1
|
Abstract
Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
30 |
2
|
Rosenfeld S. Are the somatic mutation and tissue organization field theories of carcinogenesis incompatible? Cancer Inform 2013; 12:221-9. [PMID: 24324325 PMCID: PMC3855256 DOI: 10.4137/cin.s13013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Two drastically different approaches to understanding the forces driving carcinogenesis have crystallized through years of research. These are the somatic mutation theory (SMT) and the tissue organization field theory (TOFT). The essence of SMT is that cancer is derived from a single somatic cell that has successively accumulated multiple DNA mutations, and that those mutations occur on genes which control cell proliferation and cell cycle. Thus, according to SMT, neoplastic lesions are the results of DNA-level events. Conversely, according to TOFT, carcinogenesis is primarily a problem of tissue organization: carcinogenic agents destroy the normal tissue architecture thus disrupting cell-to-cell signaling and compromising genomic integrity. Hence, in TOFT the DNA mutations are the effect, and not the cause, of the tissue-level events. Cardinal importance of successful resolution of the TOFT versus SMT controversy dwells in the fact that, according to SMT, cancer is a unidirectional and mostly irreversible disease; whereas, according to TOFT, it is curable and reversible. In this paper, our goal is to outline a plausible scenario in which TOFT and SMT can be reconciled using the framework and concepts of the self-organized criticality (SOC), the principle proven to be extremely fruitful in a wide range of disciplines pertaining to natural phenomena, to biological communities, to large-scale social developments, to technological networks, and to many other subjects of research.
Collapse
|
Journal Article |
12 |
23 |
3
|
Hütt MT, Lesne A. Interplay between Topology and Dynamics in Excitation Patterns on Hierarchical Graphs. Front Neuroinform 2009; 3:28. [PMID: 19826610 PMCID: PMC2759346 DOI: 10.3389/neuro.11.028.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/07/2009] [Indexed: 11/22/2022] Open
Abstract
In a recent publication (Müller-Linow et al., 2008) two types of correlations between network topology and dynamics have been observed: waves propagating from central nodes and module-based synchronization. Remarkably, the dynamic behavior of hierarchical modular networks can switch from one of these modes to the other as the level of spontaneous network activation changes. Here we attempt to capture the origin of this switching behavior in a mean-field model as well in a formalism, where excitation waves are regarded as avalanches on the graph.
Collapse
|
research-article |
16 |
21 |
4
|
Nowcasting Avalanches as Earthquakes and the Predictability of Strong Avalanches in the Olami-Feder-Christensen Model. ENTROPY 2020; 22:e22111228. [PMID: 33286996 PMCID: PMC7712535 DOI: 10.3390/e22111228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Nowcasting earthquakes, suggested recently as a method to estimate the state of a fault and hence the seismic risk, is based on the concept of natural time. Here, we generalize nowcasting to a prediction method the merits of which are evaluated by means of the receiver operating characteristics. This new prediction method is applied to a simple (toy) model for the waiting (natural) time of the stronger earthquakes, real seismicity, and the Olami-Feder-Christensen earthquake model with interesting results revealing acceptable to excellent or even outstanding performance.
Collapse
|
|
5 |
20 |
5
|
Abstract
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.
Collapse
|
research-article |
3 |
16 |
6
|
Bocaccio H, Pallavicini C, Castro MN, Sánchez SM, De Pino G, Laufs H, Villarreal MF, Tagliazucchi E. The avalanche-like behaviour of large-scale haemodynamic activity from wakefulness to deep sleep. J R Soc Interface 2019; 16:20190262. [PMID: 31506046 PMCID: PMC6769314 DOI: 10.1098/rsif.2019.0262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence suggests that responsiveness is associated with critical or near-critical cortical dynamics, which exhibit scale-free cascades of spatio-temporal activity. These cascades, or 'avalanches', have been detected at multiple scales, from in vitro and in vivo microcircuits to voltage imaging and brain-wide functional magnetic resonance imaging (fMRI) recordings. Criticality endows the cortex with certain information-processing capacities postulated as necessary for conscious wakefulness, yet it remains unknown how unresponsiveness impacts on the avalanche-like behaviour of large-scale human haemodynamic activity. We observed a scale-free hierarchy of co-activated connected clusters by applying a point-process transformation to fMRI data recorded during wakefulness and non-rapid eye movement (NREM) sleep. Maximum-likelihood estimates revealed a significant effect of sleep stage on the scaling parameters of the cluster size power-law distributions. Post hoc statistical tests showed that differences were maximal between wakefulness and N2 sleep. These results were robust against spatial coarse graining, fitting alternative statistical models and different point-process thresholds, and disappeared upon phase shuffling the fMRI time series. Evoked neural bistabilities preventing arousals during N2 sleep do not suffice to explain these differences, which point towards changes in the intrinsic dynamics of the brain that could be necessary to consolidate a state of deep unresponsiveness.
Collapse
|
research-article |
6 |
14 |
7
|
Ribeiro TL, Ribeiro S, Copelli M. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty. Front Neural Circuits 2016; 10:16. [PMID: 27047341 PMCID: PMC4802163 DOI: 10.3389/fncir.2016.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
13 |
8
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Oboe R, Leparulo A, Suweis S, Vassanelli S. Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation. Front Syst Neurosci 2021; 15:709677. [PMID: 34526881 PMCID: PMC8435673 DOI: 10.3389/fnsys.2021.709677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.
Collapse
|
research-article |
4 |
11 |
9
|
de Geus TWJ, Popović M, Ji W, Rosso A, Wyart M. How collective asperity detachments nucleate slip at frictional interfaces. Proc Natl Acad Sci U S A 2019; 116:23977-23983. [PMID: 31699820 PMCID: PMC6883799 DOI: 10.1073/pnas.1906551116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sliding at a quasi-statically loaded frictional interface can occur via macroscopic slip events, which nucleate locally before propagating as rupture fronts very similar to fracture. We introduce a microscopic model of a frictional interface that includes asperity-level disorder, elastic interaction between local slip events, and inertia. For a perfectly flat and homogeneously loaded interface, we find that slip is nucleated by avalanches of asperity detachments of extension larger than a critical radius [Formula: see text] governed by a Griffith criterion. We find that after slip, the density of asperities at a local distance to yielding [Formula: see text] presents a pseudogap [Formula: see text], where θ is a nonuniversal exponent that depends on the statistics of the disorder. This result makes a link between friction and the plasticity of amorphous materials where a pseudogap is also present. For friction, we find that a consequence is that stick-slip is an extremely slowly decaying finite-size effect, while the slip nucleation radius [Formula: see text] diverges as a θ-dependent power law of the system size. We discuss how these predictions can be tested experimentally.
Collapse
|
research-article |
6 |
11 |
10
|
Rolls ET, Cheng W, Feng J. Brain dynamics: Synchronous peaks, functional connectivity, and its temporal variability. Hum Brain Mapp 2021; 42:2790-2801. [PMID: 33742498 PMCID: PMC8127146 DOI: 10.1002/hbm.25404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
We describe advances in the understanding of brain dynamics that are important for understanding the operation of the cerebral cortex in health and disease. Peaks in the resting state fMRI BOLD signal in many different brain areas can become synchronized. In data from 1,017 participants from the Human Connectome Project, we show that early visual and connected areas have the highest probability of synchronized peaks. We show that these cortical areas also have low temporal variability of their functional connectivity. We show that there is an approximately reciprocal relation between the probability that a brain region will be involved in synchronized peaks and the temporal variability of the connectivity of a brain region. We show that a high probability of synchronized peaks and a low temporal variability of the connectivity of cortical areas are related to high mean functional connectivity, and provide an account of how these dynamics with some of the properties of avalanches arise. These discoveries help to advance our understanding of cortical operation in health, and in some mental disorders including schizophrenia.
Collapse
|
Journal Article |
4 |
9 |
11
|
Wiese KJ. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086502. [PMID: 35943081 DOI: 10.1088/1361-6633/ac4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/23/2021] [Indexed: 06/15/2023]
Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and many other systems can be modeled as an elastic system subject to quenched disorder. The ensuing field theory possesses a well-controlled perturbative expansion around its upper critical dimension. Contrary to standard field theory, the renormalization group (RG) flow involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG. Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic manifold. In this review, we give a pedagogical introduction into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics). Building on these techniques, avalanche observables are accessible: distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems requires specific techniques, which we develop, including modeling of discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed percolation, and non-linear surface growth with additional Kardar-Parisi-Zhang (KPZ) terms. On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the directed polymer for its steady state, or a single particle for its decay. Other topics covered are the relation between functional RG and replica symmetry breaking, and random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
Collapse
|
Review |
3 |
8 |
12
|
Dolan N, Tedeschi C. A Qualitative Study of Psychological Outcomes in Avalanche First Responders. High Alt Med Biol 2018; 19:344-355. [PMID: 30234408 DOI: 10.1089/ham.2018.0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES We sought to characterize the mental health morbidity associated with avalanche rescue, and to generate hypotheses as to how such morbidity may be mitigated. MATERIALS AND METHODS Avalanche first responders were recruited through online advertisements, social media, direct outreach, and e-mail solicitation. Thirteen subjects were selected for inclusion. Each subject participated in a semistructured interview. Transcripts were coded and thematically analyzed. RESULTS Themes identified from interviews fell into three broad categories: long-term effects of rescue participation, assessments of psychological support, and recommendations for change. Symptoms of substance use disorder, depression, anxiety, panic, acute stress disorder, and posttraumatic stress disorder were evident in the interviews, as was evidence of adverse effects on subjects' personal relationships. Many respondents described a deficiency of formal psychological support for avalanche first responders, often limited to after-action debriefs of varying effectiveness. Nevertheless, subjects who received high-quality professional psychological support considered it helpful. Participants' suggestions for improvement focused on formalizing preincident psychological preparation and postincident support. CONCLUSIONS Avalanche responders may experience long-lasting, work-related psychological effects. There is a paucity of effective psychological preparation and support for this population of first responders. Formal psychological support is positively received when available. Further study is required to evaluate particular interventions in this specific population.
Collapse
|
|
7 |
4 |
13
|
A Molecular Dynamics Simulations Study of the Influence of Prestrain on the Pop-In Behavior and Indentation Size Effect in Cu Single Crystals. MATERIALS 2021; 14:ma14185220. [PMID: 34576442 PMCID: PMC8472794 DOI: 10.3390/ma14185220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
The pop-in effect in nanoindentation of metals represents a major collective dislocation phenomenon that displays sensitivity in the local surface microstructure and residual stresses. To understand the deformation mechanisms behind pop-ins in metals, large scale molecular dynamics simulations are performed to investigate the pop-in behavior and indentation size effect in undeformed and deformed Cu single crystals. Tensile loading, unloading, and reloading simulations are performed to create a series of samples subjected to a broad range of tensile strains with/without pre-existing dislocations. The subsequent nanoindentation simulations are conducted to investigate the coupled effects of prestrain and the presence of resulting dislocations and surface morphology, as well as indenter size effects on the mechanical response in indentation processes. Our work provides detailed insights into the deformation mechanisms and microstructure-property relationships of nanoindentation in the presence of residual stresses and strains.
Collapse
|
|
4 |
3 |
14
|
Ferrero EE, Jagla EA. Properties of the density of shear transformations in driven amorphous solids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:124001. [PMID: 33393487 DOI: 10.1088/1361-648x/abd73a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The strain load Δγthat triggers consecutive avalanches is a key observable in the slow deformation of amorphous solids. Its temporally averaged value ⟨Δγ⟩ displays a non-trivial system-size dependence that constitutes one of the distinguishing features of the yielding transition. Details of this dependence are not yet fully understood. We address this problem by means of theoretical analysis and simulations of elastoplastic models for amorphous solids. An accurate determination of the size dependence of ⟨Δγ⟩ leads to a precise evaluation of the steady-state distribution of local distances to instabilityx. We find that the usually assumed formP(x) ∼xθ(withθbeing the so-called pseudo-gap exponent) is not accurate at lowxand that in generalP(x) tends to a system-size-dependentfinitelimit asx→ 0. We work out the consequences of this finite-size dependence standing on exact results for random-walks and disclosing an alternative interpretation of the mechanical noise felt by a reference site. We test our predictions in two- and three-dimensional elastoplastic models, showing the crucial influence of the saturation ofP(x) at smallxon the size dependence of ⟨Δγ⟩ and related scalings.
Collapse
|
|
4 |
3 |
15
|
Santucci S, Tallakstad KT, Angheluta L, Laurson L, Toussaint R, Måløy KJ. Avalanches and extreme value statistics in interfacial crackling dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 377:20170394. [PMID: 30478206 PMCID: PMC6282413 DOI: 10.1098/rsta.2017.0394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/29/2018] [Indexed: 06/09/2023]
Abstract
We study the avalanche and extreme statistics of the global velocity of a crack front, propagating slowly along a weak heterogeneous interface of a transparent polymethyl methacrylate block. The different loading conditions used (imposed constant velocity or creep relaxation) lead to a broad range of average crack front velocities. Our high-resolution and large dataset allows one to characterize in detail the observed intermittent crackling dynamics. We specifically measure the size S, the duration D, as well as the maximum amplitude [Formula: see text] of the global avalanches, defined as bursts in the interfacial crack global velocity time series. Those quantities characterizing the crackling dynamics follow robust power-law distributions, with scaling exponents in agreement with the values predicted and obtained in numerical simulations of the critical depinning of a long-range elastic string, slowly driven in a random medium. Nevertheless, our experimental results also set the limit of such model which cannot reproduce the power-law distribution of the maximum amplitudes of avalanches of a given duration reminiscent of the underlying fat-tail statistics of the local crack front velocities.This article is part of the theme issue 'Statistical physics of fracture and earthquakes'.
Collapse
|
research-article |
7 |
2 |
16
|
Moore GWK, Cristofanelli P, Bonasoni P, Verza GP, Semple JL. Was an Avalanche Swarm Responsible for the Devastation at Mount Everest Base Camp During the April 2015 Nepal Earthquake? High Alt Med Biol 2021; 21:352-359. [PMID: 33350889 DOI: 10.1089/ham.2019.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Moore, G.W.K., Paolo Cristofanelli, Paolo Bonasoni, Gian Pietro Verza, and J.L. Semple. Was an avalanche swarm responsible for the devastation at Mount Everest Base Camp during the April 2015 Nepal earthquake? High Alt Med Biol. 21:352-359, 2020. Introduction: An avalanche triggered by an earthquake on April 25, 2015, struck the Mount Everest Base Camp (EBC) resulting in 15 deaths and over 70 injuries. Despite the common occurrence of avalanches in this region, little is known about their intensity and the stability of the glaciers that ring the Mount Everest massif. Here we present unique observations from a nearby automatic weather station (AWS) in the minutes just after the earthquake. Methods: Several (AWS) were deployed along the Khumbu Valley in Nepal. The site at Kala Patthar (elevation 5,613 m asl) 3.5 km from EBC and 4 km from the col along the ridge between Pumori and Lingtren was active from 2010 to 2015 and recorded temperature, relative humidity, pressure, solar radiation, and wind speed and direction. Results: The sequence of wind direction anomalies indicated that multiple air blasts passed the AWS, each associated with a distinct avalanche source, suggesting that earthquake likely caused a number of distinct avalanches from different source regions along this ridge. Discussion: Results suggest that a swarm of avalanches collectively lead to the death and destruction at EBC, suggesting the need for improvement in our understanding of avalanches in the region as well as in our ability to model and forecast such events.
Collapse
|
Journal Article |
4 |
1 |
17
|
DeLoughery EP, DeLoughery TG. Review and Analysis of Mountaineering Accidents in the United States from 1947-2018. High Alt Med Biol 2022; 23:114-118. [PMID: 35263173 DOI: 10.1089/ham.2021.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DeLoughery, Emma P. and Thomas G. DeLoughery. Review and Analysis of Mountaineering Accidents in the United States from 1947-2018. High Alt Med Biol. 23:114-118, 2022. Introduction: Given the popularity of mountaineering, it is important to better understand accidents related to this sport. We undertook this review of accidents to better understand the demographics and locations involved in mountaineering accidents over 71 years. Methods: Data collected from "Accidents in North American Mountaineering" booklets from 1947 to 2018 included the date, state and location of the accident, sex and age of the victim, type of accident, injuries sustained, and distance fallen if a fall occurred. If at least 10 accidents occurred in an individual state and/or location, these sites were separately analyzed. Results: From 1947 to 2018, 2,799 people were reported to be involved in mountaineering accidents, and 43% of these accidents resulted in death. Women were involved in 12% of cases. Falls were the most common accident (68% incidence, 45% fatal), followed by falling rock (7%, 26% fatal), avalanche (6%, 75% fatal), and falling into a crevasse (2%, 52% fatal). The average age of victims was 30 years. California had the most accidents (18%), followed by Washington (16%) and Alaska (15%). Denali had the greatest frequency of both accidents and deaths (11%, 8% of deaths), followed by Mount Rainier (6%, 7% of deaths) and Mount Hood (2%, 3% of deaths). Conclusions: Accident victims tend to be young and predominantly male, and the accidents themselves are most often falls. Avalanches were identified as an accident cause with a high fatality rate.
Collapse
|
Review |
3 |
|
18
|
Eidenbenz D, Kottmann A, Zafren K, Carron PN, Albrecht R, Pasquier M. Noncompressible Chest Wall in Critically Buried Avalanche Victims with Cardiac Arrest: A Case Series. High Alt Med Biol 2024. [PMID: 39347596 DOI: 10.1089/ham.2024.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
David Eidenbenz, Alexandre Kottmann, Ken Zafren, Pierre-Nicolas Carron, Roland Albrecht, and Mathieu Pasquier. Noncompressible chest wall in critically buried avalanche victims with cardiac arrest: a case series. High Alt Med Biol. 00:00-00, 2024. Introduction: In avalanche victims with cardiac arrest, a noncompressible chest wall or frozen body is a contraindication to initiating cardiopulmonary resuscitation. The evidence sustaining this recommendation is low. Objective: To describe the characteristics and prehospital management of critically buried avalanche victims declared dead on site, with and without noncompressible chest walls. Methods: Retrospective study including all critically buried avalanche victims declared dead on site by physicians of a helicopter emergency medical service in Switzerland, from 2010 to 2019. The primary outcome was the proportion of victims with a noncompressible chest wall reported in medical records. Secondary outcomes included victims' characteristics and the relevance of the criterion, noncompressible chest wall, for management. Results: Among the 53 included victims, 12 (23%) had noncompressible chest walls. Victims with noncompressible chest walls had significantly longer burial durations (median 1,125 vs. 45 minutes; p < 0.001) and lower core temperatures (median 14 vs. 32°C; p = 0.01). The criterion, noncompressible chest wall, assessed in six victims, was decisive for declaring death on site in four victims. Conclusion: The presence of a noncompressible chest wall does not appear to be a sufficient criterion to allow to declare the death of critically buried avalanche victims. Further clinical information should be sought.
Collapse
|
|
1 |
|
19
|
Biswas S, Naushad N, S K, Kamble VB. Resistive Avalanches in La 1-xSr xCoO 3-δ ( x = 0, 0.3) Thin Films and Their Reversible Evolution by Tuning Lattice Oxygen Vacancies (δ). ACS MATERIALS AU 2024; 4:308-323. [PMID: 38737118 PMCID: PMC11083121 DOI: 10.1021/acsmaterialsau.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 05/14/2024]
Abstract
Strong correlations are often manifested by exotic electronic phases and phase transitions. LaCoO3-δ (LCO) is a system that exhibits such strong electronic correlations with lattice-spin-charge-orbital degrees of freedom. Here, we show that mesoscopic oxygen-deficient LCO films show resistive avalanches of about 2 orders of magnitude due to the metal-insulator transition (MIT) of the film at about 372 K for the 25 W RF power-deposited LCO film on the Si/SiO2 substrate. In bulk, this transition is otherwise gradual and occurs over a very large temperature range. In thin films of LCO, the oxygen deficiency (0 < δ < 0.5) is more easily reversibly tuned, resulting in avalanches. The avalanches disappear after vacuum annealing, and the films behave like normal insulators (δ ∼0.5) with Co2+ in charge ordering alternatively with Co3+. This oxidation state change induces spin state crossovers that result in a spin blockade in the insulating phase, while the conductivity arises from hole hopping among the allowed cobalt Co4+ ion spin states at high temperature. The chemical pressure (strain) of 30% Sr2+ doping at the La3+ site results in reduction in the avalanche magnitude as well as their retention in subsequent heating cycles. The charge nonstoichiometry arising due to Sr2+ doping is found to contribute toward hole doping (i.e., Co3+ oxidation to Co4+) and thereby the retention of the hole percolation pathway. This is also manifested in energies of crossover from the 3D variable range hopping (VRH) type transport observed in the temperature range of 300-425 K, while small polaron hopping (SPH) is observed in the temperature range of 600-725 K for LCO. On the other hand, Sr-doped LCO does not show any crossover and only the VRH type of transport. The strain due to Sr2+ doping refrains the lattice from complete conversion of δ going to 0.5, retaining the avalanches.
Collapse
|
research-article |
1 |
|