1
|
Abstract
All species continuously evolve to adapt to changing environments. The genetic variation that fosters such adaptation is caused by a plethora of mechanisms, including meiotic recombination that generates novel allelic combinations in the progeny of two parental lineages. However, a considerable number of eukaryotic species, including many fungi, do not have an apparent sexual cycle and are consequently thought to be limited in their evolutionary potential. As such organisms are expected to have reduced capability to eliminate deleterious mutations, they are often considered as evolutionary dead ends. However, inspired by recent reports we argue that such organisms can be as persistent as organisms with conventional sexual cycles through the use of other mechanisms, such as genomic rearrangements, to foster adaptation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
86 |
2
|
Lahr DJG, Parfrey LW, Mitchell EAD, Katz LA, Lara E. The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms. Proc Biol Sci 2011; 278:2081-90. [PMID: 21429931 PMCID: PMC3107637 DOI: 10.1098/rspb.2011.0289] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/04/2011] [Indexed: 11/12/2022] Open
Abstract
Amoebae are generally assumed to be asexual. We argue that this view is a relict of early classification schemes that lumped all amoebae together inside the 'lower' protozoa, separated from the 'higher' plants, animals and fungi. This artificial classification allowed microbial eukaryotes, including amoebae, to be dismissed as primitive, and implied that the biological rules and theories developed for macro-organisms need not apply to microbes. Eukaryotic diversity is made up of 70+ lineages, most of which are microbial. Plants, animals and fungi are nested among these microbial lineages. Thus, theories on the prevalence and maintenance of sex developed for macro-organisms should in fact apply to microbial eukaryotes, though the theories may need to be refined and generalized (e.g. to account for the variation in sexual strategies and prevalence of facultative sex in natural populations of many microbial eukaryotes). We use a revised phylogenetic framework to assess evidence for sex in several amoeboid lineages that are traditionally considered asexual, and we interpret this evidence in light of theories on the evolution of sex developed for macro-organisms. We emphasize that the limited data available for many lineages coupled with natural variation in microbial life cycles overestimate the extent of asexuality. Mapping sexuality onto the eukaryotic tree of life demonstrates that the majority of amoeboid lineages are, contrary to popular belief, anciently sexual, and that most asexual groups have probably arisen recently and independently. Additionally, several unusual genomic traits are prevalent in amoeboid lineages, including cyclic polyploidy, which may serve as alternative mechanisms to minimize the deleterious effects of asexuality.
Collapse
|
Review |
14 |
84 |
3
|
Abstract
Reproduction is essential to all organisms if they are to contribute to the next generation. There are various means and ways of achieving this goal. This review focuses on the role of asexual reproduction for eukaryotic organisms and how its integration in a life cycle can influence their population genetics and evolution. An important question for evolutionary biologists as to why some organisms reproduce sexually, as opposed to asexually, is addressed. We also discuss the economic and medical importance of asexual organisms.
Collapse
|
Review |
18 |
79 |
4
|
Kreiner JM, Kron P, Husband BC. Frequency and maintenance of unreduced gametes in natural plant populations: associations with reproductive mode, life history and genome size. THE NEW PHYTOLOGIST 2017; 214:879-889. [PMID: 28134436 DOI: 10.1111/nph.14423] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/03/2016] [Indexed: 05/20/2023]
Abstract
Fertilization involving unreduced (2n) gametes is considered the dominant mechanism of polyploid formation in angiosperms; however, our knowledge of the prevalence of and evolutionary mechanisms maintaining 2n gametes in natural populations is limited. We hypothesize that 2n gametes are deleterious consequences of meiotic errors maintained by mutation-selection balance and should increase in species with relaxed opportunities for selection on sexual processes (asexuality), reduced efficacy of selection (asexuality, selfing) and increased genome instability (high chromosome number). We used flow cytometry to estimate male 2n gamete production in 60 populations from 24 species of Brassicaceae. We quantified variation in 2n gamete production within and among species, and examined associations with life history, reproductive mode, genome size and chromosomal number while accounting for phylogeny. Most individuals produced < 2% 2n male gametes, whereas a small number had > 5% (up to 85%) production. Variation in 2n gamete production was significant among species and related to reproductive system; asexual species produced significantly more 2n gametes than mixed-mating and outcrossing species. Our results, unique in their multi-species perspective, are consistent with 2n gametes being deleterious but maintained when opportunities for selection are limited. Rare individuals with elevated 2n gamete production may be key contributors to polyploid formation.
Collapse
|
|
8 |
54 |
5
|
Henk DA, Eagle CE, Brown K, Van Den Berg MA, Dyer PS, Peterson SW, Fisher MC. Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming's lucky fungus. Mol Ecol 2011; 20:4288-301. [PMID: 21951491 DOI: 10.1111/j.1365-294x.2011.05244.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Eighty years ago, Alexander Fleming described the antibiotic effects of a fungus that had contaminated his bacterial culture, kick starting the antimicrobial revolution. The fungus was later ascribed to a putatively globally distributed asexual species, Penicillium chrysogenum. Recently, the species has been shown to be genetically diverse, and possess mating-type genes. Here, phylogenetic and population genetic analyses show that this apparently ubiquitous fungus is actually composed of at least two genetically distinct species with only slight differences detected in physiology. We found each species in air and dust samples collected in and around St Mary's Hospital where Fleming worked. Genotyping of 30 markers across the genome showed that preserved fungal material from Fleming's laboratory was nearly identical to derived strains currently in culture collections and in the same distinct species as a wild progenitor strain of current penicillin producing industrial strains rather than the type species P. chrysogenum. Global samples of the two most common species were found to possess mating-type genes in a near 1:1 ratio, and show evidence of recombination with little geographic population subdivision evident. However, no hybridization was detected between the species despite an estimated time of divergence of less than 1MYA. Growth studies showed significant interspecific inhibition by P. chrysogenum of the other common species, suggesting that competition may facilitate species maintenance despite globally overlapping distributions. Results highlight under-recognized diversity even among the best-known fungal groups and the potential for speciation despite overlapping distribution.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
47 |
6
|
Bensasson D, Dicks J, Ludwig JM, Bond CJ, Elliston A, Roberts IN, James SA. Diverse Lineages of Candida albicans Live on Old Oaks. Genetics 2019; 211:277-288. [PMID: 30463870 PMCID: PMC6325710 DOI: 10.1534/genetics.118.301482] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
The human pathogen Candida albicans is considered an obligate commensal of animals, yet it is occasionally isolated from trees, shrubs, and grass. We generated genome sequence data for three strains of C. albicans that we isolated from oak trees in an ancient wood pasture, and compared these to the genomes of over 200 clinical strains. C. albicans strains from oak are similar to clinical C. albicans in that they are predominantly diploid and can become homozygous at the mating locus through whole-chromosome loss of heterozygosity. Oak strains differed from clinical strains in showing slightly higher levels of heterozygosity genome-wide. Using phylogenomic analyses and in silico chromosome painting, we show that each oak strain is more closely related to strains from humans and other animals than to strains from other oaks. The high genetic diversity of C. albicans from old oaks shows that they can live in this environment for extended periods of time.
Collapse
|
research-article |
6 |
47 |
7
|
Doerder FP. Abandoning sex: multiple origins of asexuality in the ciliate Tetrahymena. BMC Evol Biol 2014; 14:112. [PMID: 24885485 PMCID: PMC4045964 DOI: 10.1186/1471-2148-14-112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND By segregating somatic and germinal functions into large, compound macronuclei and small diploid micronuclei, respectively, ciliates can explore sexuality in ways other eukaryotes cannot. Sex, for instance, is not for reproduction but for nuclear replacement in the two cells temporarily joined in conjugation. With equal contributions from both conjugants, there is no cost of sex which theory predicts should favor asexuality. Yet ciliate asexuality is rare. The exceptional Tetrahymena has abandoned sex through loss of the micronucleus; its amicronucleates are abundant in nature where they reproduce by binary fission but never form conjugating pairs. A possible reason for their abundance is that the Tetrahymena macronucleus does not accumulate mutations as proposed by Muller's ratchet. As such, Tetrahymena amicronucleates have the potential to be very old. This study used cytochrome oxidase-1 barcodes to determine the phylogenetic origin and relative age of amicronucleates isolated from nature. RESULTS Amicronucleates constituted 25% of Tetrahymena-like wild isolates. Of the 244 amicronucleates examined for cox1 barcodes, 237 belonged to Tetrahymena, seven to other genera. Sixty percent originated from 12 named species or barcoded strains, including the model Tetrahymena thermophila, while the remaining 40% represent 19 putative new species, eight of which have micronucleate counterparts and 11 of which are known only as amicronucleates. In some instances, cox1 haplotypes were shared among micronucleate and amicronucleates collected from the same source. Phylogenetic analysis showed that most amicronucleates belong to the "borealis" clade in which mating type is determined by gene rearrangement. Some amicronucleate species were clustered on the SSU phylogenetic tree and had longer branch lengths, indicating more ancient origin. CONCLUSIONS Naturally occurring Tetrahymena amicronucleates have multiple origins, arising from numerous species. Likely many more new species remain to be discovered. Shared haplotypes indicate that some are of contemporary origin, while phylogeny indicates that others may be millions of years old. The apparent success of amicronucleate Tetrahymena may be because macronuclear assortment and recombination allow them to avoid Muller's ratchet, incorporate beneficial mutations, and evolve independently of sex. The inability of amicronucleates to mate may be the result of error(s) in mating type gene rearrangement.
Collapse
|
research-article |
11 |
31 |
8
|
Hofstatter PG, Lahr DJG. All Eukaryotes Are Sexual, unless Proven Otherwise: Many So-Called Asexuals Present Meiotic Machinery and Might Be Able to Have Sex. Bioessays 2019; 41:e1800246. [PMID: 31087693 DOI: 10.1002/bies.201800246] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Indexed: 11/07/2022]
Abstract
Here a wide distribution of meiotic machinery is shown, indicating the occurrence of sexual processes in all major eukaryotic groups, without exceptions, including the putative "asexuals." Meiotic machinery has evolved from archaeal DNA repair machinery by means of ancestral gene duplications. Sex is very conserved and widespread in eukaryotes, even though its evolutionary importance is still a matter of debate. The main processes in sex are plasmogamy, followed by karyogamy and meiosis. Meiosis is fundamentally a chromosomal process, which implies recombination and ploidy reduction. Several eukaryotic lineages are proposed to be asexual because their sexual processes are never observed, but presumed asexuality correlates with lack of study. The authors stress the complete lack of meiotic proteins in nucleomorphs and their almost complete loss in the fungus Malassezia. Inversely, complete sets of meiotic proteins are present in fungal groups Glomeromycotina, Trichophyton, and Cryptococcus. Endosymbiont Perkinsela and endoparasitic Microsporidia also present meiotic proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
26 |
9
|
Möst M, Oexle S, Marková S, Aidukaite D, Baumgartner L, Stich HB, Wessels M, Martin-Creuzburg D, Spaak P. Population genetic dynamics of an invasion reconstructed from the sediment egg bank. Mol Ecol 2015; 24:4074-93. [PMID: 26122166 DOI: 10.1111/mec.13298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/16/2023]
Abstract
Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
10
|
Allen DE, Lynch M. The effect of variable frequency of sexual reproduction on the genetic structure of natural populations of a cyclical parthenogen. Evolution 2012; 66:919-926. [PMID: 22380451 PMCID: PMC4521562 DOI: 10.1111/j.1558-5646.2011.01488.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclical parthenogens are a valuable system in which to empirically test theoretical predictions as to the genetic consequences of sexual reproduction in natural populations, particularly if the frequency of sexual relative to asexual reproduction can be quantified. In this study, we used a series of lake populations of the cyclical parthenogen, Daphnia pulicaria, that vary consistently in their investment in sexual reproduction, to address the questions of whether the ecological variation in investment in sex is detectable at the genetic level, and if so, whether the genetic patterns seen are consistent with theoretical predictions. We show that there is variation in the genetic structure of these populations in a manner consistent with their investment in sexual reproduction. Populations engaging in a high frequency of sex were in Hardy-Weinberg and gametic phase equilibrium, and showed little genotypic differentiation across sampled years. In contrast, populations with a lower frequency of sex deviated widely from equilibrium, had reduced multilocus clonal diversity, and showed significant temporal genotypic deviation.
Collapse
|
Comparative Study |
13 |
20 |
11
|
Ronnås C, Werth S, Ovaskainen O, Várkonyi G, Scheidegger C, Snäll T. Discovery of long-distance gamete dispersal in a lichen-forming ascomycete. THE NEW PHYTOLOGIST 2017; 216:216-226. [PMID: 28782804 PMCID: PMC5655791 DOI: 10.1111/nph.14714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/16/2017] [Indexed: 06/01/2023]
Abstract
Accurate estimates of gamete and offspring dispersal range are required for the understanding and prediction of spatial population dynamics and species persistence. Little is known about gamete dispersal in fungi, especially in lichen-forming ascomycetes. Here, we estimate the dispersal functions of clonal propagules, gametes and ascospores of the epiphytic lichen Lobaria pulmonaria. We use hierarchical Bayesian parentage analysis, which integrates genetic and ecological information from multiannual colonization and dispersal source data collected in a large, old-growth forest landscape. The effective dispersal range of gametes is several hundred metres to kilometres from potential paternal individuals. By contrast, clonal propagules disperse only tens of metres, and ascospores disperse over several thousand metres. Our study reveals the dispersal distances of individual reproductive units; clonal propagules, gametes and ascospores, which is of great importance for a thorough understanding of the spatial dynamics of ascomycetes. Sexual reproduction occurs between distant individuals. However, whereas gametes and ascospores disperse over long distances, the overall rate of colonization of trees is low. Hence, establishment is the limiting factor for the colonization of new host trees by the lichen in old-growth landscapes.
Collapse
|
research-article |
8 |
17 |
12
|
Geng Y, Li Z, Xia LY, Wang Q, Hu XM, Zhang XG. Characterization and phylogenetic analysis of the mating-type loci in the asexual ascomycete genus Ulocladium. Mycologia 2014; 106:649-65. [PMID: 24891417 DOI: 10.3852/13-383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genus Ulocladium is thought to be strictly asexual. Mating-type (MAT) loci regulate sexual reproduction in fungi and their study may help to explain the apparent lack of sexual reproduction in Ulocladium. We sequenced the full length of two MAT genes in 26 Ulocladium species and characterized the entire MAT idiomorphs plus flanking regions of Ulocladium botrytis. The MAT1-1 ORF encodes a protein with an alpha-box motif by the MAT1-1-1 gene and the MAT1-2 ORF encodes a protein with an HMG box motif by the MAT1-2-1 gene. Both MAT1-1-1 and MAT1-2-1 genes were detected in a single strain of every species. Moreover, the results of RT-PCR revealed that both MAT genes are expressed in all 26 Ulocladium species. This demonstrates that MAT genes of Ulocladium species might be functional and that they have the potential for sexual reproduction. Phylogenies based on MAT genes were compared with GAPDH and Alt a 1 phylograms in Ulocladium using maximum parsimony (MP) and Bayesian analysis. The MAT genealogies and the non-MAT trees displayed different topologies, indicating that MAT genes are unsuitable phylogenetic markers at the species level in Ulocladium. Furthermore, the conflicting topologies between MAT1-1-1 and MAT1-2-1 phylogeny indicate separate evolutionary events for the two MAT genes. However, the intergeneric phylogeny of four closely allied genera (Ulocladium, Alternaria, Cochliobolus, Stemphylium) based on MAT alignments demonstrated that MAT genes are suitable for phylogenetic analysis among allied genera.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
14 |
13
|
Innes DJ, Ginn M. A population of sexual Daphnia pulex resists invasion by asexual clones. Proc Biol Sci 2015; 281:20140564. [PMID: 24943366 DOI: 10.1098/rspb.2014.0564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asexual reproduction avoids the costs associated with sex, predicting that invading asexual clones can quickly replace sexual populations. Daphnia pulex populations in the Great Lakes area are predominately asexual, but the elimination of sexual populations by invading clones is poorly understood. Asexual clones were detected at low frequency in one rare sexual population in 1995, with some increase in frequency during 2003 and 2004. However, these clones remained at low frequency during further yearly sampling (2005-2013) with no evidence that the resident sexual population was in danger of elimination. There was evidence for hybridization between rare males produced by asexual clones and sexual females with the potential to produce new asexual genotypes and spread the genetic factors for asexuality. In a short-term laboratory competition experiment, the two most common asexual clones did not increase in frequency relative to a genetically diverse sexual population due in part to a greater investment in diapausing eggs that trades-off current population growth for increased contribution to the egg bank. Our results suggest that a successful invasion can be prolonged, requiring a combination of clonal genotypes with high fitness, persistence of clones in the egg bank and negative factors affecting the sexual population such as inbreeding depression resulting from population bottlenecks.
Collapse
|
|
10 |
13 |
14
|
Elzinga JA, Jokela J, Shama LNS. Large variation in mitochondrial DNA of sexual and parthenogenetic Dahlica triquetrella (Lepidoptera: Psychidae) shows multiple origins of parthenogenesis. BMC Evol Biol 2013; 13:90. [PMID: 23622052 PMCID: PMC3655047 DOI: 10.1186/1471-2148-13-90] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/02/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Obligate parthenogenesis is relatively rare in animals. Still, in some groups it is quite common and has evolved and persisted multiple times. These groups may provide important clues to help solve the 'paradox of sex'. Several species in the Psychidae (Lepidoptera) have obligate parthenogenesis. Dahlica triquetrella is one of those species where multiple transitions to parthenogenesis are postulated based on intensive cytological and behavioural studies. This has led to the hypothesis that multiple transitions from sexuals to diploid parthenogens occurred during and after the last glacial period, followed by transitions from parthenogenetic diploids to parthenogenetic tetraploids. Our study is the first to test these hypotheses using a molecular phylogeny based on mtDNA from multiple sexual and parthenogenetic populations from a wide geographic range. RESULTS Parthenogenetic (and sexual) D. triquetrella are not monophyletic, and considerable sequence variation is present suggesting multiple transitions to parthenogenesis. However, we could not establish ancestral sexual haplotypes from our dataset. Our data suggest that some parthenogenetic clades have evolved, indicating origins of parthenogenesis before the last glacial period. CONCLUSIONS Multiple transitions to parthenogenesis have taken place in Dahlica triquetrella, confirming previous hypotheses. The number of different parthenogenetic clades, haplotypes and their apparent evolutionary age, clearly show that parthenogenesis has been a very successful reproductive strategy in this species over a long period.
Collapse
|
research-article |
12 |
10 |
15
|
Sperling AL, Fabian DK, Garrison E, Glover DM. A genetic basis for facultative parthenogenesis in Drosophila. Curr Biol 2023; 33:3545-3560.e13. [PMID: 37516115 PMCID: PMC11044649 DOI: 10.1016/j.cub.2023.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Facultative parthenogenesis enables sexually reproducing organisms to switch between sexual and asexual parthenogenetic reproduction. To gain insights into this phenomenon, we sequenced the genomes of sexually reproducing and parthenogenetic strains of Drosophila mercatorum and identified differences in the gene expression in their eggs. We then tested whether manipulating the expression of candidate gene homologs identified in Drosophila mercatorum could lead to facultative parthenogenesis in the non-parthenogenetic species Drosophila melanogaster. This identified a polygenic system whereby increased expression of the mitotic protein kinase polo and decreased expression of a desaturase, Desat2, caused facultative parthenogenesis in the non-parthenogenetic species that was enhanced by increased expression of Myc. The genetically induced parthenogenetic Drosophila melanogaster eggs exhibit de novo centrosome formation, fusion of the meiotic products, and the onset of development to generate predominantly triploid offspring. Thus, we demonstrate a genetic basis for sporadic facultative parthenogenesis in an animal.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
10 |
16
|
Chen JY, Klosterman SJ, Hu XP, Dai XF, Subbarao KV. Key Insights and Research Prospects at the Dawn of the Population Genomics Era for Verticillium dahliae. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:31-51. [PMID: 33891830 DOI: 10.1146/annurev-phyto-020620-121925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The genomics era has ushered in exciting possibilities to examine the genetic bases that undergird the characteristic features of Verticillium dahliae and other plant pathogens. In this review, we provide historical perspectives on some of the salient biological characteristics of V. dahliae, including its morphology, microsclerotia formation, host range, disease symptoms, vascular niche, reproduction, and population structure. The kaleidoscopic population structure of this pathogen is summarized, including different races of the pathogen, defoliating and nondefoliating phenotypes, vegetative compatibility groupings, and clonal populations. Where possible, we place the characteristic differences in the context of comparative and functional genomics analyses that have offered insights into population divergence within V. dahliae and the related species.Current challenges are highlighted along with some suggested future population genomics studies that will contribute to advancing our understanding of the population divergence in V. dahliae.
Collapse
|
Review |
4 |
9 |
17
|
Estimation of the SNP Mutation Rate in Two Vegetatively Propagating Species of Duckweed. G3-GENES GENOMES GENETICS 2020; 10:4191-4200. [PMID: 32973000 PMCID: PMC7642947 DOI: 10.1534/g3.120.401704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutation rate estimates for vegetatively reproducing organisms are rare, despite their frequent occurrence across the tree of life. Here we report mutation rate estimates in two vegetatively reproducing duckweed species, Lemna minor and Spirodela polyrhiza We use a modified approach to estimating mutation rates by taking into account the reduction in mutation detection power that occurs when new individuals are produced from multiple cell lineages. We estimate an extremely low per generation mutation rate in both species of duckweed and note that allelic coverage at de novo mutation sites is very skewed. We also find no substantial difference in mutation rate between mutation accumulation lines propagated under benign conditions and those grown under salt stress. Finally, we discuss the implications of interpreting mutation rate estimates in vegetatively propagating organisms.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
8 |
18
|
Sanders IR. Sex, plasticity, and biologically significant variation in one Glomeromycotina species. THE NEW PHYTOLOGIST 2018; 220:968-970. [PMID: 29480929 DOI: 10.1111/nph.15049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
Letter |
7 |
7 |
19
|
Oldrieve G, Verney M, Jaron KS, Hébert L, Matthews KR. Monomorphic Trypanozoon: towards reconciling phylogeny and pathologies. Microb Genom 2021; 7. [PMID: 34397347 PMCID: PMC8549356 DOI: 10.1099/mgen.0.000632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trypanosoma brucei evansi and T. brucei equiperdum are animal infective trypanosomes conventionally classified by their clinical disease presentation, mode of transmission, host range, kinetoplast DNA (kDNA) composition and geographical distribution. Unlike other members of the subgenus Trypanozoon, they are non-tsetse transmitted and predominantly morphologically uniform (monomorphic) in their mammalian host. Their classification as independent species or subspecies has been long debated and genomic studies have found that isolates within T. brucei evansi and T. brucei equiperdum have polyphyletic origins. Since current taxonomy does not fully acknowledge these polyphyletic relationships, we re-analysed publicly available genomic data to carefully define each clade of monomorphic trypanosome. This allowed us to identify, and account for, lineage-specific variation. We included a recently published isolate, IVM-t1, which was originally isolated from the genital mucosa of a horse with dourine and typed as T. equiperdum. Our analyses corroborate previous studies in identifying at least four distinct monomorphic T. brucei clades. We also found clear lineage-specific variation in the selection efficacy and heterozygosity of the monomorphic lineages, supporting their distinct evolutionary histories. The inferred evolutionary position of IVM-t1 suggests its reassignment to the T. brucei evansi type B clade, challenging the relationship between the Trypanozoon species, the infected host, mode of transmission and the associated pathological phenotype. The analysis of IVM-t1 also provides, to our knowledge, the first evidence of the expansion of T. brucei evansi type B, or a fifth monomorphic lineage represented by IVM-t1, outside of Africa, with important possible implications for disease diagnosis.
Collapse
|
Journal Article |
4 |
6 |
20
|
Moreira MO, Fonseca C, Rojas D. Parthenogenesis is self-destructive for scaled reptiles. Biol Lett 2021; 17:20210006. [PMID: 33975486 PMCID: PMC8113917 DOI: 10.1098/rsbl.2021.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
Parthenogenesis is rare in nature. With 39 described true parthenogens, scaled reptiles (Squamata) are the only vertebrates that evolved this reproductive strategy. Parthenogenesis is ecologically advantageous in the short term, but the young age and rarity of parthenogenetic species indicate it is less advantageous in the long term. This suggests parthenogenesis is self-destructive: it arises often but is lost due to increased extinction rates, high rates of reversal or both. However, this role of parthenogenesis as a self-destructive trait remains unknown. We used a phylogeny of Squamata (5388 species), tree metrics, null simulations and macroevolutionary scenarios of trait diversification to address the factors that best explain the rarity of parthenogenetic species. We show that parthenogenesis can be considered as self-destructive, with high extinction rates mainly responsible for its rarity in nature. Since these parthenogenetic species occur, this trait should be ecologically relevant in the short term.
Collapse
|
research-article |
4 |
5 |
21
|
Grusz AL, Windham MD, Picard KT, Pryer KM, Schuettpelz E, Haufler CH. A drought-driven model for the evolution of obligate apomixis in ferns: evidence from pellaeids (Pteridaceae). AMERICAN JOURNAL OF BOTANY 2021; 108:263-283. [PMID: 33624306 DOI: 10.1002/ajb2.1611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
PREMISE Xeric environments impose major constraints on the fern life cycle, yet many lineages overcome these limitations by evolving apomixis. Here, we synthesize studies of apomixis in ferns and present an evidence-based model for the evolution and establishment of this reproductive strategy, focusing on genetic and environmental factors associated with its two defining traits: the production of "unreduced" spores (n = 2n) and the initiation of sporophytes from gametophyte tissue (i.e., diplospory and apogamy, respectively). METHODS We evaluated existing literature in light of the hypothesis that abiotic characteristics of desert environments (e.g., extreme diurnal temperature fluctuations, high light intensity, and water limitation) drive the evolution of obligate apomixis. Pellaeid ferns (Cheilanthoideae: Pteridaceae) were examined in detail, as an illustrative example. We reconstructed a plastid (rbcL, trnG-trnR, atpA) phylogeny for the clade and mapped reproductive mode (sexual versus apomictic) and ploidy across the resulting tree. RESULTS Our six-stage model for the evolution of obligate apomixis in ferns emphasizes the role played by drought and associated abiotic conditions in the establishment of this reproductive approach. Furthermore, our updated phylogeny of pellaeid ferns reveals repeated origins of obligate apomixis and shows an increase in the frequency of apomixis, and rarity of sexual reproduction, among taxa inhabiting increasingly dry North American deserts. CONCLUSIONS Our findings reinforce aspects of other evolutionary, physiological, developmental, and omics-based studies, indicating a strong association between abiotic factors and the establishment of obligate apomixis in ferns. Water limitation, in particular, appears critical to establishment of this reproductive mode.
Collapse
|
|
4 |
5 |
22
|
VanWallendael A, Alvarez M, Franks SJ. Patterns of population genomic diversity in the invasive Japanese knotweed species complex. AMERICAN JOURNAL OF BOTANY 2021; 108:857-868. [PMID: 33942283 DOI: 10.1002/ajb2.1653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Invasive species are expected to undergo a reduction in genetic diversity due to founder effects, which should limit their ability to adapt to new habitats. Still, many invasive species achieve widespread distributions and dense populations. This paradox of invasions could potentially be overcome through multiple introductions or hybridization, both of which increase genetic diversity. We conducted a population genomics study of Japanese knotweed (Reynoutria japonica), which is a polyploid, clonally reproducing invasive species that has been notoriously successful worldwide despite supposedly low genetic diversity. METHODS We used genotyping by sequencing to collect 12,912 SNP markers from 88 samples collected at 38 locations across North America for the species complex. We used alignment-free k-mer hashing analysis in addition to traditional population genetic analyses to account for the challenges of genotyping polyploids. RESULTS Genotypes conformed to three genetic clusters, likely representing Japanese knotweed, giant knotweed, and hybrid bohemian knotweed. We found that, contrary to previous findings, the Japanese knotweed cluster had substantial genetic diversity, though it had no apparent genetic structure across the landscape. In contrast, giant knotweed and hybrids showed distinct population groups. We did not find evidence of isolation by distance in the species complex, likely reflecting the stochastic introduction history of this species complex. CONCLUSIONS The results indicate that clonal invasive species can show substantial genetic diversity and can be successful at colonizing a variety of habitats without showing evidence of local adaptation or genetic structure.
Collapse
|
|
4 |
3 |
23
|
Krueger-Hadfield SA, Guillemin ML, Destombe C, Valero M, Stoeckel S. Exploring the Genetic Consequences of Clonality in Haplodiplontic Taxa. J Hered 2021; 112:92-107. [PMID: 33511982 DOI: 10.1093/jhered/esaa063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022] Open
Abstract
Partially clonality is an incredibly common reproductive mode found across all the major eukaryotic lineages. Yet, population genetic theory is based on exclusive sexuality or exclusive asexuality, and partial clonality is often ignored. This is particularly true in haplodiplontic eukaryotes, including algae, ferns, mosses, and fungi, where somatic development occurs in both the haploid and diploid stages. Haplodiplontic life cycles are predicted to be correlated with asexuality, but tests of this prediction are rare. Moreover, there are unique consequences of having long-lived haploid and diploid stages in the same life cycle. For example, clonal processes uncouple the life cycle such that the repetition of the diploid stage via clonality leads to the loss of the haploid stage. Here, we surveyed the literature to find studies that had genotyped both haploid and diploid stages and recalculated population genetic summary metrics for seven red algae, one green alga, three brown algae, and three mosses. We compared these data to recent simulations that explicitly addressed the population genetic consequences of partial clonality in haplodiplontic life cycles. Not only was partial clonality found to act as a homogenizing force, but the combined effects of proportion of haploids, rate of clonality, and the relative strength of mutation versus genetic drift impacts the distributions of population genetic indices. We found remarkably similar patterns across commonly used population genetic metrics between our empirical and recent theoretical expectations. To facilitate future studies, we provide some recommendations for sampling and analyzing population genetic parameters for haplodiplontic taxa.
Collapse
|
|
4 |
3 |
24
|
Ashby B. When does parasitism maintain sex in the absence of Red Queen Dynamics? J Evol Biol 2020; 33:1795-1805. [PMID: 33073411 DOI: 10.1111/jeb.13718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Parasites can select for sexual reproduction in host populations, preventing replacement by faster-growing asexual genotypes. This is usually attributed to so-called 'Red Queen dynamics' (RQD), where antagonistic coevolution causes fluctuating selection in allele frequencies, which provides sex with an advantage over asex. However, parasitism may also maintain sex in the absence of RQD when sexual populations are more genetically diverse-and hence more resistant, on average-than clonal populations, allowing sex and asex to coexist at a stable equilibrium. Although the maintenance of sex due to RQD has been studied extensively, the conditions that allow sex and asex to stably coexist have yet to be explored in detail. In particular, we lack an understanding of how host demography and parasite epidemiology affect the maintenance of sex in the absence of RQD. Here, I use an eco-evolutionary model to show that both population density and the type and strength of virulence are important for maintaining sex, which can be understood in terms of their effects on disease prevalence and severity. In addition, I show that even in the absence of heterozygote advantage, asexual heterozygosity affects coexistence with sex due to variation in niche overlap. These results reveal which host and parasite characteristics are most important for the maintenance of sex in the absence of RQD, and provide empirically testable predictions for how demography and epidemiology mediate competition between sex and asex.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
3 |
25
|
Chambers SM, Watkins JE, Sessa EB. Differences in dehydration tolerance among populations of a gametophyte-only fern. AMERICAN JOURNAL OF BOTANY 2017; 104:598-607. [PMID: 28400414 DOI: 10.3732/ajb.1600279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY For many plant species, historical climatic conditions may have left lasting imprints that are detectable in contemporary populations. Additionally, if these historical conditions also prevented gene flow among populations, these populations may be differentiated with respect to one another and their contemporary environmental conditions. For the fern, Vittaria appalachiana, one theory is that historical conditions during the Pleistocene largely shaped both the distribution and lack of sporophyte production. Our goals-based on this theory-were to examine physiological differences among and within populations spanning the species' geographic range, and the contribution of historical climatic conditions to this differentiation. METHODS We exposed explants from five populations to four drying treatments and examined differences in physiological response. Additionally, we examined the role of historical and current climatic conditions in driving the observed population differentiation. KEY RESULTS Populations differ in their ability to tolerate varying levels of dehydration, displaying a pattern of countergradient selection. Exposure to historical and contemporary climatic conditions, specifically variation in temperature and precipitation regimes, resulted in population divergence observed among contemporary populations. CONCLUSIONS Historical conditions have shaped not only the distribution of V. appalachiana, but also its current physiological limitations. Results from this study support the hypothesis that climatic conditions during the Pleistocene are responsible for the distribution of this species, and may be responsible for the observed differences in dehydration tolerance. Additionally, dehydration tolerance may be the driving factor for previously reported patterns of countergradient selection in this species.
Collapse
|
|
8 |
3 |