1
|
Yang L, Wang W, Chen J, Wang N, Zheng G. A comparative study of resveratrol and resveratrol-functional selenium nanoparticles: Inhibiting amyloid β aggregation and reactive oxygen species formation properties. J Biomed Mater Res A 2018; 106:3034-3041. [PMID: 30295993 DOI: 10.1002/jbm.a.36493] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023]
Abstract
Deposition of amyloid-β (Aβ) aggregates and formation of neurotoxic reactive oxygen species (ROS) are significant pathological signatures of Alzheimer's disease (AD). Resveratrol (Res) is an antioxidant with the potential to treat AD. However, the bioavailability and solubility of Res is very low and it cannot entirely inhibit Cu2+ -induced Aβ42 aggregation at low concentration. Herein, we combine the unique Aβ absorption property of selenium nanoparticles with the natural antioxidant agent Res to form Res@SeNPs. Our in vitro biological evaluation revealed that modification of Res with SeNPs provides a synergistic effect on Cu2+ -induced Aβ42 aggregation, ROS generation and, more importantly, protects PC12 cells from Aβ42-Cu2+ complexes-induced cell death. It is believed that SeNPs can improve the application of Res in AD treatment as Res@SeNPs is more efficient than Res in reducing Aβ42 toxicity in long-term use. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3034-3041, 2018.
Collapse
|
Comparative Study |
7 |
50 |
2
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
|
Review |
3 |
34 |
3
|
Zhang Y, Wu B, Tang Y, Qi D, Wang N, Wang X, Ma X, Sum TC, Chen X. Prolonged Electron Lifetime in Ordered TiO2 Mesophyll Cell-Like Microspheres for Efficient Photocatalytic Water Reduction and Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2291-2299. [PMID: 26997096 DOI: 10.1002/smll.201503611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Mesoporous integrated TiO2 spheres composed of numerous orderly arranged nanocrystals with a reduced lattice-lattice interface connection, display an almost four times longer electron lifetime (350 ps) than the randomly aggregated nanoparticles (80 ps), and hence enhance the corresponding photocatalytic H2 and O2 generation.
Collapse
|
|
9 |
19 |
4
|
Tajima M, Sakagami H. Tetrahydrobiopterin impairs the action of endothelial nitric oxide via superoxide derived from platelets. Br J Pharmacol 2000; 131:958-64. [PMID: 11053217 PMCID: PMC1572408 DOI: 10.1038/sj.bjp.0703648] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Revised: 08/08/2000] [Accepted: 08/09/2000] [Indexed: 11/09/2022] Open
Abstract
The mechanism by which exogenous tetrahydrobiopterin (BH(4)) impairs the action of endothelial nitric oxide (NO) in the presence of platelets was investigated. The endothelial NO generated by shear stress was determined by the anti-aggregating activity of indomethacin-treated endothelial cells and the cyclic GMP concentration in platelets. The inhibitory effect of exogenous BH(4) was suppressed by superoxide dismutase (SOD), or diclofenac sodium at concentrations inhibiting O(2)(-) generation, but not by allopurinol, a xanthine oxidase inhibitor. BH(4) similarly inhibited the anti-aggregatory effect of sodium nitroprusside (SNP), a NO donor. The inhibitory effect was suppressed by diphenyleneiodonium, a specific inhibitor of NADPH oxidase. Six(S)-BH(4), an inactive diastereoisomer of 6(R)-BH(4), and the 5,6,7,8-tetrahydropterin compounds inhibited the endothelial NO action, whereas sepiapterin and 7,8-dihydrobiopterin (BH(2)), 5,6-double bond pterins, were inactive. These tetrahydropterins, but not sepiapterin and BH(2), scavenged superoxide (O(2)(-)) generated by the hypoxanthine-xanthine oxidase reaction, possibly due to electron transfer during oxidation to its quinonoid-form. BH(4) markedly stimulated the O(2)(-) generation from platelets, in the presence of NADH, rather than that of NADPH. These findings suggest that BH(4) stimulates platelet NAD(P)H oxidase to generate O(2)(-), and inhibits the anti-aggregating effect of NO. SOD activity in the local environment may modify the effect of BH(4) on the endothelial NO activity.
Collapse
|
research-article |
25 |
14 |
5
|
Berrocal R, Vasudevaraju P, Indi SS, Sambasiva Rao KRS, Rao KS. In vitro evidence that an aqueous extract of Centella asiatica modulates α-synuclein aggregation dynamics. J Alzheimers Dis 2014; 39:457-65. [PMID: 24284367 DOI: 10.3233/jad-131187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
α-Synuclein aggregation is one of the major etiological factors implicated in Parkinson's disease (PD). The prevention of aggregation of α-synuclein is a potential therapeutic intervention for preventing PD. The discovery of natural products as alternative drugs to treat PD and related disorders is a current trend. The aqueous extract of Centella asiatica (CA) is traditionally used as a brain tonic and CA is known to improve cognition and memory. There are limited data on the role of CA in modulating amyloid-β (Aβ) levels in the brain and in Aβ aggregation. Our study focuses on CA as a modulator of the α-synuclein aggregation pattern in vitro. Our investigation is focused on: (i) whether the CA leaf aqueous extract prevents the formation of aggregates from monomers (Phase I: α-synuclein + extract co-incubation); (ii) whether the CA aqueous extract prevents the formation of fibrils from oligomers (Phase II: extract added after oligomers formation); and (iii) whether the CA aqueous extract disintegrates the pre-formed fibrils (Phase III: extract added to mature fibrils and incubated for 9 days). The aggregation kinetics are studied using a thioflavin-T assay, circular dichroism, and transmission electron microscopy. The results showed that the CA aqueous extract completely inhibited the α-synuclein aggregation from monomers. Further, CA extract significantly inhibited the formation of oligomer to aggregates and favored the disintegration of the preformed fibrils. The study provides an insight in finding new natural products for future PD therapeutics.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
14 |
6
|
Visual and Colorimetric Sensing of Metsulfuron-Methyl by Exploiting Hydrogen Bond-Induced Anti-Aggregation of Gold Nanoparticles in the Presence of Melamine. SENSORS 2018; 18:s18051595. [PMID: 29772778 PMCID: PMC5982417 DOI: 10.3390/s18051595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022]
Abstract
Various highly sensitive and selective analytical methods have been used to monitor metsulfuron-methyl residue in the environment. However, these methods involve costly instruments and complex, time-consuming operations performed in laboratories. Here, a rapid, convenient, and sensitive colorimetric sensor based on anti-aggregation of gold nanoparticles (AuNPs) is demonstrated for the rapid detection of metsulfuron-methyl in agricultural irrigation water. The AuNPs could be induced to aggregate in the presence of melamine and exhibited a distinct color change from wine-red to blue. The aggregation was suppressed by a strong hydrogen-bonding interaction between metsulfuron-methyl and melamine. The differences of the absorbance at 523 nm (ΔA523) and the color change was linearly related to metsulfuron-methyl concentration over the range 0.1⁻100 mg/L, as observed visually and by UV-vis (Ultraviolet-visible) spectrometry. The detection limit of the sensor was as low as 0.05 mg/L (signal/noise = 3), and was used to determine metsulfuron-methyl in spiked water and in agricultural irrigation water samples. Recoveries were in the range of 71.2⁻100.4%, suggesting that the colorimetric sensor was suitable for the determination of metsulfuron-methyl in agricultural water samples.
Collapse
|
Journal Article |
7 |
9 |
7
|
Patwari J, Sardar S, Liu B, Lemmens P, Pal SK. Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1705-1713. [PMID: 28875108 PMCID: PMC5564262 DOI: 10.3762/bjnano.8.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/03/2017] [Indexed: 06/01/2023]
Abstract
In the present study, protoporphyrin IX (PPIX) and squarine (SQ2) have been used in a co-sensitized dye-sensitized solar cell (DSSC) to apply their high absorption coefficients in the visible and NIR region of the solar spectrum and to probe the possibility of Förster resonance energy transfer (FRET) between the two dyes. FRET from the donor PPIX to acceptor SQ2 was observed from detailed investigation of the excited-state photophysics of the dye mixture, using time-resolved fluorescence decay measurements. The electron transfer time scales from the dyes to TiO2 have also been characterized for each dye. The current-voltage (I-V) characteristics and the wavelength-dependent photocurrent measurements of the co-sensitized DSSCs reveal that FRET between the two dyes increase the photocurrent as well as the efficiency of the device. From the absorption spectra of the co-sensitized photoanodes, PPIX was observed to be efficiently acting as a co-adsorbent and to reduce the dye aggregation problem of SQ2. It has further been proven by a comparison of the device performance with a chenodeoxycholic acid (CDCA) added to a SQ2-sensitized DSSC. Apart from increasing the absorption window, the FRET-induced enhanced photocurrent and the anti-aggregating behavior of PPIX towards SQ2 are crucial points that improve the performance of the co-sensitized DSSC.
Collapse
|
research-article |
8 |
9 |
8
|
Krasinska B, Osińska A, Osinski M, Krasinska A, Rzymski P, Tykarski A, Krasiński Z. Standardised tomato extract as an alternative to acetylsalicylic acid in patients with primary hypertension and high cardiovascular risk - a randomised, controlled trial. Arch Med Sci 2018; 14:773-780. [PMID: 30002694 PMCID: PMC6040123 DOI: 10.5114/aoms.2017.69864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Cardiovascular (CV) diseases remain a leading global cause of death. It has been proven that the use of acetylsalicylic acid (ASA) in secondary prevention reduces the CV risk, while the benefits of ASA in primary prevention have recently been debated. The aim of the study was to compare the antiplatelet effect of standardised tomato extract (STE) and ASA in hypertensive patients with high CV risk. MATERIAL AND METHODS The study involved high-risk patients with arterial hypertension (AH) randomly assigned to one of two groups: group 1 included 33 patients receiving ASA and group 2 included 32 patients receiving STE. The platelet aggregation was determined using the VerifyNow analyser. RESULTS After 4 weeks of ASA treatment in group 1, a statistically significant reduction in aspirin reaction units (ARU) was observed (p < 0.001). However, the obese subgroup using ASA (n = 18) did not reveal a significant decrease in ARU (p > 0.05). After 4 weeks of STE treatment in the obese subgroup (n = 14), significant declines in ARU by 8.6% (95% CI: -19.5 to -1.7%; p < 0.05) and in P2Y12 reaction units (PRU) by 7.5% (95% CI: -17.6 to 1.8%; p < 0.05) were observed. CONCLUSIONS The antiplatelet effect of STE in hypertensive patients may be weight dependent. The group with AH and obesity might have potentially benefitted from STE treatment.
Collapse
|
research-article |
7 |
8 |
9
|
Zimbone S, Giuffrida ML, Sabatino G, Di Natale G, Tosto R, Consoli GML, Milardi D, Pappalardo G, Sciacca MFM. Aβ 8-20 Fragment as an Anti-Fibrillogenic and Neuroprotective Agent: Advancing toward Efficient Alzheimer's Disease Treatment. ACS Chem Neurosci 2023; 14:1126-1136. [PMID: 36857606 PMCID: PMC10020970 DOI: 10.1021/acschemneuro.2c00720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterized by a spectrum of symptoms associated with memory loss and cognitive decline with deleterious consequences in everyday life. The lack of specific drugs for the treatment and/or prevention of this pathology makes AD an ever-increasing economic and social emergency. Oligomeric species of amyloid-beta (Aβ) are recognized as the primary cause responsible for synaptic dysfunction and neuronal degeneration, playing a crucial role in the onset of the pathology. Several studies have been focusing on the use of small molecules and peptides targeting oligomeric species to prevent Aβ aggregation and toxicity. Among them, peptide fragments derived from the primary sequence of Aβ have also been used to exploit any eventual recognition abilities toward the full-length Aβ parent peptide. Here, we test the Aβ8-20 fragment which contains the self-recognizing Lys-Leu-Val-Phe-Phe sequence and lacks Arg 5 and Asp 7 and the main part of the C-terminus, key points involved in the aggregation pathway and stabilization of the fibrillary structure of Aβ. In particular, by combining chemical and biological techniques, we show that Aβ8-20 does not undergo random coil to β sheet conformational transition, does not form amyloid fibrils by itself, and is not toxic for neuronal cells. Moreover, we demonstrate that Aβ8-20 mainly interacts with the 4-11 region of Aβ1-42 and inhibits the formation of toxic oligomeric species and Aβ fibrils. Finally, our data show that Aβ8-20 protects neuron-like cells from Aβ1-42 oligomer toxicity. We propose Aβ8-20 as a promising drug candidate for the treatment of AD.
Collapse
|
research-article |
2 |
7 |
10
|
Zhao Y, Liu R, Cui X, Fu Q, Yu M, Fei Q, Feng G, Shan H, Huan Y. Colorimetric Sensor for Thiocyanate Based on Anti-aggregation of Gold Nanoparticles in the Presence of 2-Aminopyridine. ANAL SCI 2020; 36:1165-1169. [PMID: 32336728 DOI: 10.2116/analsci.20p035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Based on the anti-aggregation mechanism of citrate stabilized gold nanoparticle (AuNPs), a new specific and sensitive colorimetric sensor for thiocyanate (SCN-) was developed. In this scheme, the AuNPs were aggregated in the presence of the aggregating agent 2-aminopyridine (2-AP) due to electrostatic attraction. The solution color changed from red to blue. When SCN- was present, SCN- formed a sulfur-gold bond with the AuNPs to protect the AuNPs from aggregation. Thiocyanate can be detected by the color change of the solution from blue to red. The results showed that the absorbance ratio A675/A520 was linear with the concentration of SCN- in the range of 0.4 - 1.2 μmol L-1 by UV-Vis spectroscopy. The limit of detection (LOD) of this assay was 0.37 μmol L-1. The system also had excellent selectivity and anti-interference ability. In addition, this method was successfully used for the detection of SCN- in actual water samples and achieved good results.
Collapse
|
Journal Article |
5 |
3 |
11
|
Heptapeptide-based modification leading to enhancing the action of MTCA on activated platelets, P-selectin, GPIIb/IIIa. Future Med Chem 2018; 10:1957-1970. [PMID: 29973078 DOI: 10.4155/fmc-2018-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM The modification of platelet inhibitor to enhance its targeting capacity toward platelets is of clinical importance. Thus, (1R, 3S)-1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (MTCA), a platelet inhibitor, was modified with Lys(Pro-Ala-Lys)-Arg-Gly-Asp-Val (KKV), platelet targeting peptide, to form MTCA-KKV. MATERIALS & METHODS MTCA and MTCA-KKV were synthesized to identify the effect of KKV modification on MTCA and platelets. RESULTS Atomic force microscopy imaged MTCA-KKV effectively accumulated on activated platelets. UV spectra showed that MTCA-KKV concentration dependently changed P-selectin and GPIIb/IIIa conformations. For platelet aggregation, the IC50 of MTCA-KKV was approximately 1/10 folds of MTCA. CONCLUSION KKV modification led to forming MTCA-KKV that is superior to MTCA in terms of accumulating on activated platelets, targeting P-selectin and GPIIb/IIIa and inhibiting platelet aggregation. MTCA-KKV could be a promising lead for further investigation.
Collapse
|
|
7 |
2 |
12
|
Almenningen DM, Haga BS, Hansen HE, Buene AF, Hoff BH, Gautun OR. Adamantyl Side Chains as Anti-Aggregating Moieties in Dyes for Dye-Sensitized Solar Cells. Chemistry 2022; 28:e202201726. [PMID: 35686677 PMCID: PMC9543767 DOI: 10.1002/chem.202201726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 01/02/2023]
Abstract
Designing and evaluating novel dye concepts is crucial for the development of the field of dye‐sensitized solar cells (DSSCs). In our recent report, the novel concept of tethering the anti‐aggregation additive chenodeoxycholic acid (CDCA) to dyes for DSSC was introduced. Based on the performance improvements seen for this modification, the aim of this study is to see if a simplified anti‐aggregation unit could achieve similar results. The following study reports the synthesis and photovoltaic characterization of two novel dyes decorated with the steric ethyladamantyl moiety on the π‐spacer, and on the triarylamine donor. This modification is demonstrated to be successful in increasing the photovoltages in devices employing copper‐based electrolytes compared to the non‐modified reference dye. The best photovoltaic performance is achieved by a device prepared with the adamantyl decorated donor dye and CDCA, this device achieves a power conversion efficiency of 6.1 % (Short‐circuit current=8.3 mA cm−2, Open‐circuit voltage=1054 mV, Fill factor=0.69). The improved photovoltaic performance seen for the adamantyl decorated donor demonstrate the potential of ethyladamantyl side chains as a tool to ensure surface protection of TiO2.
Collapse
|
|
3 |
1 |
13
|
Ganegamage S, Ademoye TA, Patel H, Alnakhala H, Tripathi A, Nguyen CCD, Pham K, Plascencia-Villa G, Zhu X, Perry G, Tian S, Dettmer U, Lasagna-Reeves C, Fortin JS. Evaluation of Alpha-Synuclein and Tau Antiaggregation Activity of Urea and Thiourea-Based Small Molecules for Neurodegenerative Disease Therapeutics. ACS Chem Neurosci 2024; 15:3915-3931. [PMID: 39436010 PMCID: PMC11587513 DOI: 10.1021/acschemneuro.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are multifactorial, chronic diseases involving neurodegeneration. According to recent studies, it is hypothesized that the intraneuronal and postsynaptic accumulation of misfolded proteins such as α-synuclein (α-syn) and tau, responsible for Lewy bodies (LB) and tangles, respectively, disrupts neuron functions. Considering the co-occurrence of α-syn and tau inclusions in the brains of patients afflicted with subtypes of dementia and LB disorders, the discovery and development of small molecules for the inhibition of α-syn and tau aggregation can be a potentially effective strategy to delay neurodegeneration. Urea is a chaotropic agent that alters protein solubilization and hydrophobic interactions and inhibits protein aggregation and precipitation. The presence of three hetero atoms (O/S and N) in proximity can coordinate with neutral, mono, or dianionic groups to form stable complexes in the biological system. Therefore, in this study, we evaluated urea and thiourea linkers with various substitutions on either side of the carbamide or thiocarbamide functionality to compare the aggregation inhibition of α-syn and tau. A thioflavin-T (ThT) fluorescence assay was used to evaluate the level of fibril formation and monitor the anti-aggregation effect of the different compounds. We opted for transmission electron microscopy (TEM) as a direct means to confirm the anti-fibrillar effect. The oligomer formation was monitored via the photoinduced cross-linking of unmodified proteins (PICUP). The anti-inclusion and anti-seeding activities of the best compounds were evaluated using M17D intracellular inclusion and biosensor cell-based assays, respectively. Disaggregation experiments were performed with amyloid plaques extracted from AD brains. The analogues with indole, benzothiazole, or N,N-dimethylphenyl on one side with halo-substituted aromatic moieties had shown less than 15% cutoff fluorescence obtained with the ThT assay. Our lead molecules 6T and 14T reduced α-syn oligomerization dose-dependently based on the PICUP assays but failed at inhibiting tau oligomer formation. The anti-inclusion effect of our lead compounds was confirmed using the M17D neuroblastoma cell model. Compounds 6T and 14T exhibited an anti-seeding effect on tau using biosensor cells. In contrast to the control, disaggregation experiments showed fewer Aβ plaques with our lead molecules (compounds 6T and 14T). Pharmacokinetics (PK) mice studies demonstrated that these two thiourea-based small molecules have the potential to cross the blood-brain barrier in rodents. Urea and thiourea linkers could be further improved for their PK parameters and studied for the anti-inclusion, anti-seeding, and disaggregation effects using transgenic mice models of neurodegenerative diseases.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
14
|
Li JF, Jiang ZQ, Cao S, Zhang MX, Wang LH, Liu J, Lu YH, Wang HY, Hong XJ, Wang ZG, Liu JP. Curcumin Inhibits α-Synuclein Aggregation by Acting on Liquid-Liquid Phase Transition. Foods 2024; 13:1287. [PMID: 38731658 PMCID: PMC11083653 DOI: 10.3390/foods13091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is linked to α-synuclein (α-Syn) aggregation. Despite no specific drug being available for its treatment, curcumin, from the spice turmeric, shows promise. However, its application in PD is limited by a lack of understanding of its anti-amyloidogenic mechanisms. In this study, we first reconstructed the liquid-liquid phase separation (LLPS) of α-Syn in vitro under different conditions, which may be an initial step in entraining the pathogenic aggregation. Subsequently, we evaluated the effects of curcumin on the formation of droplets, oligomers, and aggregated fibers during the LLPS of α-synuclein, as well as its impact on the toxicity of aggregated α-synuclein to cultured cells. Importantly, we found that curcumin can inhibit amyloid formation by inhibiting the occurrence of LLPS and the subsequent formation of oligomers of α-Syn in the early stages of aggregation. Finally, the molecular dynamic simulations of interactions between α-Syn decamer fibrils and curcumin showed that van der Waal's interactions make the largest contribution to the anti-aggregation effect of curcumin. These results may help to clarify the mechanism by which curcumin inhibits the formation of α-Syn aggregates during the development of PD.
Collapse
|
research-article |
1 |
|
15
|
Mahjoubi N, Fazeli A, Dinarvand R, Khoshayand MR, Shekarchi M, Fazeli MR. Effect of Nonionic Surfactants (Dodecyl Maltoside and Polysorbate 20) on Prevention of Aggregation and Conformational Changes of Recombinant Human IFNβ_1b Induced by Light. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:103-111. [PMID: 28496465 PMCID: PMC5423237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Liquid protein formulations are prone to form aggregates. The effect of nonionic surfactants such as Polysorbate 20 (PS 20) and n-Dodecyl β-D-maltoside (DDM) on the prevention of aggregation and conformational changes of recombinant human IFNβ-1b (rhIFN β_1b) was explored. Polysorbate has been used in formulations of protein pharmaceuticals. There have been concerns about using PS 20 due to its residual peroxide content which may negatively affect protein efficacy. n-Dodecyl β-D-maltoside has been of interest and shown to be highly effective in prevention of aggregation. Fresh bulk of rhIFN β_1b was formulated using DDM or different concentrations of PS 20. Formulations were exposed to light stress condition according to the ICH guideline of Q1b. The overall conformational integrity of individual samples was characterized by a combination of Circular dichroism (CD), Fluorescence spectroscopy and RP_HPLC techniques. The CD spectrum depicting the conformational integrity of rhIFN β_1b showed 31.9% and 31.2% decreases in α-helix content of protein samples with 0.2% or 0.02% of PS20 compared to only18.2% of that containing 0.2% DDM. The RP-HPLC analysis also showed that the oxidized impurity in formulation containing DDM is less than those contain PS 20. Complementary analysis of the liquid formulations using IFR and UV methods also was in compliance with the data obtained by CD. Compared to PS 20, the sample of rhIFN β_1b formulation with DDM was more resistant to the destruction effect of light. Results were in accordance with previous studies and could suggest DDM as a reliable anti-aggregation surfactant in biopharmaceutical formulations.
Collapse
|
research-article |
8 |
|
16
|
Melnikova N, Malygina D, Balakireva A, Peretyagin P, Revin V, Devyataeva A, Malafeeva K, Revin V. The Effect of Betulin Diphosphate in Wound Dressings of Bacterial Cellulose-ZnO NPs on Platelet Aggregation and the Activity of Oxidoreductases Regulated by NAD(P)+/NAD(P)H-Balance in Burns on Rats. Molecules 2021; 26:5478. [PMID: 34576949 PMCID: PMC8469126 DOI: 10.3390/molecules26185478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
The inhibition of platelet aggregation, and the activity of oxidoreductases and microhemocirculation in a burn wound on the treatment of burns with wound dressings based on bacterial nanocellulose (BC)-zinc oxide nanoparticles (ZnO NPs)-betulin diphosphate (BDP) were studied. The control of the treatment by BC-ZnO NPs-BDP on burned rats by the noninvasive DLF method showed an increase in perfusion and the respiratory component in wavelet spectra, characterizing an improvement in oxygen saturation in the wound. The study on the volunteers' blood found the inhibition of ADP-induced platelet aggregation by 30-90%. Disaggregation depends on the dose under the action of the ionized form of BDP and ZnO NPs-BDP in a phosphate buffer; it was reversible and had two waves. It was shown on rats that the specific activity of LDHreverse and LDHdirect (control-intact animals) on day 21 of treatment increased by 11-38% and 23%, respectively. The LDHreverse/LDHdirect ratio increased at BC-ZnO NPs-BDP treatment, which characterizes efficient NAD+ regeneration. AlDH activity increased significantly in the first 10 days by 70-170%, reflecting the effectiveness of the enzyme and NAD+ in utilizing toxic aldehydes at this stage of burn disease. The activities of GR and G6PDH using NADP(H) were increased with BC-ZnO NPs-BDP treatment.
Collapse
|
research-article |
4 |
|
17
|
Shimamoto K, Fujikawa K, Osawa T, Mori S, Nomura K, Nishiyama KI. Key contributions of a glycolipid to membrane protein integration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:387-413. [PMID: 39085064 DOI: 10.2183/pjab.100.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Regulation of membrane protein integration involves molecular devices such as Sec-translocons or the insertase YidC. We have identified an integration-promoting factor in the inner membrane of Escherichia coli called membrane protein integrase (MPIase). Structural analysis revealed that, despite its enzyme-like name, MPIase is a glycolipid with a long glycan comprising N-acetyl amino sugars, a pyrophosphate linker, and a diacylglycerol (DAG) anchor. Additionally, we found that DAG, a minor membrane component, blocks spontaneous integration. In this review, we demonstrate how they contribute to Sec-independent membrane protein integration in bacteria using a comprehensive approach including synthetic chemistry and biophysical analyses. DAG blocks unfavorable spontaneous integrations by suppressing mobility in the membrane core, whereas MPIase compensates for this. Moreover, MPIase plays critical roles in capturing a substrate protein to prevent its aggregation, attracting it to the membrane surface, facilitating its insertion into the membrane, and delivering it to other factors. The combination of DAG and MPIase efficiently regulates the integration of membrane proteins.
Collapse
|
Review |
1 |
|
18
|
Siddiqui GA, Naeem A. Bioflavonoids ameliorate crowding induced hemoglobin aggregation: a spectroscopic and molecular docking approach. J Biomol Struct Dyn 2023; 41:10315-10325. [PMID: 36519442 DOI: 10.1080/07391102.2022.2154270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The cellular environment is densely crowded, confining biomacromolecules including proteins to less available space. This macromolecular confinement may affect the physiological conformation of proteins in long-term processes like ageing. Changes in physiological protein structure can lead to protein conformational disorders including neurodegeneration. An intervention approach using food and plant derived bioflavonoids offered a way to find a treatment for these enervating pathological conditions as there is no remedy available. The bioflavonoids NAR (naringenin), 7HD (7 hydroxyflavanone) and CHR (chrysin) were tested for their ability to protect Hb (hemoglobin) against crowding-induced aggregation. Morphological and secondary structural transitions were studied using microscopic and circular dichroism experiments, respectively. The kinetic study was carried out using the relative thioflavin T assay. Molecular docking, AmylPred2, admetSAR and FRET were applied to understand the binding parameters of bioflavonoids with Hb and their drug likeliness. Isolated human lymphocytes were used as a cellular system to study the toxic effects of Hb aggregates. Redox perturbation and cytotoxicity were evaluated by DCFH-DA and MTT assays, respectively. This study suggests that bioflavonoids bind to Hb in the vicinity of aggregation prone amino acid sequences. Binding of the bioflavonoids stabilizes the Hb against crowding-induced structural alterations. Therefore, this study signifies the potential of bioflavonoids for future treatment of many proteopathies including neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
2 |
|
19
|
Wróbel-Biedrawa D, Kubacka M, Kotańska M, Bednarski M, Grabowska K, Podolak I. Comparative Evaluation of Vasorelaxant and Antiplatelet Activity of Two Plant-Derived Benzoquinones: Rapanone and Embelin. Molecules 2025; 30:845. [PMID: 40005155 PMCID: PMC11858406 DOI: 10.3390/molecules30040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Vasorelaxant and antiplatelet agents play an important role in preventing and combating endothelial dysfunction, atherosclerosis and a plethora of associated cardiovascular diseases (CVDs). CVDs are the leading cause of death worldwide and nowadays occur not only in developed but also in developing societies. They include, among others, coronary heart disease, cerebrovascular disease and peripheral artery disease. Due to their high prevalence, it is important to seek efficient preventive measures, such as lifestyle changes and the implementation of appropriate herbal dietary supplementation and treatment alternatives. Plant-derived quinones have recently drawn researchers' attention due to their interesting biological potential. Embelin and rapanone are two plant-derived benzoquinones with anti-inflammatory and antioxidant properties. Embelin has already been shown to have vasorelaxant and antiplatelet activity, but little is known about rapanone in the context of CVDs. Therefore, we decided to comparatively evaluate their activity in a specially designed experimental protocol. Following the isolation of both benzoquinones from plant sources (rapanone from Ardisia crenata leaves; embelin from Lysimachia punctata roots), their effects were comparatively assessed in a biofunctional study on isolated rat aorta (precontracted with phenylephrine) and in vitro on platelet aggregation. Both benzoquinones showed 50% vasorelaxation in an NO-dependent manner. Interestingly, rapanone was slightly more effective as an antiplatelet agent than embelin. The antiplatelet effect of both benzoquinones was specific, as no cytotoxicity towards platelets was observed at the concentrations tested. This is the first report on the vasorelaxant and antiplatelet activity of rapanone.
Collapse
|
Comparative Study |
1 |
|
20
|
Bracalini M, Florenzano GT, Panzavolta T. Verbenone Affects the Behavior of Insect Predators and Other Saproxylic Beetles Differently: Trials Using Pheromone-Baited Bark Beetle Traps. INSECTS 2024; 15:260. [PMID: 38667390 PMCID: PMC11050107 DOI: 10.3390/insects15040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
In our study, we assessed the effects of verbenone, the most widely studied bark beetle aggregation inhibitor, on saproxylic beetles in a Mediterranean pine forest in Tuscany. Verbenone pouches were devised in the laboratory and then applied to Ips sexdentatus pheromone traps so that their catches could be compared to those of traps containing just the pheromone. The trial was carried out in spring-summer 2023, and insect catches were collected every two weeks. A total of 9440 beetles were collected that belonged to 32 different families and 57 species. About 80% of the captures were bark beetles, mainly Orthotomicus erosus. Beetle predators accounted for about 17% of the captures, with a total of 12 species. Some of these predator species had not yet been studied in relation to verbenone effects, like other saproxylic beetles recorded in this study. A significant reduction in captures was recorded for some beetles (e.g., I. sexdentatus and O. erosus), while for other species, no differences emerged, and in some cases, captures increased significantly when verbenone was present in the traps (i.e., Hylurgus ligniperda, Corticeus pini, and Aulonium ruficorne). The diversity of caught saproxylic beetles increased significantly in the verbenone traps, highlighting possible implications of the use of verbenone when managing bark beetle outbreaks.
Collapse
|
research-article |
1 |
|
21
|
Xiao R, Liang R, Cai YH, Dong J, Zhang L. Computational screening for new neuroprotective ingredients against Alzheimer's disease from bilberry by cheminformatics approaches. Front Nutr 2022; 9:1061552. [PMID: 36570129 PMCID: PMC9780678 DOI: 10.3389/fnut.2022.1061552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Bioactive ingredients from natural products have always been an important resource for the discovery of drugs for Alzheimer's disease (AD). Senile plaques, which are formed with amyloid-beta (Aβ) peptides and excess metal ions, are found in AD brains and have been suggested to play an important role in AD pathogenesis. Here, we attempted to design an effective and smart screening method based on cheminformatics approaches to find new ingredients against AD from Vaccinium myrtillus (bilberry) and verified the bioactivity of expected ingredients through experiments. This method integrated advanced artificial intelligence models and target prediction methods to realize the stepwise analysis and filtering of all ingredients. Finally, we obtained the expected new compound malvidin-3-O-galactoside (Ma-3-gal-Cl). The in vitro experiments showed that Ma-3-gal-Cl could reduce the OH· generation and intracellular ROS from the Aβ/Cu2+/AA mixture and maintain the mitochondrial membrane potential of SH-SY5Y cells. Molecular docking and Western blot results indicated that Ma-3-gal-Cl could reduce the amount of activated caspase-3 via binding with unactivated caspase-3 and reduce the expression of phosphorylated p38 via binding with mitogen-activated protein kinase kinases-6 (MKK6). Moreover, Ma-3-gal-Cl could inhibit the Aβ aggregation via binding with Aβ monomer and fibers. Thus, Ma-3-gal-Cl showed significant effects on protecting SH-SY5Y cells from Aβ/Cu2+/AA induced damage via antioxidation effect and inhibition effect to the Aβ aggregation.
Collapse
|
research-article |
3 |
|