system application.
Collapse
|
research-article |
11 |
6 |
21
|
Assessment of the Natural Radioactivity of Polish and Foreign Granites Used for Road and Lapidary Constructions in Poland. MATERIALS 2020; 13:ma13122824. [PMID: 32585972 PMCID: PMC7344817 DOI: 10.3390/ma13122824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
The measurements of the specific activity of natural radioactive isotopes of radium (226Ra), thorium (232Th) and potassium (40K) in chosen samples of imported (China, Finland, Spain, India, Sweden) and Polish (Izerski, Karkonosze, Siedlimowicki, Strzegomski, Strzelinski) granites were performed. The measurements were carried out with 2 × 2" NaI(Tl) scintillation detector. The measured specific activity on natural radioactive isotopes were within the following ranges: 5.8-312 [Bq kg-1], 5.5-189 [Bq kg-1] and 109-1590 [Bq kg-1] for 226Ra, 232Th and 40K, respectively. Obtained concentrations of radioactive isotopes allowed to perform the analysis of the exposure of the humans from the ionizing radiation emitted by the granites. The determination of the exposure consisted in the calculation of absorbed gamma dose rate (D) [nGy h-1] for each sample, which fell in the range between 20 and 511 [nGy h-1], annual effective dose rate (AED) [mSv year-1] ranging between 0.10 and 2.50 [mSv year-1], radium equivalent activity (Raeq) [Bq kg-1] with values between 22 and 570 [Bq kg-1], external and internal hazard indices (Hex) and (Hin) falling in the ranges 0.06-1.53 and 0.08-2.41 respectively, as well as gamma (Iγ) and alpha (Iα), representative level indices with values 0.08-2.0 and 0.029-1.56, respectively. Moreover, obtained results were compared with the international standard values given by the European Commission (EC), the United Nations Scientific Committee on the Effects of Atomic Radiation given in UNSCEAR Reports, and the results of research from other laboratories.
Collapse
|
Journal Article |
5 |
6 |
22
|
Yousefnia H, Zolghadri S, Jalilian AR. Absorbed dose assessment of (177)Lu-zoledronate and (177)Lu-EDTMP for human based on biodistribution data in rats. J Med Phys 2015; 40:102-8. [PMID: 26170557 PMCID: PMC4478643 DOI: 10.4103/0971-6203.158694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, several bone-seeking radiopharmaceuticals including various bisphosphonate ligands and β-emitting radionuclides have been developed for bone pain palliation. Recently, 177Lu was successfully labeled with zoledronic acid (177Lu-ZLD) as a new generation potential bisphosphonate and demonstrated significant accumulation in bone tissue. In this work, the absorbed dose to each organ of human for 177Lu-ZLD and 177Lu-ethylenediaminetetramethylene phosphonic acid (177Lu-EDTMP;as the only clinically bone pain palliation agent) was investigated based on biodistribution data in rats by medical internal radiation dosimetry (MIRD) method. 177Lu-ZLD and 177Lu-EDTMP were prepared in high radiochemical purity (>99%, instant thin layer chromatography (ITLC)) at the optimized condition. The biodistribution of the complexes demonstrated fast blood clearance and major accumulation in the bone tissue. The highest absorbed dose for both 177Lu-ZLD and 177Lu-EDTMP is observed in trabecular bone surface with 12.173 and 10.019 mSv/MBq, respectively. The results showed that 177Lu-ZLD has better characteristics compared to 177Lu-EDTMP and can be a good candidate for bone pain palliation.
Collapse
|
Journal Article |
10 |
6 |
23
|
Larenkov A, Mitrofanov I, Pavlenko E, Rakhimov M. Radiolysis-Associated Decrease in Radiochemical Purity of 177Lu-Radiopharmaceuticals and Comparison of the Effectiveness of Selected Quenchers against This Process. Molecules 2023; 28:molecules28041884. [PMID: 36838872 PMCID: PMC9967390 DOI: 10.3390/molecules28041884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The radiolytic degradation of vector molecules is a major factor affecting the shelf life of therapeutic radiopharmaceuticals. The development of time-stable dosage forms of radiopharmaceuticals is the key to their successful implementation in clinical practice. Using [177Lu]Lu-PSMA-617 molecule as an example, the time dependence of the change in radiochemical purity (RCP, %) under radiolysis conditions was studied. The dependence of [177Lu]Lu-PSMA-617 radiolysis on parameters such as time, radionuclide activity, buffer agent concentration, precursor amount, and preparation volume was evaluated. It was shown that the absorbed dose was the dominant factor influencing the RCP. The RCP value is inversely proportional to the absorbed dose in the [177Lu]Lu-PSMA-617 preparation and has an exponential dependence. The lutetium-177 dose factor ψ (Gy·mL·MBq-1) and PSMA-617 concentration-dependent dose constant κ (Gy-1) were evaluated for absorbed dose estimation via computer modeling, chemical dosimetry, and radiochemical purity monitoring under various conditions. The further refinement and application of the dependencies found can be useful for predicting the RCP value at the stage of optimizing the composition of the finished dosage form of therapeutic radiopharmaceuticals. The influence of the buffer agent (sodium acetate) concentration on [177Lu]Lu-PSMA-617 radiolytic degradation was shown and should be considered both when developing a dosage form, and when comparing the results of independent studies. The effectiveness of the addition of various stabilizing agents, such as DMSA, cysteine, gentisic acid, vanillin, methionine, adenine, dobesilic acid, thymine, uracil, nicotinamide, meglumine, and mannitol, in suppressing the effects of radiolysis was evaluated.
Collapse
|
research-article |
2 |
6 |
24
|
Sommerville M, Poirier Y, Tambasco M. A measurement-based X-ray source model characterization for CT dosimetry computations. J Appl Clin Med Phys 2015; 16:386-400. [PMID: 26699546 PMCID: PMC5691008 DOI: 10.1120/jacmp.v16i6.5231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 07/31/2015] [Accepted: 07/28/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to show that the nominal peak tube voltage potential (kVp) and measured half-value layer (HVL) can be used to generate energy spectra and fluence profiles for characterizing a computed tomography (CT) X-ray source, and to validate the source model and an in-house kV X-ray dose computation algorithm (kVDoseCalc) for computing machine- and patient-specific CT dose. Spatial variation of the X-ray source spectra of a Philips Brilliance and a GE Optima Big Bore CT scanner were found by measuring the HVL along the direction of the internal bow-tie filter axes. Third-party software, Spektr, and the nominal kVp settings were used to generate the energy spectra. Beam fluence was calculated by dividing the integral product of the spectra and the in-air NIST mass-energy attenuation coefficients by in-air dose measurements along the filter axis. The authors found the optimal number of photons to seed in kVDoseCalc to achieve dose convergence. The Philips Brilliance beams were modeled for 90, 120, and 140 kVp tube settings. The GE Optima beams were modeled for 80, 100, 120, and 140 kVp tube settings. Relative doses measured using a Capintec Farmer-type ionization chamber (0.65 cc) placed in a cylindrical polymethyl methacrylate (PMMA) phantom and irradiated by the Philips Brilliance, were compared to those computed with kVDoseCalc. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima were measured using a (0.015 cc) PTW Freiburg ionization chamber and compared to computations from kVDoseCalc. The number of photons required to reduce the average statistical uncertainty in dose to < 0.3% was 2 × 105. The average percent difference between calculation and measurement over all 12 PMMA phantom positions was found to be 1.44%, 1.47%, and 1.41% for 90, 120, and 140 kVp, respectively. The maximum percent difference between calculation and measurement for all energies, measurement positions, and phantoms was less than 3.50%. Thirty-five out of a total of 36 simulation conditions were within the experimental uncertainties associated with measurement reproducibility and chamber volume effects for the PMMA phantom. The agreement between calculation and measurement was within experimental uncertainty for 19 out of 20 simulation conditions at five points of interest in the anthropomorphic thorax phantom for the four beam energies modeled. The source model and characterization technique based on HVL measurements and nominal kVp can be used to accurately compute CT dose. This accuracy provides experimental validation of kVDoseCalc for computing CT dose.
Collapse
|
research-article |
10 |
6 |
25
|
Abstract
The paper describes a new type of calorimeter that can be quickly put into operation for determining absorbed dose at a point in polystyrene. It also describes a unique method of decreasing drifts in electrical signals caused by temperature gradients. Two calibrated thermistors were placed close together between sandwiched polystyrene discs that were immersed in water. The assembly was irradiated with gamma rays from a cobalt-60 source. The dose rate was about 14 mGy/s and exposure times were about 100 s. The standard deviation for a daily set of measurements was about 0.7%. A zero heat defect for polystyrene was assumed. A calculation converted the measurements to absorbed dose in water. The dose in water determined in this way, and with a graphite calorimeter, is 3-4% lower than that measured in an all-water calorimeter previously reported. Drifts in electrical signals are eliminated by a resistance-capacitance circuit placed across a Wheatstone bridge. The rate of potential change across the bridge (caused by the circuit) is adjusted to have an opposite effect to the drifts in electrical signals produced by temperature gradients within the calorimeter. The method can be applied to other calorimeters.
Collapse
|
research-article |
42 |
5 |