Chiang J, Robertson J, McGoverin CM, Swift S, Vanholsbeeck F. Rapid detection of viable microbes with 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride and 5(6)-carboxyfluorescein diacetate using a fibre fluorescence spectroscopy system.
J Appl Microbiol 2024;
135:lxae047. [PMID:
38383865 DOI:
10.1093/jambio/lxae047]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
AIMS
To assess the efficacy of two commercially available viability dyes, 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride (CTC) and 5(6)-carboxyfluorescein diacetate (CFDA), in reporting on viable cell concentration and species using an all-fibre fluorometer.
METHODS AND RESULTS
Four bacterial species (two Gram-positive and two Gram-negative) commonly associated with food poisoning or food spoilage (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Bacillus cereus) were stained with CTC or CFDA and the fibre fluorometer was used to collect full fluorescence emission spectra. A good correlation between concentration and fluorescence intensity was found for Gram-negative bacteria between 107 and 108 colony-forming units (CFU) ml-1. There was no correlation with concentration for Gram-positive bacteria; however, the information in the CTC and CFDA spectra shows the potential to distinguish Gram-negative cells from Gram-positive cells, although it may simply reflect the overall bacterial metabolic activity under staining conditions from this study.
CONCLUSIONS
The limit of detection (LoD) is too high in the dip-probe approach for analysis; however, the development of an approach measuring the fluorescence of single cells may improve this limitation. The development of new bacteria-specific fluorogenic dyes may also address this limitation. The ability to differentiate bacteria using these dyes may add value to measurements made to enumerate bacteria using CTC and CFDA.
Collapse