1
|
Stice SP, Stumpf SD, Gitaitis RD, Kvitko BH, Dutta B. Pantoea ananatis Genetic Diversity Analysis Reveals Limited Genomic Diversity as Well as Accessory Genes Correlated with Onion Pathogenicity. Front Microbiol 2018; 9:184. [PMID: 29491851 PMCID: PMC5817063 DOI: 10.3389/fmicb.2018.00184] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA) and repetitive extragenic palindrome repeat (rep)-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR) A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.
Collapse
|
research-article |
7 |
25 |
2
|
Golovkine G, Reboud E, Huber P. Pseudomonas aeruginosa Takes a Multi-Target Approach to Achieve Junction Breach. Front Cell Infect Microbiol 2018; 7:532. [PMID: 29379773 PMCID: PMC5770805 DOI: 10.3389/fcimb.2017.00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which uses a number of strategies to cross epithelial and endothelial barriers at cell–cell junctions. In this review, we describe how the coordinated actions of P. aeruginosa's virulence factors trigger various molecular mechanisms to disarm the junctional gate responsible for tissue integrity.
Collapse
|
Review |
7 |
18 |
3
|
Umrekar TR, Cohen E, Drobnič T, Gonzalez-Rodriguez N, Beeby M. CryoEM of bacterial secretion systems: A primer for microbiologists. Mol Microbiol 2020; 115:366-382. [PMID: 33140482 DOI: 10.1111/mmi.14637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
"CryoEM" has come of age, enabling considerable structural insights into many facets of molecular biology. Here, we present a primer for microbiologists to understand the capabilities and limitations of two complementary cryoEM techniques for studying bacterial secretion systems. The first, single particle analysis, determines the structures of purified protein complexes to resolutions sufficient for molecular modeling, while the second, electron cryotomography and subtomogram averaging, tends to determine more modest resolution structures of protein complexes in intact cells. We illustrate these abilities with examples of insights provided into how secretion systems work by cryoEM, with a focus on type III secretion systems.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
9 |
4
|
Spitz O, Erenburg IN, Kanonenberg K, Peherstorfer S, Lenders MHH, Reiners J, Ma M, Luisi BF, Smits SHJ, Schmitt L. Identity Determinants of the Translocation Signal for a Type 1 Secretion System. Front Physiol 2022; 12:804646. [PMID: 35222063 PMCID: PMC8870123 DOI: 10.3389/fphys.2021.804646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022] Open
Abstract
The toxin hemolysin A was first identified in uropathogenic E. coli strains and shown to be secreted in a one-step mechanism by a dedicated secretion machinery. This machinery, which belongs to the Type I secretion system family of the Gram-negative bacteria, is composed of the outer membrane protein TolC, the membrane fusion protein HlyD and the ABC transporter HlyB. The N-terminal domain of HlyA represents the toxin which is followed by a RTX (Repeats in Toxins) domain harboring nonapeptide repeat sequences and the secretion signal at the extreme C-terminus. This secretion signal, which is necessary and sufficient for secretion, does not appear to require a defined sequence, and the nature of the encoded signal remains unknown. Here, we have combined structure prediction based on the AlphaFold algorithm together with functional and in silico data to examine the role of secondary structure in secretion. Based on the presented data, a C-terminal, amphipathic helix is proposed between residues 975 and 987 that plays an essential role in the early steps of the secretion process.
Collapse
|
research-article |
3 |
8 |
5
|
Klein TA, Shah PY, Gkragkopoulou P, Grebenc DW, Kim Y, Whitney JC. Structure of a tripartite protein complex that targets toxins to the type VII secretion system. Proc Natl Acad Sci U S A 2024; 121:e2312455121. [PMID: 38194450 PMCID: PMC10801868 DOI: 10.1073/pnas.2312455121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.
Collapse
|
research-article |
1 |
5 |
6
|
Pourhassan N. Z, Hachani E, Spitz O, Smits SHJ, Schmitt L. Investigations on the substrate binding sites of hemolysin B, an ABC transporter, of a type 1 secretion system. Front Microbiol 2022; 13:1055032. [PMID: 36532430 PMCID: PMC9751043 DOI: 10.3389/fmicb.2022.1055032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 03/23/2024] Open
Abstract
The ABC transporter hemolysin B (HlyB) is the key protein of the HlyA secretion system, a paradigm of type 1 secretion systems (T1SS). T1SS catalyze the one-step substrate transport across both membranes of Gram-negative bacteria. The HlyA T1SS is composed of the ABC transporter (HlyB), the membrane fusion protein (HlyD), and the outer membrane protein TolC. HlyA is a member of the RTX (repeats in toxins) family harboring GG repeats that bind Ca2+ in the C-terminus upstream of the secretion signal. Beside the GG repeats, the presence of an amphipathic helix (AH) in the C-terminus of HlyA is essential for secretion. Here, we propose that a consensus length between the GG repeats and the AH affects the secretion efficiency of the heterologous RTX secreted by the HlyA T1SS. Our in silico studies along with mutagenesis and biochemical analysis demonstrate that there are two binding pockets in the nucleotide binding domain of HlyB for HlyA. The distances between the domains of HlyB implied to interact with HlyA indicated that simultaneous binding of the substrate to both cytosolic domains of HlyB, the NBD and CLD, is possible and required for efficient substrate secretion.
Collapse
|
research-article |
3 |
5 |
7
|
Saran A, Weerasinghe N, Thibodeaux CJ, Zeytuni N. Purification, crystallization and crystallographic analysis of the PorX response regulator associated with the type IX secretion system. Acta Crystallogr F Struct Biol Commun 2022; 78:354-362. [PMID: 36189719 PMCID: PMC9527653 DOI: 10.1107/s2053230x22008500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Pathogenic bacteria utilize specialized macromolecular secretion systems to transport virulence factors across membrane(s) and manipulate their infected host. To date, 11 secretion systems have been identified, including the type IX secretion system (T9SS) associated with human, avian and farmed-fish diseases. As a bacterial secretion system, the T9SS also facilitates gliding motility and the degradation of different macromolecules by the secretion of metabolic enzymes in nonpathogenic bacteria. PorX is a highly conserved protein that regulates the transcription of essential T9SS components and additionally mediates the function of T9SS via direct interaction with PorL, the rotary motor protein of the T9SS. PorX is also a member of a two-component system regulatory cascade, where it serves as the response regulator that relays a signal transduced from a conserved sensor histidine kinase, PorY, to a designated sigma factor. Here, the recombinant expression and purification of PorX homologous proteins from the pathogenic bacterium Porphyromonas gingivalis and the nonpathogenic bacterium Flavobacterium johnsoniae are reported. A bioinformatical characterization of the different domains comprising the PorX protein is also provided, and the crystallization and X-ray analysis of PorX from F. johnsoniae are reported.
Collapse
|
research-article |
3 |
4 |
8
|
Bergeron JRC, Brockerman JA, Vuckovic M, Deng W, Okon M, Finlay BB, McIntosh LP, Strynadka NCJ. Characterization of the two conformations adopted by the T3SS inner-membrane protein PrgK. Protein Sci 2018; 27:1680-1691. [PMID: 30095200 DOI: 10.1002/pro.3447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/07/2022]
Abstract
The pathogenic bacterium Salmonella enterica serovar Typhimurium utilizes two type III secretion systems (T3SS) to inject effector proteins into target cells upon infection. The T3SS secretion apparatus (the injectisome) is a large macromolecular assembly composed of over twenty proteins, many in highly oligomeric states. A sub-structure of the injectisome, termed the basal body, spans both membranes and the periplasmic space of the bacterium. It is primarily composed of three integral membranes proteins, InvG, PrgH, and PrgK, that form ring structures through which components are secreted. In particular, PrgK possesses a periplasmic region consisting of two globular domains joined by a linker polypeptide. We showed previously that in isolation, this region adopts two distinct conformations, of with only one is observed in the assembled basal body complex. Here, using NMR spectroscopy, we further characterize these two conformations. In particular, we demonstrate that the interaction of the linker region with the first globular domain, as found in the intact basal body, is dependent upon the cis conformation of the Leu77-Pro78 peptide. Furthermore, this interaction is pH-dependent due to coupling with hydrogen bond formation between Tyr75 and His42 in its neutral Nδ1 H tautomeric form. This pH-dependent interaction may play a role in the regulation of the secretion apparatus disassembly in the context of bacterial infection.
Collapse
|
|
7 |
4 |
9
|
Hsu T, Gemmell MR, Franzosa EA, Berry S, Mukhopadhya I, Hansen R, Michaud M, Nielsen H, Miller WG, Nielsen H, Bajaj-Elliott M, Huttenhower C, Garrett WS, Hold GL. Comparative genomics and genome biology of Campylobacter showae. Emerg Microbes Infect 2019; 8:827-840. [PMID: 31169073 PMCID: PMC6567213 DOI: 10.1080/22221751.2019.1622455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Campylobacter showae a bacterium historically linked to gingivitis and periodontitis, has recently been associated with inflammatory bowel disease and colorectal cancer. Our aim was to generate genome sequences for new clinical C. showae strains and identify functional properties explaining their pathogenic potential. Eight C. showae genomes were assessed, four strains isolated from inflamed gut tissues from paediatric Crohn’s disease patients, three strains from colonic adenomas, and one from a gastroenteritis patient stool. Genome assemblies were analyzed alongside the only 3 deposited C. showae genomes. The pangenome from these 11 strains consisted of 4686 unique protein families, and the core genome size was estimated at 1050 ± 15 genes with each new genome contributing an additional 206 ± 16 genes. Functional assays indicated that colonic strains segregated into 2 groups: adherent/invasive vs. non-adherent/non-invasive strains. The former possessed Type IV secretion machinery and S-layer proteins, while the latter contained Cas genes and other CRISPR associated proteins. Comparison of gene profiles with strains in Human Microbiome Project metagenomes showed that gut-derived isolates share genes specific to tongue dorsum and supragingival plaque counterparts. Our findings indicate that C. showae strains are phenotypically and genetically diverse and suggest that secretion systems may play an important role in virulence potential.
Collapse
|
Journal Article |
6 |
3 |
10
|
Golovkine G, Reboud E, Huber P. Corrigendum: Pseudomonas aeruginosa Takes a Multi-Target Approach to Achieve Junction Breach. Front Cell Infect Microbiol 2018; 8:52. [PMID: 29569635 PMCID: PMC5855397 DOI: 10.3389/fcimb.2018.00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article on p. 532 in vol. 7, PMID: 29379773.].
Collapse
|
Published Erratum |
7 |
3 |
11
|
Sana TG, Notopoulou A, Puygrenier L, Decossas M, Moreau S, Carlier A, Krasteva PV. Structures and roles of BcsD and partner scaffold proteins in proteobacterial cellulose secretion. Curr Biol 2024; 34:106-116.e6. [PMID: 38141614 DOI: 10.1016/j.cub.2023.11.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Cellulose is the world's most abundant biopolymer, and similar to its role as a cell wall component in plants, it is a prevalent constituent of the extracellular matrix in bacterial biofilms. Although bacterial cellulose (BC) was first described in the 19th century, it was only recently revealed that it is produced by several distinct types of Bcs secretion systems that feature multiple accessory subunits in addition to a catalytic BcsAB synthase tandem. We recently showed that crystalline cellulose secretion in the Gluconacetobacter genus (α-Proteobacteria) is driven by a supramolecular BcsH-BcsD scaffold-the "cortical belt"-which stabilizes the synthase nanoarrays through an unexpected inside-out mechanism for secretion system assembly. Interestingly, while bcsH is specific for Gluconacetobacter, bcsD homologs are widespread in Proteobacteria. Here, we examine BcsD homologs and their gene neighborhoods from several plant-colonizing β- and γ-Proteobacteria proposed to secrete a variety of non-crystalline and/or chemically modified cellulosic polymers. We provide structural and mechanistic evidence that through different quaternary structure assemblies BcsD acts with proline-rich BcsH, BcsP, or BcsO partners across the proteobacterial clade to form synthase-interacting intracellular scaffolds that, in turn, determine the biofilm strength and architecture in species with strikingly different physiology and secreted biopolymers.
Collapse
|
|
1 |
1 |
12
|
He Y, Wang S, Wang K, Zhou J, Han Z, Sun F. Analysis of Secreted Proteins and Potential Virulence via the ICEs-Mediated Pathway of the Foodborne Pathogen Vibrio parahaemolyticus. Front Microbiol 2021; 12:612166. [PMID: 33763038 PMCID: PMC7982893 DOI: 10.3389/fmicb.2021.612166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus uses bacterial secretion systems and integrative and conjugative elements (ICEs) to induce various diseases and to adapt to harsh environments, respectively. Information pertaining to the identity of secreted proteins and functional characterization of ICEs has been previously reported, but the relationship between these elements remains unclear. Herein we investigated secreted proteins of V. parahaemolyticus strains JHY20 and JHY20△ICE using two-dimensional gel electrophoresis and LC-MS/MS, which led to the identification of an ICE-associated secreted protein – dihydrolipoamide dehydrogenase (DLDH). Considering the data related to its physical and biochemical characterization, we predicted that DLDH is a novel immunogenic protein and associated with virulence in JHY20. Our findings indicate a potential relationship between ICE-associated transport and secreted proteins and shed light on the function of such transport mechanisms. We believe that our data should enhance our understanding of mobile genetic elements.
Collapse
|
Journal Article |
4 |
1 |
13
|
Cover TL. Tracking bacterial effector protein delivery into host cells. Mol Microbiol 2021; 116:724-728. [PMID: 34250669 DOI: 10.1111/mmi.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Bacterial Type IV secretion systems (T4SSs) are a functionally heterogeneous group of nanomachines that can deliver substrates into a wide range of target cells. The Helicobacter pylori Cag T4SS has an important role in the pathogenesis of gastric cancer. CagA, the only effector protein known to be secreted by the H. pylori Cag T4SS, enters human gastric cells and causes alterations in intracellular signaling that are linked to cancer pathogenesis. Understanding the molecular mechanisms by which CagA is delivered into gastric cells has been hindered by the lack of robust methods for monitoring this process. A publication in this issue of Molecular Microbiology describes a split luciferase assay for monitoring T4SS-mediated translocation of CagA into host cells. The use of this translocation reporter allowed the quantification of CagA translocation in real-time assays, thereby facilitating the analysis of the kinetics of CagA delivery. This system also allowed the tracking of several types of CagA fusion proteins and confirmed that protein unfolding is important for secretion by the Cag T4SS. This commentary discusses T4SS-dependent delivery of H. pylori CagA into host cells and the use of the split luciferase system for monitoring bacterial protein secretion and delivery into target cells.
Collapse
|
Journal Article |
4 |
|
14
|
Boyer C, Lefeuvre P, Zombre C, Rieux A, Wonni I, Gagnevin L, Pruvost O. New, Complete Circularized Genomes of Xanthomonas citri pv. mangiferaeindicae Produced from Short- and Long-Read Co-Assembly Shed Light on Strains that Emerged a Decade Ago on Mango and Cashew in Burkina Faso. PHYTOPATHOLOGY 2025; 115:14-19. [PMID: 39387826 DOI: 10.1094/phyto-08-24-0267-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We report high-quality genomes of three strains of Xanthomonas citri pv. mangiferaeindicae, the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems and effectors involved in the virulence of xanthomonads with (i) a type I secretion system of the hlyDB group; (ii) xps and xcs type II secretion systems; (iii) a type III secretion system with several type III effectors, including transcription activator-like effectors; (iv) several type IV secretion systems associated with plasmid or integrative conjugative elements mobility; (v) three type V secretion system subclasses (Va, Vb, and Vc); and (vi) a single i3* type VI secretion system. The two strains isolated in Burkina Faso from mango (Mangifera indica) and cashew (Anacardium occidentale) differed by only 14 single-nucleotide polymorphisms and shared identical secretion systems and type III effector repertoires. Several transcription activator-like effectors were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew (i.e., two distinct host genera of a same plant family). These new genomic resources will contribute to better understanding the biology and evolution of this agriculturally major crop pathogen.
Collapse
|
|
1 |
|
15
|
Bryant KN, Frick-Cheng AE, Solecki LE, Kroh HK, McDonald WH, Lacy DB, McClain MS, Ohi MD, Cover TL. Species-specific components of the Helicobacter pylori Cag type IV secretion system. Infect Immun 2025:e0049324. [PMID: 40208031 DOI: 10.1128/iai.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/08/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori strains containing the cag pathogenicity island (PAI) deliver an effector protein (CagA) and non-protein substrates into gastric cells through a process that requires the Cag type IV secretion system (T4SS). The Cag T4SS outer membrane core complex (OMCC) contains multiple copies of five proteins, two of which are species-specific proteins. By using modifications of a previously described OMCC immunopurification method and optimized mass spectrometric methods, we have now isolated additional cag PAI-encoded proteins that are present in lower relative abundance. Four of these proteins (CagW, CagL, CagI, and CagH) do not exhibit sequence relatedness to T4SS components in other bacterial species. Size exclusion chromatography analysis of immunopurified samples revealed that CagW, CagL, CagI, and CagH co-elute with OMCC components. These four Cag proteins are copurified with the OMCC in immunopurifications from a Δcag3 mutant strain (lacking peripheral OMCC components), but not from a ΔcagX mutant strain (defective in OMCC assembly). Negative stain electron microscopy analysis indicated that OMCC preparations isolated from ΔcagW, cagL::kan, ΔcagI, and ΔcagH mutant strains are indistinguishable from wild-type OMCCs. In summary, by using several complementary methods, we have identified multiple species-specific Cag proteins that are associated with the Cag T4SS OMCC and are required for T4SS activity.
Collapse
|
|
1 |
|