1
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
|
Review |
7 |
294 |
2
|
Tate SS, Meister A. Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of gamma-glutamyl transpeptidase by maleate; identity of a rat kidney maleate-stimulated glutaminase and gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A 1974; 71:3329-33. [PMID: 4154442 PMCID: PMC433764 DOI: 10.1073/pnas.71.9.3329] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
gamma-Glutamyl transpeptidase catalyzes transfer of the gamma-glutamyl moiety of glutathione (and other gamma-glutamyl compounds) to amino acid and peptide acceptors; this reaction probably involves (a) formation of a gamma-glutamyl enzyme and (b) reaction of the gamma-glutamyl-enzyme with an acceptor. Maleate decreases the latter reaction and markedly increases hydrolysis of the gamma-glutamyl donor, apparently by affecting the enzyme so as to facilitate reaction of the gammaglutamyl enzyme with water. Transpeptidase catalyzes gamma-glutamyl hydroxamate formation from many gamma-glutamyl compounds and hydroxylamine; this reaction is stimulated 4- to 5-fold by maleate. Glutamine, a poor substrate for transpeptidation as compared to glutathione, is slowly hydrolyzed and converted to gamma-glutamyl-glutamine by the transpeptidase; in the presence of maleate, hydrolysis of glutamine is markedly (>10-fold) increased, as is also its conversion to gamma-glutamyl hydroxamate in the presence of hydroxylamine. The findings suggest that the previously described "maleate-stimulated phosphate-independent glutaminase" is a catalytic function of gamma-glutamyl transpeptidase. Transpeptidase-catalyzed glutaminase activity may play a role in renal ammoniagenesis. The ability of maleate to decrease transpeptidation of gamma-glutamyl compounds (and to increase their hydrolysis to glutamate), when considered in the light of earlier findings that treatment of animals with maleate produces aminoaciduria, is consistent with function of transpeptidase and the gamma-glutamyl cycle in amino-acid transport.
Collapse
|
research-article |
51 |
71 |
3
|
Rubio-Aliaga I, Wagner CA. Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels (Austin) 2016; 10:440-52. [PMID: 27362266 DOI: 10.1080/19336950.2016.1207024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
Review |
9 |
46 |
4
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
|
Review |
5 |
33 |
5
|
Eisenga MF, Kieneker LM, Soedamah-Muthu SS, van den Berg E, Deetman PE, Navis GJ, Gans RO, Gaillard CA, Bakker SJ, Joosten MM. Urinary potassium excretion, renal ammoniagenesis, and risk of graft failure and mortality in renal transplant recipients. Am J Clin Nutr 2016; 104:1703-1711. [PMID: 27935524 DOI: 10.3945/ajcn.116.134056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Renal transplant recipients (RTRs) have commonly been urged to limit their potassium intake during renal insufficiency and may adhere to this principle after transplantation. Importantly, in experimental animal models, low dietary potassium intake induces kidney injury through stimulation of ammoniagenesis. In humans, low potassium intake is an established risk factor for high blood pressure. OBJECTIVE We hypothesized that low 24-h urinary potassium excretion [UKV; urinary potassium concentration × volume], the gold standard for assessment of dietary potassium intake, represents a risk factor for graft failure and mortality in RTRs. In secondary analyses, we aimed to investigate whether these associations could be explained by ammoniagenesis, plasma potassium, or blood pressure. DESIGN In a prospective cohort of 705 RTRs, we assessed dietary potassium intake by a single 24-h UKV and food-frequency questionnaires. Cox regression analyses were used to investigate prospective associations with outcome. RESULTS We included 705 stable RTRs (mean ± SD age: 53 ± 13 y; 57% men) at 5.4 y (IQR: 1.9-12.0 y) after transplantation and 253 kidney donors. Mean ± SD UKV was 73 ± 24 mmol/24 h in RTRs compared with 85 ± 25 mmol/24 h in kidney donors. During follow-up for 3.1 y (IQR: 2.7-3.9 y), 45 RTRs developed graft failure and 83 died. RTRs in the lowest sex-specific tertile of UKV (women, <55 mmol/24 h; men, <65 mmol/24 h) had an increased risk of graft failure (HR: 3.70; 95% CI: 1.64, 8.34) and risk of mortality (HR; 2.66; 95% CI: 1.53, 4.61), independent of potential confounders. In causal path analyses, 24-h urinary ammonia excretion, plasma potassium, and blood pressure did not affect these associations. CONCLUSIONS Our results indicate that low UKV is associated with a higher risk of graft failure and mortality in RTRs. Specific attention for adequate potassium intake after transplantation seems warranted. This trial was registered at clinicaltrials.gov as NCT02811835.
Collapse
|
Observational Study |
9 |
31 |
6
|
Bürki R, Mohebbi N, Bettoni C, Wang X, Serra AL, Wagner CA. Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease. Nephrol Dial Transplant 2014; 30:770-81. [PMID: 25523450 DOI: 10.1093/ndt/gfu384] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/19/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Advanced chronic kidney disease (CKD) is associated with the development of renal metabolic acidosis. Metabolic acidosis per se may represent a trigger for progression of CKD. Renal acidosis of CKD is characterized by low urinary ammonium excretion with preserved urinary acidification indicating a defect in renal ammoniagenesis, ammonia excretion or both. The underlying molecular mechanisms, however, have not been addressed to date. METHODS We examined the Han:SPRD rat model and used a combination of metabolic studies, mRNA and protein analysis of renal molecules involved in acid-base handling. RESULTS We demonstrate that rats with reduced kidney function as evident from lower creatinine clearance, lower haematocrit, higher plasma blood urea nitrogen, creatinine, phosphate and potassium had metabolic acidosis that could be aggravated by HCl acid loading. Urinary ammonium excretion was highly reduced whereas urinary pH was more acidic in CKD compared with control animals. The abundance of key enzymes and transporters of proximal tubular ammoniagenesis (phosphate-dependent glutaminase, PEPCK and SNAT3) and bicarbonate transport (NBCe1) was reduced in CKD compared with control animals. In the collecting duct, normal expression of the B1 H(+)-ATPase subunit is in agreement with low urinary pH. In contrast, the RhCG ammonia transporter, critical for the final secretion of ammonia into urine was strongly down-regulated in CKD animals. CONCLUSION In the Han:SPRD rat model for CKD, key molecules required for renal ammoniagenesis and ammonia excretion are highly down-regulated providing a possible molecular explanation for the development and maintenance of renal acidosis in CKD patients.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
30 |
7
|
Defective bicarbonate reabsorption in Kir4.2 potassium channel deficient mice impairs acid-base balance and ammonia excretion. Kidney Int 2019; 97:304-315. [PMID: 31870500 DOI: 10.1016/j.kint.2019.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022]
Abstract
The kidneys excrete the daily acid load mainly by generating and excreting ammonia but the underlying molecular mechanisms are not fully understood. Here we evaluated the role of the inwardly rectifying potassium channel subunit Kir4.2 (Kcnj15 gene product) in this process. In mice, Kir4.2 was present exclusively at the basolateral membrane of proximal tubular cells and disruption of Kcnj15 caused a hyperchloremic metabolic acidosis associated with a reduced threshold for bicarbonate in the absence of a generalized proximal tubule dysfunction. Urinary ammonium excretion rates in Kcnj15- deleted mice were inappropriate to acidosis under basal and acid-loading conditions, and not related to a failure to acidify urine or a reduced expression of ammonia transporters in the collecting duct. In contrast, the expression of key proteins involved in ammonia metabolism and secretion by proximal cells, namely the glutamine transporter SNAT3, the phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase enzymes, and the sodium-proton exchanger NHE-3 was inappropriate in Kcnj15-deleted mice. Additionally, Kcnj15 deletion depolarized the proximal cell membrane by decreasing the barium-sensitive component of the potassium conductance and caused an intracellular alkalinization. Thus, the Kir4.2 potassium channel subunit is a newly recognized regulator of proximal ammonia metabolism. The kidney consequences of its loss of function in mice support the proposal for KCNJ15 as a molecular basis for human isolated proximal renal tubular acidosis.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
28 |
8
|
Vittorelli A, Gauthier C, Michoudet C, Martin G, Baverel G. Characteristics of glutamine metabolism in human precision-cut kidney slices: a 13C-NMR study. Biochem J 2005; 387:825-34. [PMID: 15579133 PMCID: PMC1135014 DOI: 10.1042/bj20041309] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/17/2004] [Accepted: 12/03/2004] [Indexed: 11/17/2022]
Abstract
The metabolism of glutamine, a physiological substrate of the human kidney, plays a major role in systemic acid-base homoeostasis. Not only because of the limited availability of human renal tissue but also in part due to the lack of adequate cellular models, the mechanisms regulating the renal metabolism of this amino acid in humans have been poorly characterized. Therefore given the renewed interest in their use, human precision-cut renal cortical slices were incubated in Krebs-Henseleit medium (118 mM NaCl, 4.7 mM KCl, 1.18 mM KH2PO4, 1.18 mM MgSO4*7H2O, 24.9 mM NaHCO3 and 2.5 mM CaCl2*2H2O) with 2 mM unlabelled or 13C-labelled glutamine residues. After incubation, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. Glutamate accumulation tended to plateau but glutamine removal and ammonia, alanine and lactate production as well as flux through GLDH (glutamate dehydrogenase) increased to various extents with time for up to 4 h of incubation indicating the metabolic viability of the slices. Valproate, a stimulator of renal glutamine metabolism, markedly and in a dose-dependent fashion increased ammonia production. With [3-13C]glutamine as a substrate, and in the absence and presence of valproate, [13C]glutamate, [13C]alanine and [13C]lactate accounted for 81 and 96%, 34 and 63%, 30 and 46% of the glutamate, alanine and lactate accumulations measured enzymatically respectively. The slices also metabolized glutamine and retained their reactivity to valproate during incubations lasting for up to 48 h. These results demonstrate that, although endogenous metabolism substantially operates in the presence of glutamine, human precision-cut renal cortical slices are metabolically viable and strongly respond to the ammoniagenic effect of valproate. Thus, this experimental model is suitable for metabolic and pharmaco-toxicological studies.
Collapse
|
research-article |
20 |
18 |
9
|
Curthoys NP, Gstraunthaler G. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 2014; 307:F1-F11. [PMID: 24808535 DOI: 10.1152/ajprenal.00067.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase(+) cells, was isolated. LLC-PK1-FBPase(+) cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase(+) cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3 (-), pH 6.9), the LLC-PK1-FBPase(+) cells exhibit a gradual increase in NH4 (+) ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase(+) cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase(+) cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase(+) cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells.
Collapse
|
Review |
11 |
10 |
10
|
Fehsenfeld S, Wood CM. Section-specific expression of acid-base and ammonia transporters in the kidney tubules of the goldfish Carassius auratus and their responses to feeding. Am J Physiol Renal Physiol 2018; 315:F1565-F1582. [PMID: 30089033 DOI: 10.1152/ajprenal.00510.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In teleost fishes, renal contributions to acid-base and ammonia regulation are often neglected compared with the gills. In goldfish, increased renal acid excretion in response to feeding was indicated by increased urine ammonia and inorganic phosphate concentrations and decreased urine pH. By microdissecting the kidney tubules and performing quantitative real-time PCR and/or immunohistochemistry, we profiled the section-specific expression of glutamate dehydrogenase (GDH), glutamine synthetase (GS), Na+/H+-exchanger 3 (NHE3), carbonic anhydrase II (CAIIa), V-H+-ATPase subunit 1b, Cl-/ HCO3- -exchanger 1 (AE1), Na+/ HCO3- -cotransporter 1 (NBC1), Na+/K+-ATPase subunit 1α, and Rhesus-proteins Rhbg, Rhcg1a, and Rhcg1b. Here, we show for the first time that 1) the proximal tubule appears to be the major site for ammoniagenesis, 2) epithelial transporters are differentially expressed along the renal tubule, and 3) a potential feeding-related "acidic tide" results in the differential regulation of epithelial transporters, resembling the mammalian renal response to a metabolic acidosis. Specifically, GDH and NHE3 mRNAs were upregulated and GS downregulated in the proximal tubule upon feeding, suggesting this section as a major site for ammoniagenesis and acid secretion. The distal tubule may play a major role in renal ammonia secretion, with feeding-induced upregulation of mRNA and protein for apical NHE3, cytoplasmic CAIIa, universal Rhcg1a and apical Rhcg1b, and downregulation of basolateral Rhbg and AE1. Changes in mRNA expression of the Wolffian ducts and bladder suggest supporting roles in fine-tuning urine composition. The present study verifies an important renal contribution to acid-base balance and emphasizes that studies looking at the whole kidney may overlook key section-specific responses.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
10 |
11
|
Weinstein AM. A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia. Am J Physiol Renal Physiol 2022; 322:F225-F244. [PMID: 35001663 PMCID: PMC8836735 DOI: 10.1152/ajprenal.00413.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The renal response to acute hyperkalemia is mediated by increased K+ secretion within the connecting tubule (CNT), flux that is modulated by tubular effects (e.g., aldosterone) in conjunction with increased luminal flow. There is ample evidence that peritubular K+ blunts Na+ reabsorption in the proximal tubule, thick ascending Henle limb, and distal convoluted tubule (DCT). Although any such reduction may augment CNT delivery, the relative contribution of each is uncertain. The kidney model of this laboratory was recently advanced with representation of the cortical labyrinth and medullary ray. Model tubules capture the impact of hyperkalemia to blunt Na+ reabsorption within each upstream segment. However, this forces the question of the extent to which increased Na+ delivery is transmitted past the macula densa and its tubuloglomerular feedback (TGF) signal. Beyond increasing macula densa Na+ delivery, peritubular K+ is predicted to raise cytosolic Cl- and depolarize macula densa cells, which may also activate TGF. Thus, although the upstream reduction in Na+ transport may be larger, it appears that the DCT effect is critical to increasing CNT delivery. Beyond the flow effect, hyperkalemia reduces ammoniagenesis and reduced ammoniagenesis enhances K+ excretion. What this model provides is a possible mechanism. When cortical [Formula: see text] is taken up via peritubular Na+-K+([Formula: see text])-ATPase, it acidifies principal cells. Consequently, reduced ammoniagenesis increases principal cell pH, thereby increasing conductance of both the epithelial Na+ channel and renal outer medullary K+ channel, enhancing K+ excretion. In this model, the effect of aldosterone on principal cells, diminished DCT Na+ reabsorption, and reduced ammoniagenesis all provide relatively equal and additive contributions to renal K+ excretion.NEW & NOTEWORTHY Hyperkalemia blunts Na+ reabsorption along the nephron, and increased CNT Na+ delivery facilitates K+ secretion. The model suggests that tubuloglomerular feedback limits transmission of proximal effects past the macula densa, so that it is DCT transport that is critical. Hyperkalemia also reduces PCT ammoniagenesis, which enhances K+ excretion. The model suggests a mechanism, namely, that reduced cortical ammonia impacts CNT transport by raising cell pH and thus increasing both ENaC and ROMK conductance.
Collapse
|
research-article |
3 |
10 |
12
|
Uribarri J, Goldfarb DS, Raphael KL, Rein JL, Asplin JR. Beyond the Urine Anion Gap: In Support of the Direct Measurement of Urinary Ammonium. Am J Kidney Dis 2022; 80:667-676. [PMID: 35810828 DOI: 10.1053/j.ajkd.2022.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/10/2022] [Indexed: 02/02/2023]
Abstract
Ammonium is a major urinary buffer that is necessary for the normal excretion of the daily acid load. Its urinary rate of excretion (UNH4) may be increased several fold in the presence of extrarenal metabolic acidosis. Therefore, measurement of UNH4 can provide important clues about causes of metabolic acidosis. Because UNH4 is not commonly measured in clinical laboratories, the urinary anion gap (UAG) was proposed as its surrogate about 4 decades ago, and it is still frequently used for that purpose. Several published studies strongly suggest that UAG is not a good index of UNH4 and support the concept that direct measurement of UNH4 is an important parameter to define in clinical nephrology. Low UNH4 levels have recently been found to be associated with a higher risk of metabolic acidosis, loss of kidney function, and death in persons with chronic kidney disease, while surrogates like the UAG do not recapitulate this risk. In order to advance the field it is necessary for the medical community to become more familiar with UNH4 levels in a variety of clinical settings. Herein, we review the literature, searching for available data on UNH4 under normal and various pathological conditions, in an attempt to establish reference values to interpret UNH4 results if and when UNH4 measurements become available as a routine clinical test. In addition, we present original data in 2 large populations that provide further evidence that the UAG is not a good predictor of UNH4. Measurement of urine NH4 holds promise to aid clinicians in the care of patients, and we encourage further research to determine its best diagnostic usage.
Collapse
|
Review |
3 |
6 |
13
|
Terker AS, Zhang Y, Arroyo JP, Cao S, Wang S, Fan X, Denton JS, Zhang MZ, Harris RC. Kir4.2 mediates proximal potassium effects on glutaminase activity and kidney injury. Cell Rep 2022; 41:111840. [PMID: 36543132 PMCID: PMC9827473 DOI: 10.1016/j.celrep.2022.111840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Inadequate potassium (K+) consumption correlates with increased mortality and poor cardiovascular outcomes. Potassium effects on blood pressure have been described previously; however, whether or not low K+ independently affects kidney disease progression remains unclear. Here, we demonstrate that dietary K+ deficiency causes direct kidney injury. Effects depend on reduced blood K+ and are kidney specific. In response to reduced K+, the channel Kir4.2 mediates altered proximal tubule (PT) basolateral K+ flux, causing intracellular acidosis and activation of the enzyme glutaminase and the ammoniagenesis pathway. Deletion of either Kir4.2 or glutaminase protects from low-K+ injury. Reduced K+ also mediates injury and fibrosis in a model of aldosteronism. These results demonstrate that the PT epithelium, like the distal nephron, is K+ sensitive, with reduced blood K+ causing direct PT injury. Kir4.2 and glutaminase are essential mediators of this injury process, and we identify their potential for future targeting in the treatment of chronic kidney disease.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
4 |
14
|
Nagami GT, Plumer AK, Beyda RM, Schachter O. Effects of acid challenges on type 2 angiotensin II receptor-sensitive ammonia production by the proximal tubule. Am J Physiol Renal Physiol 2014; 307:F53-7. [PMID: 24829505 DOI: 10.1152/ajprenal.00466.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiotensin II (ANG II) acting through its type 1 (AT1) receptor stimulates total ammonia (tNH3) production by the proximal tubule. The present studies explored the role of ANG II type 2 (AT2) receptors in modulating the stimulatory effects of ANG II on tNH3 production. Mouse S2 proximal tubule segments derived from 18-h and 7-day acid-loaded mice, and non-acid-loaded controls were dissected and microperfused in vitro. Adding ANG II to the luminal perfusion solution resulted in different increments in tNH3 production rates in tubules derived from 18-h vs. 7-day acid-loaded mice such that the increase in tNH3 production with ANG II was higher in tubules derived from 18-h acid-loaded mice compared with those derived from control and 7-day acid-loaded mice. Adding the AT2 receptor blocker PD123319 with ANG II increased ANG II-stimulated tNH3 production in S2 segments from control and 7-day acid-loaded mice but not in those from 18-h acid-loaded mice, and this increased effect of PD123319 was associated with higher AT2 receptor protein levels in brush-border membranes. Studies in cultured proximal tubule cells demonstrated that 2-h exposure to pH 7.0 reduced the modulating effect of PD123319 on ANG II-simulated tNH3 production and reduced cell surface AT2 receptor levels. We concluded that AT2 receptors reduce the stimulatory effect of ANG II on proximal tubule tNH3 production and that the time-dependent impact of AT2 receptor blockade on the ANG II-stimulated tNH3 production corresponded to time-dependent changes in AT2 receptor cell surface expression in the proximal tubule.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
4 |
15
|
Weinstein AM. A mathematical model of the rat kidney. III. Ammonia transport. Am J Physiol Renal Physiol 2021; 320:F1059-F1079. [PMID: 33779315 DOI: 10.1152/ajprenal.00008.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ammonia generated within the kidney is partitioned into a urinary fraction (the key buffer for net acid excretion) and an aliquot delivered to the systemic circulation. The physiology of this partitioning has yet to be examined in a kidney model, and that was undertaken in this work. This involves explicit representation of the cortical labyrinth, so that cortical interstitial solute concentrations are computed rather than assigned. A detailed representation of cortical vasculature has been avoided by making the assumption that solute concentrations within the interstitium and peritubular capillaries are likely to be identical and that there is little to no modification of venous composition as blood flows to the renal vein. The model medullary ray has also been revised to include a segment of proximal straight tubule, which supplies ammonia to this region. The principal finding of this work is that cortical labyrinth interstitial ammonia concentration is likely to be several fold higher than systemic arterial ammonia. This elevation of interstitial ammonia enhances ammonia secretion in both the proximal convoluted tubule and distal convoluted tubule, with uptake by Na+-K+-ATPases of both segments. Model prediction of urinary ammonia excretion was concordant with measured values, but at the expense of greater ammoniagenesis, with high rates of renal venous ammonia flux. This derives from a limited capability of the model medulla to replicate the high interstitial ammonia concentrations that are required to drive collecting duct ammonia secretion. Thus, renal medullary ammonia trapping appears key to diverting ammonia from the renal vein to urine, but capturing the underlying physiology remains a challenge.NEW & NOTEWORTHY This is the first mathematical model to estimate solute concentrations within the kidney cortex. The model predicts cortical ammonia to be several fold greater than in the systemic circulation. This higher concentration drives ammonia secretion in proximal and distal tubules. The model reveals a gap in our understanding of how ammonia generated within the cortex is channeled efficiently into the final urine.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
1 |
16
|
Eguchi K, Izumi Y, Nakayama Y, Inoue H, Marume T, Matsuo N, Hiramatsu A, Ono M, Kakizoe Y, Kuwabara T, Nonoguchi H, Mukoyama M. Insufficiency of urinary acid excretion of overweight or obese patients with chronic kidney disease and its involvement with renal tubular injury. Nephrology (Carlton) 2018; 24:1131-1141. [PMID: 30582257 DOI: 10.1111/nep.13553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2018] [Indexed: 01/01/2023]
Abstract
AIM Metabolic acidosis occurs due to insufficient urinary ammonium excretion as chronic kidney disease (CKD) advances. Because obese subjects tend to have excessive consumption of protein and sodium chloride, they are prone to chronic acid loading and may therefore be predisposed to acid-induced kidney injury. We investigated the involvement of obesity in ammoniagenesis within damaged kidneys. METHODS In the clinical study, urinary ammonium excretion was compared between 13 normal-weight and 15 overweight/obese CKD outpatients whose creatinine clearance was higher than 25 mL/min. For animal experiments, NH4 Cl was loaded to KKAy/TaJcl (KKAy), a metabolic syndrome model, and control BALB/c mice for 20 weeks. Kidney injury was evaluated through histological analysis and the expression of proinflammatory markers. RESULTS Urinary ammonium excretion was lower in overweight/obese patients than in normal-weight patients, while intakes of protein and sodium chloride were higher in overweight/obese patients, implying that subclinical metabolic acidosis occurs in overweight/obese patients. The increase in urinary ammonium excretion induced by NH4 Cl loading was attenuated in KKAy mice after 16 weeks, whereas the increase was maintained in BALB/c mice throughout the study period. Histological study and real-time polymerase chain reaction analysis showed proximal tubular injury and enhanced expression levels of neutrophil gelatinase-associated lipocalin (NGAL) protein and messenger RNA, respectively, in KKAy mice but not in BALB/c mice. Finally, urinary NGAL concentration was higher in overweight/obese patients than in normal-weight patients in the early stage of CKD. CONCLUSION Obesity could facilitate the induction of subclinical metabolic acidosis and acid accumulation in the kidney, which may potentially exacerbate kidney injury in CKD patients.
Collapse
|
|
7 |
1 |
17
|
Derakhshandeh-Rishehri SM, Franco LP, Hua Y, Herder C, Kalhoff H, Frassetto LA, Wudy SA, Remer T. Higher Renal Net Acid Excretion, but Not Higher Phosphate Excretion, during Childhood and Adolescence Associates with the Circulating Renal Tubular Injury Marker Interleukin-18 in Adulthood. Int J Mol Sci 2024; 25:1408. [PMID: 38338685 PMCID: PMC10855358 DOI: 10.3390/ijms25031408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
High dietary phosphorus intake (P-In) and high acid loads may adversely affect kidney function. In animal models, excessive phosphorus intake causes renal injury, which, in humans, is also inducible by chronic metabolic acidosis. We thus examined whether habitually high P-In and endogenous acid production during childhood and adolescence may be early indicators of incipient renal inflammatory processes later in adulthood. P-In and acid-base status were longitudinally and exclusively determined by biomarker-based assessment in 277 healthy children, utilizing phosphate and net acid excretion (NAE) measurements in 24 h urine samples repeatedly collected between the ages of 3 and 17 years. Standard deviation scores (by sex and age) were calculated for anthropometric data and for the urinary biomarkers available within age range 3-17 years. Multivariable linear regression was used to analyze the relations of phosphate excretion and NAE with the adulthood outcome circulating interleukin-18 (IL-18), a marker of inflammation and kidney dysfunction. After adjusting for growth- and adulthood-related covariates and pro-inflammatory biomarkers to rule out confounding by non-renal inflammatory processes, regression models revealed a significant positive relationship of long-term NAE (p = 0.01), but not of long-term phosphate excretion with adult serum IL-18. Similar significant positive regression results were obtained after replacing NAE with 24 h urinary ammonium excretion as the exposition variable. Our results suggest that even moderate elevations in renal ammonia production, as caused by habitually higher acid loading during growth, may affect the intrarenal pro-inflammatory system in the long-term, known to be boosted by acidosis-induced raised ammoniagenesis.
Collapse
|
research-article |
1 |
|