1
|
Yin J, Li Y, Han H, Chen S, Gao J, Liu G, Wu X, Deng J, Yu Q, Huang X, Fang R, Li T, Reiter RJ, Zhang D, Zhu C, Zhu G, Ren W, Yin Y. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J Pineal Res 2018; 65:e12524. [PMID: 30230594 DOI: 10.1111/jpi.12524] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/17/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Melatonin has been shown to improve lipid metabolism and gut microbiota communities in animals and humans; however, it remains to know whether melatonin prevents obesity through gut microbiota. Here, we found that high-fat diet promoted the lipid accumulation and intestinal microbiota dysbiosis in mice, while oral melatonin supplementation alleviated the lipid accumulation and reversed gut microbiota dysbiosis, including the diversity of intestinal microbiota, relative abundances of Bacteroides and Alistipes, and functional profiling of microbial communities, such as energy metabolism, lipid metabolism, and carbohydrate metabolism. Interestingly, melatonin failed to alleviate the high-fat-induced lipid accumulation in antibiotic-treated mice; however, microbiota transplantation from melatonin-treated mice alleviated high-fat diet-induced lipid metabolic disorders. Notably, short-chain fatty acids were decreased in high-fat diet-fed mice, while melatonin treatment improved the production of acetic acid. Correlation analysis found a marked correlation between production of acetic acid and relative abundances of Bacteroides and Alistipes. Importantly, sodium acetate treatment also alleviated high-fat diet-induced lipid metabolic disorders. Taken together, our results suggest that melatonin improves lipid metabolism in high-fat diet-fed mice, and the potential mechanisms may be associated with reprogramming gut microbiota, especially, Bacteroides and Alistipes-mediated acetic acid production. Future studies are needed for patients with metabolic syndrome to fully understand melatonin's effects on body weight and lipid profiles and the potential mechanism of gut microbiota.
Collapse
|
|
7 |
300 |
2
|
Hong Y, Sheng L, Zhong J, Tao X, Zhu W, Ma J, Yan J, Zhao A, Zheng X, Wu G, Li B, Han B, Ding K, Zheng N, Jia W, Li H. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes 2021; 13:1-20. [PMID: 34125646 PMCID: PMC8205104 DOI: 10.1080/19490976.2021.1930874] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The emerging evidence supports the use of prebiotics like herb-derived polysaccharides for treating nonalcoholic fatty liver disease (NAFLD) by modulating gut microbiome. The present study was initiated on the microbiota-dependent anti-NAFLD effect of Astragalus polysaccharides (APS) extracted from Astragalus mongholicus Bunge in high-fat diet (HFD)-fed mice. However, the exact mechanisms underlying the beneficial effects of APS on NAFLD formation remain poorly understood.Co-housing experiment was used to assess the microbiota dependent anti-NAFLD effect of APS. Then, targeted metabolomics and metagenomics were adopted for determining short-chain fatty acids (SCFAs) and bacteria that were specifically enriched by APS. Further in vitro experiment was carried out to test the capacity of SCFAs-producing of identified bacterium. Finally, the anti-NAFLD efficacy of identified bacterium was tested in HFD-fed mice.Our results first demonstrated the anti-NAFLD effect of APS in HFD-fed mice and the contribution of gut microbiota. Moreover, our results indicated that SCFAs, predominantly acetic acid were elevated in APS-supplemented mice and ex vivo experiment. Metagenomics revealed that D. vulgaris from Desulfovibrio genus was not only enriched by APS, but also a potent generator of acetic acid, which showed significant anti-NAFLD effects in HFD-fed mice. In addition, D. vulgaris modulated the hepatic gene expression pattern of lipids metabolism, particularly suppressed hepatic fatty acid synthase (FASN) and CD36 protein expression.Our results demonstrate that APS enriched D. vulgaris is effective on attenuating hepatic steatosis possibly through producing acetic acid, and modulation on hepatic lipids metabolism in mice. Further studies are warranted to explore the long-term impacts of D. vulgaris on host metabolism and the underlying mechanism.
Collapse
|
research-article |
4 |
153 |
3
|
Hardin MD, Acuff GR, Lucia LM, Oman JS, Savell JW. Comparison of Methods for Decontamination from Beef Carcass Surfaces. J Food Prot 1995; 58:368-374. [PMID: 31137348 DOI: 10.4315/0362-028x-58.4.368] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Methods for the removal of fecal contamination from beef carcass surfaces were evaluated using a fecal suspension containing a rifampicin-resistant strain of either Escherichia coli O157:H7 or Salmonella typhimurium . Paired cuts from four distinct beef carcass regions (inside round, outside round, brisket, and clod) were removed from hot carcasses after splitting, and subcutaneous fat and lean carcass surfaces from these cuts were used to model decontamination of prechilled carcass surface regions. Hot carcass surface regions were contaminated with an inoculated fecal suspension in a 400-cm2 area and then treated by one of four treatments either immediately or 20 to 30 min after contamination. One paired contaminated surface region from each carcass side was trimmed of all visible fecal contamination. The remaining paired carcass surface region was washed either with water (35°C) or with water followed by a 2% lactic or acetic acid spray (55°C). Surface samples were obtained for microbiological examination before and after treatment from within and outside the defined area contaminated with the fecal suspension. All treatments significantly reduced levels of pathogens; however, decontamination was significantly affected by carcass surface region. The inside round region was the most difficult carcass surface to decontaminate, regardless of treatment. Washing followed by organic acid treatment performed better than trimming or washing alone on all carcass region surfaces except the inside round, where organic acid treatments and trimming performed equally well. Overall, lactic acid reduced levels of E. coli O157:H7 significantly better than acetic acid; however, differences between the abilities of the acids to reduce Salmonella were less pronounced. All treatments caused minimal spread of pathogens outside the initial area of fecal contamination, and recovery after spreading was reduced by organic acid treatments.
Collapse
|
|
30 |
150 |
4
|
Giannattasio S, Guaragnella N, Zdralević M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 2013; 4:33. [PMID: 23430312 PMCID: PMC3576806 DOI: 10.3389/fmicb.2013.00033] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/07/2023] Open
Abstract
Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.
Collapse
|
Journal Article |
12 |
109 |
5
|
Mycobacterium abscessus Smooth and Rough Morphotypes Form Antimicrobial-Tolerant Biofilm Phenotypes but Are Killed by Acetic Acid. Antimicrob Agents Chemother 2018; 62:AAC.01782-17. [PMID: 29311080 PMCID: PMC5826145 DOI: 10.1128/aac.01782-17] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium abscessus has emerged as an important pathogen in people with chronic inflammatory lung diseases such as cystic fibrosis, and recent reports suggest that it may be transmissible by fomites. M. abscessus exhibits two major colony morphology variants: a smooth morphotype (MaSm ) and a rough morphotype (MaRg ). Biofilm formation, prolonged intracellular survival, and colony variant diversity can each contribute to the persistence of M. abscessus and other bacterial pathogens in chronic pulmonary diseases. A prevailing paradigm of chronic M. abscessus infection is that MaSm is a noninvasive, biofilm-forming, persistent phenotype and MaRg an invasive phenotype that is unable to form biofilms. We show that MaRg is hyperaggregative and forms biofilm-like aggregates, which, like MaSm biofilm aggregates, are significantly more tolerant than planktonic variants to acidic pHs, hydrogen peroxide (H2O2), and treatment with amikacin or azithromycin. We further show that both variants are recalcitrant to antibiotic treatment inside human macrophage-like cells and that MaRg is more refractory than MaSm to azithromycin. Our results indicate that biofilm-like aggregation and protracted intracellular survival may each contribute to the persistence of this problematic pathogen in the face of antimicrobial agents regardless of morphotype. Biofilms of each M. abscessus variant are rapidly killed, however, by acetic acid, which may help to prevent local fomite transmission.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
79 |
6
|
Liang J, Tsui V, Van Abbema A, Bao L, Barrett K, Beresini M, Berezhkovskiy L, Blair WS, Chang C, Driscoll J, Eigenbrot C, Ghilardi N, Gibbons P, Halladay J, Johnson A, Kohli PB, Lai Y, Liimatta M, Mantik P, Menghrajani K, Murray J, Sambrone A, Xiao Y, Shia S, Shin Y, Smith J, Sohn S, Stanley M, Ultsch M, Zhang B, Wu LC, Magnuson S. Lead identification of novel and selective TYK2 inhibitors. Eur J Med Chem 2013; 67:175-87. [PMID: 23867602 DOI: 10.1016/j.ejmech.2013.03.070] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022]
Abstract
A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as psoriasis and inflammatory bowel diseases (IBD), by selective targeting of TYK2. Hit triage, following a high-throughput screen for TYK2 inhibitors, revealed pyridine 1 as a promising starting point for lead identification. Initial expansion of 3 separate regions of the molecule led to eventual identification of cyclopropyl amide 46, a potent lead analog with good kinase selectivity, physicochemical properties, and pharmacokinetic profile. Analysis of the binding modes of the series in TYK2 and JAK2 crystal structures revealed key interactions leading to good TYK2 potency and design options for future optimization of selectivity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
72 |
7
|
Petsiou EI, Mitrou PI, Raptis SA, Dimitriadis GD. Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight. Nutr Rev 2014; 72:651-61. [PMID: 25168916 DOI: 10.1111/nure.12125] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The aim of this review is to summarize the effects of vinegar on glucose and lipid metabolism. Several studies have demonstrated that vinegar can help reduce hyperglycemia, hyperinsulinemia, hyperlipidemia, and obesity. Other studies, however, have shown no beneficial effect on metabolism. Several mechanisms have been proposed to explain these metabolic effects, including delayed gastric emptying and enteral absorption, suppression of hepatic glucose production, increased glucose utilization, upregulation of flow-mediated vasodilation, facilitation of insulin secretion, reduction in lipogenesis, increase in lipolysis, stimulation of fecal bile acid excretion, increased satiety, and enhanced energy expenditure. Although some evidence supports the use of vinegar as a complementary treatment in patients with glucose and lipid abnormalities, further large-scale long-term trials with impeccable methodology are warranted before definitive health claims can be made.
Collapse
|
Review |
11 |
68 |
8
|
Mohseni-Bandpi A, Elliott DJ, Zazouli MA. Biological nitrate removal processes from drinking water supply-a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2013; 11:35. [PMID: 24355262 PMCID: PMC3880027 DOI: 10.1186/2052-336x-11-35] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 09/25/2013] [Indexed: 05/17/2023]
Abstract
This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time.
Collapse
|
review-article |
12 |
62 |
9
|
al-Swayeh OA, Clifford RH, del Soldato P, Moore PK. A comparison of the anti-inflammatory and anti-nociceptive activity of nitroaspirin and aspirin. Br J Pharmacol 2000; 129:343-50. [PMID: 10694241 PMCID: PMC1571848 DOI: 10.1038/sj.bjp.0703064] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
1. Nitroaspirin (2.5 - 50 mg kg(-1), i.p. or 2.5 - 100 mg kg(-1), p.o.) and aspirin (2.5 - 100 mg kg(-1), i.p. or p.o.) exhibit anti-inflammatory activity in the carrageenan-induced hindpaw oedema model in the rat. When administered i.p., nitroaspirin was a more effective anti-oedema agent than aspirin particularly in the 'early' phase (i.e. up to 60 min) of the response. The ED(50) values for nitroaspirin and aspirin as inhibitors of the 'late' phase response (measured at 180 min) were 64.3 micromol kg(-1) and >555 micromol kg(-1), respectively. When administered p.o., neither nitroaspirin nor aspirin exhibited significant anti-inflammatory activity in the 'early' phase and were of similar potency in the 'late' phase. Thus, at the highest dose used (100 mg kg(-1), 360 min) orally administered nitroaspirin (aspirin in parenthesis) inhibited oedema formation by 46.9+/-1.6% (47.2+/-3.8%, both n=6, P<0.05). 2. Nitroaspirin and aspirin (25 - 200 mg kg(-1), p.o.) caused dose-related inhibition of the hyperalgesia to mechanical stimulation following intraplantar injection of carrageenan in the rat. ED(50) values were 365 micromol kg(-1) and 784 micromol kg(-1), respectively. Neither drug influenced the threshold for mechanical stimulation in the contralateral (i.e. untreated) hindpaw. 3. Nitroaspirin and aspirin (2.5 - 100 mg kg(-1), p.o.) caused dose-related inhibition of acetic acid induced abdominal constrictions in the mouse (ED(50) values of 154.7 micromol kg(-1) and 242.8 micromol kg(-1), respectively). 4. Nitroaspirin and aspirin (>200 mg kg(-1), p.o.) reduced the 'late' phase (but not the 'early' phase) of the formalin-induced hindpaw licking assay in the mouse. Similarly, nitroaspirin and aspirin (>50 mg kg(-1), p.o.) prolonged tail withdrawal latency following application of a noxious heat stimulus in the mouse.
Collapse
|
research-article |
25 |
61 |
10
|
Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 2013; 1313:78-95. [PMID: 23899380 DOI: 10.1016/j.chroma.2013.07.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
Abstract
Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided.
Collapse
|
Review |
12 |
57 |
11
|
Wei N, Oh EJ, Million G, Cate JHD, Jin YS. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synth Biol 2015; 4:707-13. [PMID: 25587748 DOI: 10.1021/sb500364q] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
56 |
12
|
Weis S, Franke A, Mössner J, Jakobsen JC, Schoppmeyer K. Radiofrequency (thermal) ablation versus no intervention or other interventions for hepatocellular carcinoma. Cochrane Database Syst Rev 2013; 2013:CD003046. [PMID: 24357457 PMCID: PMC11931681 DOI: 10.1002/14651858.cd003046.pub3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hepatocellular carcinoma is the fifth most common cancer worldwide. Percutaneous interventional therapies, such as radiofrequency (thermal) ablation (RFA), have been developed for early hepatocellular carcinoma. RFA competes with other interventional techniques such as percutaneous ethanol injection, surgical resection, and liver transplantation. The potential benefits and harms of RFA compared with placebo, no intervention, chemotherapy, hepatic resection, liver transplantation, or other interventions are unclear. OBJECTIVES To assess the beneficial and harmful effects of RFA versus placebo, no intervention, or any other therapeutic approach in patients with hepatocellular carcinoma. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and ISI Web of Science to September 2012. We handsearched meeting abstracts from ASCO, ESMO, AASLD, EASL, APASL, and references of articles. We also contacted researchers in the field (last search September 2012). SELECTION CRITERIA We considered for inclusion randomised clinical trials investigating the effects of RFA versus placebo, no intervention, or any other therapeutic approach on hepatocellular carcinoma patients regardless of blinding, language, and publication status. DATA COLLECTION AND ANALYSIS Two review authors independently performed the selection of trials, assessment of risk of bias, and data extraction. We contacted principal investigators for missing information. We analysed hazard ratios (HR) as relevant effect measures for overall survival, two-year survival, event-free survival, and local recurrences with 95% confidence intervals (CI). In addition, we analysed dichotomous survival outcomes using risk ratios (RR). We used trial sequential analysis to control the risk of random errors ('play of chance'). MAIN RESULTS We identified no trials comparing RFA versus placebo, no intervention, or liver transplantation. We identified and included 11 randomised clinical trials with 1819 participants that included four comparisons: RFA versus hepatic resection (three trials, 578 participants); RFA versus percutaneous ethanol injection (six trials, 1088 participants) including one three-armed trial that also investigated RFA versus acetic acid injection; RFA versus microwave ablation (one trial, 72 participants); and RFA versus laser ablation (one trial, 81 participants). Ten of the eleven included trials reported on the primary outcome of this review, overall survival. Rates of major complications or procedure-related deaths were reported in 10 trials. The overall risk of bias was considered low in five trials and high in six trials. For a subgroup analysis, we included only low risk of bias trials. Regarding the comparison RFA versus hepatic resection, there was moderate-quality evidence from two low risk of bias trials that hepatic resection seems more effective than RFA regarding overall survival (HR 0.56; 95% CI 0.40 to 0.78) and two-year survival (HR 0.38; 95% CI 0.17 to 0.84). However, if we included a third trial with high risk of bias, the difference became insignificant (overall survival: HR 0.71; 95% CI 0.44 to 1.15). With regards to the outcomes event-free survival and local progression, hepatic resection also yielded better results than RFA. However, the number of complications was higher in surgically treated participants (odds ratio (OR) 8.24; 95% CI 2.12 to 31.95). RFA seemed superior to percutaneous ethanol or acetic acid injection regarding overall survival (HR 1.64; 95% CI 1.31 to 2.07). The RR for mortality was also in favour of RFA, but did not reach statistical significance (150/490 (30.6%) people in the percutaneous ethanol or acetic acid group versus 119/496 (24.0%) people in the RFA group; RR 1.76; 95% CI 0.97 to 3.22). The proportion of adverse events did not differ significantly between RFA and percutaneous ethanol or acetic acid injection (HR 0.70; 95% CI 0.33 to 1.48). Trial sequential analyses revealed that the number of participants in the included trials was insufficient and that more trials are needed to assess the effects of RFA versus other interventions. AUTHORS' CONCLUSIONS The effects of RFA versus no intervention, chemotherapeutic treatment, or liver transplantation are unknown. We found moderate-quality evidence that hepatic resection is superior to RFA regarding survival. However, RFA might be associated with fewer complications and a shorter hospital stay than hepatic resection. We found moderate-quality evidence showing that RFA seems superior to percutaneous ethanol injection regarding survival. There were too sparse data to recommend or refute ablation achieved by techniques other than RFA. More randomised clinical trials with low risk of bias and low risks of random errors assessing the effect of RFA are needed.
Collapse
|
Meta-Analysis |
12 |
54 |
13
|
De R, Gonglach S, Paul S, Haas M, Sreejith SS, Gerschel P, Apfel UP, Vuong TH, Rabeah J, Roy S, Schöfberger W. Electrocatalytic Reduction of CO 2 to Acetic Acid by a Molecular Manganese Corrole Complex. Angew Chem Int Ed Engl 2020; 59:10527-10534. [PMID: 32281187 PMCID: PMC7540269 DOI: 10.1002/anie.202000601] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Indexed: 12/05/2022]
Abstract
The controlled electrochemical reduction of carbon dioxide to value added chemicals is an important strategy in terms of renewable energy technologies. Therefore, the development of efficient and stable catalysts in an aqueous environment is of great importance. In this context, we focused on synthesizing and studying a molecular MnIII‐corrole complex, which is modified on the three meso‐positions with polyethylene glycol moieties for direct and selective production of acetic acid from CO2. Electrochemical reduction of MnIII leads to an electroactive MnII species, which binds CO2 and stabilizes the reduced intermediates. This catalyst allows to electrochemically reduce CO2 to acetic acid in a moderate acidic aqueous medium (pH 6) with a selectivity of 63 % and a turn over frequency (TOF) of 8.25 h−1, when immobilized on a carbon paper (CP) electrode. In terms of high selectivity towards acetate, we propose the formation and reduction of an oxalate type intermediate, stabilized at the MnIII‐corrole center.
Collapse
|
Journal Article |
5 |
54 |
14
|
Guaragnella N, Zdralević M, Antonacci L, Passarella S, Marra E, Giannattasio S. The role of mitochondria in yeast programmed cell death. Front Oncol 2012; 2:70. [PMID: 22783546 PMCID: PMC3388595 DOI: 10.3389/fonc.2012.00070] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023] Open
Abstract
Mammalian apoptosis and yeast programmed cell death (PCD) share a variety of features including reactive oxygen species production, protease activity and a major role played by mitochondria. In view of this, and of the distinctive characteristics differentiating yeast and multicellular organism PCD, the mitochondrial contribution to cell death in the genetically tractable yeast Saccharomyces cerevisiae has been intensively investigated. In this mini-review we report whether and how yeast mitochondrial function and proteins belonging to oxidative phosphorylation, protein trafficking into and out of mitochondria, and mitochondrial dynamics, play a role in PCD. Since in PCD many processes take place over time, emphasis will be placed on an experimental model based on acetic acid-induced PCD (AA-PCD) which has the unique feature of having been investigated as a function of time. As will be described there are at least two AA-PCD pathways each with a multifaceted role played by mitochondrial components, in particular by cytochrome c.
Collapse
|
Journal Article |
13 |
54 |
15
|
Sellami I, Mall V, Schieberle P. Changes in the Key Odorants and Aroma Profiles of Hamlin and Valencia Orange Juices Not from Concentrate (NFC) during Chilled Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7428-7440. [PMID: 29889522 DOI: 10.1021/acs.jafc.8b02257] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Application of the aroma extract dilution analysis (AEDA) on the volatiles isolated by extraction/SAFE distillation from NFC (not from concentrate) juice from Hamlin oranges revealed 51 odor-active constituents in the flavor dilution (FD) factor range of 8 to 8192 among which vanillin, wine lactone, and ( R)-linalool appeared with the highest FD factors. The AEDA applied on the volatile fraction of the same batch of juice stored at 0 °C for 10 months under aseptic conditions showed clear changes in the aroma profile as well as in the FD factors of key odorants. The reduction in the intensity of the citrus-like, pungent, green odor attributes in the aroma profile correlated with the loss of 1-penten-3-one, acetaldehyde, and ( Z)-3-hexenal and a clear decrease in hexanal, octanal, nonanal, decanal, and ( E, E)-2,4-decadienal. Quantitation done by stabile isotope dilution assays followed by a calculation of odor activity values (ratio of concentration to odor thresholds in citrate buffer) confirmed that the quick loss of 1-penten-3-one and acetaldehyde already within a few weeks and a significant reduction in nearly all aldehydes over the storage time of 10 months were responsible for the changes in the overall aroma profile of the juice. The same approach applied on Hamlin juice from the next harvest year as well as on chilled stored NFC juice from Valencia oranges confirmed the results for another harvest year and another orange variety.
Collapse
|
|
7 |
51 |
16
|
Sponholz P, Mellmann D, Cordes C, Alsabeh PG, Li B, Li Y, Nielsen M, Junge H, Dixneuf P, Beller M. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes. CHEMSUSCHEM 2014; 7:2419-2422. [PMID: 25088665 DOI: 10.1002/cssc.201402426] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Indexed: 06/03/2023]
Abstract
Catalytic generation of hydrogen from aqueous ethanol solution proceeds in the presence of pincer-type transition metal catalysts. Optimal results are obtained applying a [Ru(H)(Cl)(CO)(iPr2PEtN(H)EtPiPr2)] complex (catalyst TON 80,000) in the presence of water and base. This dehydrogenation reaction provides up to 70% acetic acid in a selective manner. For the first time, it is shown that bioethanol obtained from fermentation processes can be used directly in this protocol without the need for water removal. The produced hydrogen can be directly utilized in proton exchange membrane (PEM) fuel cells, since very low amounts of CO are formed.
Collapse
|
|
11 |
49 |
17
|
Raghubeer EV, Ke JS, Campbell ML, Meyer RS. Fate of Escherichia coli O157:H7 and Other Coliforms in Commercial Mayonnaise and Refrigerated Salad Dressing. J Food Prot 1995; 58:13-18. [PMID: 31121788 DOI: 10.4315/0362-028x-58.1.13] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commercial mayonnaise and refrigerated ranch salad dressing were inoculated at two levels with two strains of Escherichia coli O157:H7, a non-pathogenic E. coli , and the non-fecal coliform Enterobacter aerogenes . Results showed that at the high inoculation level (>106 colony forming units [CFU]/g) in mayonnaise stored at room temperature (ca. 22°C) both strains of O157:H7 were undetected at 96 h. At the high inoculation level, all strains of coliform bacteria tested survived longer in salad dressing stored at 4°C than in mayonnaise stored at 22°C. The O157:H7 strains were still present at low levels after 17 days. The survival time in the low-level inoculum (104CFU/g) study decreased, but the survival pattern in the two products was similar to that observed in the high-level inoculum study. Slight differences in survival among strains were observed. The greater antimicrobial effect of mayonnaise may be attributable to differences in pH, water activity (aw), nutrients, storage temperature, and the presence of lysozyme in the whole eggs used in the production of commercial mayonnaise. Coliform bacteria survived longer in refrigerated salad dressing than in mayonnaise particularly at the high-level inoculum. Both mayonnaise (pH 3.91) and salad dressing (pH 4.51) did not support the growth of any of the microorganisms even though survival was observed.
Collapse
|
|
30 |
49 |
18
|
Podolak RK, Zayas JF, Kastner CL, Fung DYC. Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 on Beef by Application of Organic Acids †. J Food Prot 1996; 59:370-373. [PMID: 31158983 DOI: 10.4315/0362-028x-59.4.370] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lean beef surfaces were inoculated with Escherichia coli O157:H7 and Listeria monocytogenes and then sanitized with fumaric, acetic, or lactic acid alone and in combined solutions of those acids at 55°C for 5 s. The initial inoculum level was 8.62 log CFU/cm2 and 5.13 log CFU/cm2 for L. monocytogenes and E. coli O157:H7, respectively. Fumaric acid at a concentration of 1% was the most effective acid in reducing the populations of L. monocytogenes by up to 1 log unit and E. coli O157:H7 by up to 1.3 log units when compared with acetic or lactic acids. The rank order of acids tested against the growth of L. monocytogenes and E. coli O157:H7 was fumaric acid followed by lactic and acetic acids. Fumaric acid at concentrations of 1.0% and 1.5% was more effective than any of the combined solutions of acids.
Collapse
|
|
29 |
48 |
19
|
Fatani AJ, Alrojayee FS, Parmar MY, Abuohashish HM, Ahmed MM, Al-Rejaie SS. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis. Exp Ther Med 2016; 12:730-738. [PMID: 27446268 PMCID: PMC4950638 DOI: 10.3892/etm.2016.3398] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/11/2016] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of ulcerative colitis (UC) has been associated with a weakened antioxidant capacity and increased inflammatory processes. Myrrh is traditionally used for the treatment of inflammatory diseases due to its antioxidant and anti-inflammatory properties. The present study aimed to evaluate the effects of myrrh on an experimental rat model of UC. UC was induced in rats using acetic acid (AA) after pre-treatment with myrrh (125, 250 or 500 mg/kg/day) or mesalazine (MES; 300 mg/kg/day) for 7 days. The levels of various inflammatory cytokines, prostaglandin E2 (PGE2) and nitric oxide (NO) in the rat colon tissues were assessed. In addition, the colonic levels of thiobarbituric acid reactive substances (TBARS) and non-protein sulfhydryl groups (NP-SH), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were estimated. Furthermore, total protein (TP) contents and the levels of DNA and RNA were measured, and histopathological changes in colonic tissues were analyzed. The results indicated that the levels of pro-inflammatory cytokines, PGE2, NO and TBARS were markedly increased. By contrast, the levels of interleukin-10, NP-SH, TP and nucleic acids, and the enzymatic activities of SOD and CAT were significantly decreased in the AA model group. In addition, pretreatment with myrrh and MES was able to attenuate the impaired oxidative stress response and upregulation of inflammatory biomarkers. Furthermore, the enzymatic activities of SOD and CAT were near to normal in the myrrh and MES pretreated groups. The ability of myrrh to protect against UC was further confirmed by histopathological analysis, and the high dose of myrrh exerted an effect comparable to MES. In conclusion, the results of the present study suggested that myrrh has potent therapeutic value in the amelioration of experimental colitis in laboratory animals by downregulating the expression of proinflammatory mediators and improving endogenous antioxidative activities.
Collapse
|
research-article |
9 |
45 |
20
|
Lee WT, Tung YT, Wu CC, Tu PS, Yen GC. Camellia Oil ( Camellia oleifera Abel.) Modifies the Composition of Gut Microbiota and Alleviates Acetic Acid-Induced Colitis in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7384-7392. [PMID: 29895146 DOI: 10.1021/acs.jafc.8b02166] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ulcerative colitis (UC), one type of chronic inflammatory bowel disease (IBD), is a chronic and recurrent disorder of the gastrointestinal (GI) tract. As camellia oil (CO) is traditionally used to treat GI disorders, this study investigated the role of CO on acetic acid-induced colitis in the rat. The composition of the gut microbial community is related to many diseases; thus, this study also investigated the effects of CO on the composition of the gut microbiota. The rats were fed a dose of 2 mL/kg body weight CO, olive oil (OO), or soybean oil (SO) once a day for 20 days, and the gut microbiota was analyzed using 16S rRNA gene sequencing. Results of the gut microbiota examination showed significant clustering of feces after treatment with CO and OO; however, individual differences with OO varied considerably. Compared to SO and OO, the intake of CO increased the ratio of Firmicutes/Bacteroidetes, the α-diversity, relative abundance of the Bifidobacterium, and reduced Prevotella of the gut microbiota. On day 21, colitis was induced by a single transrectal administration of 2 mL of 4% acetic acid. However, pretreatment of rats with CO or OO for 24 days slightly enhanced antioxidant and antioxidant enzyme activities and significantly reduced inflammatory damage and lipid peroxidation, thus ameliorating acetic acid-induced colitis. These results indicated that CO was better able to ameliorate impairment of the antioxidant system induced by acetic acid compared to OO and SO, which may have been due to CO modifying the composition of the gut microbiota or CO being a rich source of phytochemicals.
Collapse
|
|
7 |
44 |
21
|
Hu J, Wei M, Mirzaei H, Madia F, Mirisola M, Amparo C, Chagoury S, Kennedy B, Longo VD. Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity. Aging Cell 2014; 13:457-67. [PMID: 24649827 PMCID: PMC4032597 DOI: 10.1111/acel.12202] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/27/2022] Open
Abstract
In mammals, extended periods of fasting leads to the accumulation of blood ketone bodies including acetoacetate. Here we show that similar to the conversion of leucine to acetoacetate in fasting mammals, starvation conditions induced ketone body-like acetic acid generation from leucine in S. cerevisiae. Whereas wild-type and ras2Δ cells accumulated acetic acid, long-lived tor1Δ and sch9Δ mutants rapidly depleted it through a mitochondrial acetate CoA transferase-dependent mechanism, which was essential for lifespan extension. The sch9Δ-dependent utilization of acetic acid also required coenzyme Q biosynthetic genes and promoted the accumulation of intracellular trehalose. These results indicate that Tor-Sch9 deficiency extends longevity by switching cells to an alternative metabolic mode, in which acetic acid can be utilized for the storage of stress resistance carbon sources. These effects are reminiscent of those described for ketone bodies in fasting mammals and raise the possibility that the lifespan extension caused by Tor-S6K inhibition may also involve analogous metabolic changes in higher eukaryotes.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
42 |
22
|
al-Swayeh OA, Futter LE, Clifford RH, Moore PK. Nitroparacetamol exhibits anti-inflammatory and anti-nociceptive activity. Br J Pharmacol 2000; 130:1453-6. [PMID: 10928944 PMCID: PMC1572245 DOI: 10.1038/sj.bjp.0703509] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nitroparacetamol (NCX-701) is a newly synthesized nitric oxide-releasing derivative of paracetamol. Following i.p. administration, nitroparacetamol inhibits carrageenan-induced hindpaw oedema formation (ED(50), 169.4 micromol kg(-1)) and mechanical hyperalgesia (ED(50), 156 micromol kg(-1)) in the rat. In contrast, the parent compound, paracetamol, exhibits no significant anti-oedema activity in this model (ED(50)>1986 micromol kg(-1), i.p. ) and is markedly less potent than nitroparacetamol as an inhibitor of carrageenan-mediated hyperalgesia (ED(50), 411.6 micromol kg(-1), i.p.). In a second model of nociception (inhibition of acetic acid induced abdominal constrictions in the mouse), nitroparacetamol administered orally (ED(50), 24.8 micromol kg(-1)), was again considerably more potent than paracetamol (ED(50), 506 micromol kg(-1), p.o.). Thus, compared with paracetamol, nitroparacetamol not only exhibits augmented antinociceptive activity in both rat and mouse but, intriguingly, is also anti-inflammatory over a similar dose range.
Collapse
|
other |
25 |
41 |
23
|
Waites KB, Canupp KC, Roper JF, Camp SM, Chen Y. Evaluation of 3 methods of bladder irrigation to treat bacteriuria in persons with neurogenic bladder. J Spinal Cord Med 2006; 29:217-26. [PMID: 16859225 PMCID: PMC1864807 DOI: 10.1080/10790268.2006.11753877] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE We conducted a randomized, double-blind comparison of twice daily bladder irrigation using 1 of 3 different solutions in community-residing persons with neurogenic bladder who used indwelling catheters to evaluate efficacy in treatment of bacteriuria. METHODS Eighty-nine persons with bacteriuria were randomized to irrigate their bladders twice daily for 8 weeks with 30 mL of (a) sterile saline, (b) acetic acid, or (c) neomycin-polymyxin solution. Urinalysis, cultures, and antimicrobial susceptibility tests were performed at baseline and weeks 2, 4, and 8 to determine the extent to which each of the solutions affected numbers and types of bacteria, urinary pH, urinary leukocytes, and generation of antimicrobial-resistant organisms. RESULTS Bladder irrigation was well tolerated with the exception of 3 participants who had bladder spasms. None of the 3 irrigants had a detectable effect on the degree of bacteriuria or pyuria in 52 persons who completed the study protocol. A significant increase in urinary pH occurred in all 3 groups. No significant development of resistance to oral antimicrobials beyond what was observed at baseline was detected. CONCLUSIONS Bladder irrigation was generally well tolerated for 8 weeks. No advantages were detected for neomycin-polymyxin or acetic acid over saline in terms of reducing the urinary bacterial load and inflammation. We cannot recommend bladder irrigation as a means of treatment for bacteriuria in persons with neurogenic bladder.
Collapse
|
article-commentary |
19 |
41 |
24
|
Cagin YF, Parlakpinar H, Vardi N, Polat A, Atayan Y, Erdogan MA, Tanbek K. Effects of dexpanthenol on acetic acid-induced colitis in rats. Exp Ther Med 2016; 12:2958-2964. [PMID: 27882101 PMCID: PMC5103730 DOI: 10.3892/etm.2016.3728] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
While the pathogenesis of acetic acid (AA)-induced colitis is unclear, reactive oxygen species are considered to have a significant effect. The aim of the present study was to elucidate the therapeutic potential of dexpanthenol (Dxp) on the amelioration of colitis in rats. Group I (n=8; control group) was intrarectally administered 1 ml saline solution (0.9%); group II [n=8; AA] was administered 4% AA into the colon via the rectum as a single dose for three consecutive days; group III (n=8; AA + Dxp) was administered AA at the same dosage as group II from day 4, and a single dose of Dxp was administered intraperitoneally; and group IV (n=8; Dxp) was administered Dxp similarly to Group III. Oxidative stress and colonic damage were assessed via biochemical and histologic examination methods. AA treatment led to an increase in oxidative parameters and a decrease in antioxidant systems. Histopathological examination showed that AA treatment caused tissue injury and increased caspase-3 activity in the distal colon and triggered apoptosis. Dxp treatment caused biochemical and histopathological improvements, indicating that Dxp may have an anti-oxidant effect in colitis; therefore, Dxp may be a potential therapeutic agent for the amelioration of IBD.
Collapse
|
Journal Article |
9 |
39 |
25
|
Devineni AV, Sun B, Zhukovskaya A, Axel R. Acetic acid activates distinct taste pathways in Drosophila to elicit opposing, state-dependent feeding responses. eLife 2019; 8:47677. [PMID: 31205005 PMCID: PMC6579511 DOI: 10.7554/elife.47677] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
Taste circuits are genetically determined to elicit an innate appetitive or aversive response, ensuring that animals consume nutritious foods and avoid the ingestion of toxins. We have examined the response of Drosophila melanogaster to acetic acid, a tastant that can be a metabolic resource but can also be toxic to the fly. Our data reveal that flies accommodate these conflicting attributes of acetic acid by virtue of a hunger-dependent switch in their behavioral response to this stimulus. Fed flies show taste aversion to acetic acid, whereas starved flies show a robust appetitive response. These opposing responses are mediated by two different classes of taste neurons, the sugar- and bitter-sensing neurons. Hunger shifts the behavioral response from aversion to attraction by enhancing the appetitive sugar pathway as well as suppressing the aversive bitter pathway. Thus a single tastant can drive opposing behaviors by activating distinct taste pathways modulated by internal state. Our sense of taste is critical to our survival. Taste helps us to consume nutritious foods and avoid toxins. There are five basic taste categories: sweet, salty, bitter, sour, and umami or savory, a taste typical of protein-rich foods. Each taste category activates a distinct pathway in the brain, triggering specific feelings and behaviors. We normally find sugar, salt, and components of protein pleasant, and seek out foods with these tastes. By contrast, we often find overly bitter or sour tastes unpleasant and try to avoid them. As sour and bitter-tasting substances often contain toxins, this response helps to protect us from poisoning. Across the animal kingdom, these preferences are largely hardwired from birth. But the relationship between taste and nutrients is not always straightforward. Some substances can be toxic despite also containing useful nutrients. Overripe fruit, for example, is broken down by yeast and bacteria to produce acetic acid, or vinegar. Like other acids, acetic acid can be toxic. But for the fruit fly Drosophila melanogaster, also known as the vinegar fly, acetic acid from rotten fruit can be a valuable source of calories. So how do flies react to the taste of acetic acid? Devineni et al. show that, unlike other chemicals, acetic acid triggers different taste responses in flies depending on whether the insects are hungry. Well-fed flies find the taste repulsive, probably because it signals toxicity. But hungry flies find it attractive, presumably because of their overriding need for calories. Devineni et al. show that acetic acid activates both sugar-sensing and bitter-sensing pathways in the fly brain. Hunger increases activity in the sugar pathway and reduces it in the bitter pathway. As a result, hungry flies are attracted to acetic acid, whereas fully fed flies are repulsed. Flexibility in the taste system enables animals to react to the same substance in different ways depending on their current needs. Related to this, evidence suggests that obesity may be associated with altered sensitivity to certain tastes, such as sweet, as well as a blunted response to satiety signals. Understanding how the brain combines information about taste and hunger to control food consumption may ultimately help us to understand and treat obesity.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
38 |