1
|
Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2013; 63:1-11. [PMID: 24140662 DOI: 10.1016/j.jacc.2013.09.019] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023]
Abstract
New vessel formation inside the arterial wall and atherosclerotic plaques plays a critical role in pathogenesis of heart attacks and strokes. The 2 known mechanisms resulting in the formation of new vessels within the plaque are local ischemia and inflammation. Blood monocytes play an important role in both processes. First, they express receptors for vascular endothelial growth factor and some of them may serve as circulating ancestors of endothelial cells. Second, monocytes are associated with inflammation by synthesis of inflammatory molecules following their activation (e.g., after stimulation of Toll-like receptors). Neovascularization is a reparative response to ischemia, and includes 3 processes: angiogenesis, arteriogenesis, and vasculogenesis. Angiogenesis, the formation of new capillary vessels is known to occur in response to a hypoxic environment. The interaction between leukocytes and vascular wall via overexpression of various molecules facilitates the migration of inflammatory cells into the plaque microenvironment. Monocytes are intimately involved in tissue damage and repair and an imbalance of these processes may have detrimental consequences for plaque development and stability. Importantly, monocytes are comprised of distinct subsets with different cell surface markers and functional characteristics and this heterogeneity may be relevant to angiogenic processes in atherosclerosis. The aim of this review article is to present an overview of the available evidence supporting a role for monocytes in angiogenesis and atherosclerosis.
Collapse
|
Review |
12 |
321 |
2
|
Distler O, del Rosso A, Giacomelli R, Cipriani P, Conforti ML, Guiducci S, Gay RE, Michel BA, Brühlmann P, Müller-Ladner U, Gay S, Matucci-Cerinic M. Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. ARTHRITIS RESEARCH 2002; 4:R11. [PMID: 12453314 PMCID: PMC153841 DOI: 10.1186/ar596] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Revised: 07/30/2002] [Accepted: 08/06/2002] [Indexed: 11/10/2022]
Abstract
To examine whether the lack of sufficient neoangiogenesis in systemic sclerosis (SSc) is caused by a decrease in angiogenic factors and/or an increase in angiostatic factors, the potent proangiogenic molecules vascular endothelial growth factor (VEGF) and basic fibroblast growth factor, and the angiostatic factor endostatin were determined in patients with SSc and in healthy controls. Forty-three patients with established SSc and nine patients with pre-SSc were included in the study. Serum levels of VEGF, basic fibroblast growth factor and endostatin were measured by ELISA. Age-matched and sex-matched healthy volunteers were used as controls. Highly significant differences were found in serum levels of VEGF between SSc patients and healthy controls, whereas no differences could be detected for endostatin and basic fibroblast growth factor. Significantly higher levels of VEGF were detected in patients with Scl-70 autoantibodies and in patients with diffuse SSc. Patients with pre-SSc and short disease duration showed significant higher levels of VEGF than healthy controls, indicating that elevated serum levels of VEGF are a feature of the earliest disease stages. Patients without fingertip ulcers were found to have higher levels of VEGF than patients with fingertip ulcers. Levels of endostatin were associated with the presence of giant capillaries in nailfold capillaroscopy, but not with any other clinical parameter. The results show that the concentration of VEGF is already increased in the serum of SSc patients at the earliest stages of the disease. VEGF appears to be protective against ischemic manifestations when concentrations of VEGF exceed a certain threshold level.
Collapse
|
research-article |
23 |
200 |
3
|
Lu N, DiCicco-Bloom E. Pituitary adenylate cyclase-activating polypeptide is an autocrine inhibitor of mitosis in cultured cortical precursor cells. Proc Natl Acad Sci U S A 1997; 94:3357-62. [PMID: 9096398 PMCID: PMC20374 DOI: 10.1073/pnas.94.7.3357] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/1996] [Accepted: 01/22/1997] [Indexed: 02/04/2023] Open
Abstract
During brain development, an intricate array of signals is likely to control the transition from proliferation to differentiation, particularly in the complex cerebral cortex. Although factors regulating proliferation and differentiation have been identified, little is known about mechanisms governing the exit of precursors from the cell cycle. We now report that pituitary adenylate cyclase-activating polypeptide (PACAP), a new member of the vasoactive intestinal peptide family expressed in embryonic brain, promotes this transition. In virtually pure cultures of embryonic day 13.5 (E13.5) rat cortical precursors, PACAP inhibited [3H]thymidine incorporation by 43%, decreasing the proportion of mitotic cells. Moreover, the peptide promoted morphological and biochemical differentiation; PACAP elicited a 2-fold increase in cells bearing neurites and a 30% increase in neurotrophin trkB receptor expression, indicating that PACAP induced cell cycle withdrawal and promoted neuronal differentiation. The expression of PACAP ligand and receptor in precursors raised the possibility of autocrine function. Indeed, 85% of cells exhibited PACAP immunoreactivity while 64% expressed type I receptor, which, in turn, mediated cAMP activation and phosphorylated cAMP response element binding protein nuclear signaling. Furthermore, treatment with the PACAP antagonist or neutralizing antibody increased DNA synthesis and proliferation, which is consistent with interruption of ongoing mitotic inhibition mediated by endogenous PACAP. Our observations suggest that cortical precursors produce PACAP as an autocrine signal to elicit cell cycle withdrawal, inducing the transition from proliferation to neuronal differentiation.
Collapse
|
research-article |
28 |
158 |
4
|
Zhang X, Kang X, Jin L, Bai J, Liu W, Wang Z. Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). Int J Nanomedicine 2018; 13:3897-3906. [PMID: 30013343 PMCID: PMC6038860 DOI: 10.2147/ijn.s168998] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The objective of this study is to stimulate wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). MATERIALS AND METHODS Inspired by the crosslinking mechanism in algae-based adhesives, hydrogels were fabricated with gum arabic, pectin, and Ca2+. The physical properties of the bioinspired hydrogels were characterized, and the in vitro release of bFGF was investigated. Then, the in vitro scratch assay for wound healing and in vivo wound healing experiment in a full-thickness excision wound model were performed for the bioinspired hydrogels with bFGF. Finally, histological examinations and organ toxicity tests were conducted to investigate the wound healing applications of the bioinspired hydrogels with bFGF. RESULTS The in vitro and in vivo results showed that the bioinspired hydrogels with bFGF could significantly enhance cell proliferation, wound re-epithelialization, collagen deposition, and contraction without any noticeable toxicity and inflammation compared with the hydrogels without bFGF and commercial wound healing products. CONCLUSION These results suggest the potential application of bioinspired hydrogels with bFGF for wound healing.
Collapse
|
research-article |
7 |
138 |
5
|
Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin 2020; 41:1289-1300. [PMID: 32123299 PMCID: PMC7608263 DOI: 10.1038/s41401-019-0338-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury (PNI), one of the most common concerns following trauma, can result in a significant loss of sensory or motor function. Restoration of the injured nerves requires a complex cellular and molecular response to rebuild the functional axons so that they can accurately connect with their original targets. However, there is no optimized therapy for complete recovery after PNI. Supplementation with exogenous growth factors (GFs) is an emerging and versatile therapeutic strategy for promoting nerve regeneration and functional recovery. GFs activate the downstream targets of various signaling cascades through binding with their corresponding receptors to exert their multiple effects on neurorestoration and tissue regeneration. However, the simple administration of GFs is insufficient for reconstructing PNI due to their short half‑life and rapid deactivation in body fluids. To overcome these shortcomings, several nerve conduits derived from biological tissue or synthetic materials have been developed. Their good biocompatibility and biofunctionality made them a suitable vehicle for the delivery of multiple GFs to support peripheral nerve regeneration. After repairing nerve defects, the controlled release of GFs from the conduit structures is able to continuously improve axonal regeneration and functional outcome. Thus, therapies with growth factor (GF) delivery systems have received increasing attention in recent years. Here, we mainly review the therapeutic capacity of GFs and their incorporation into nerve guides for repairing PNI. In addition, the possible receptors and signaling mechanisms of the GF family exerting their biological effects are also emphasized.
Collapse
|
Review |
5 |
128 |
6
|
Fan C, Shi J, Zhuang Y, Zhang L, Huang L, Yang W, Chen B, Chen Y, Xiao Z, Shen H, Zhao Y, Dai J. Myocardial-Infarction-Responsive Smart Hydrogels Targeting Matrix Metalloproteinase for On-Demand Growth Factor Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902900. [PMID: 31408234 DOI: 10.1002/adma.201902900] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Although in situ restoration of blood supply to the infarction region and attenuating pre-existing extracellular matrix degradation remain potential therapeutic approaches for myocardial infarction (MI), local delivery of therapeutics has been limited by low accumulation (inefficacy) and unnecessary diffusion (toxicity). Here, a dual functional MI-responsive hydrogel is fabricated for on-demand drug delivery to promote angiogenesis and inhibit cardiac remodeling by targeting upregulated matrix metalloproteinase-2/9 (MMP-2/9) after MI. A glutathione (GSH)-modified collagen hydrogel (collagen-GSH) is prepared by conjugating collagen amine groups with GSH sulfhydryl groups and the recombinant protein GST-TIMP-bFGF (bFGF: basic fibroblast growth factor) by fusing bFGF with glutathione-S-transferase (GST) and MMP-2/9 cleavable peptide PLGLAG (TIMP). Specific binding between GST and GSH significantly improves the amount of GST-TIMP-bFGF loaded in collagen-GSH hydrogel. The TIMP peptide enclosed between GST and bFGF responds to MMPs for on-demand release during MI. Additionally, the TIMP peptide is a competitive substrate of MMPs that inhibits the excessive degradation of cardiac matrix by MMPs after MI. GST-TIMP-bFGF/collagen-GSH hydrogels promote the recovery of MI rats by enhancing vascularization and ameliorating myocardium remodeling. The results suggest that on-demand growth factor delivery by synchronously controlling binding and responsive release to promote angiogenesis and attenuate cardiac remodeling might be promising for the treatment of ischemic heart disease.
Collapse
|
|
6 |
120 |
7
|
Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev 2013; 24:503-13. [PMID: 24210902 DOI: 10.1016/j.cytogfr.2013.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023]
Abstract
Obesity is the cause of a large proportion of breast cancer incidences and mortality in post-menopausal women. In obese people, elevated levels of various growth factors such as insulin and insulin-like growth factors (IGFs) are found. Elevated insulin level leads to increased secretion of estrogen by binding to the circulating sex hormone binding globulin (SHBG). The increased estrogen-mediated downstream signaling favors breast carcinogenesis. Obesity leads to altered expression profiles of various adipokines and cytokines including leptin, adiponectin, IL-6, TNF-α and IL-1β. The increased levels of leptin and decreased adiponectin secretion are directly associated with breast cancer development. Increased levels of pro-inflammatory cytokines within the tumor microenvironment promote tumor development. Efficacy of available breast cancer drugs against obesity-associated breast cancer is yet to be confirmed. In this review, we will discuss different adipokine- and cytokine-mediated molecular signaling pathways involved in obesity-associated breast cancer, available therapeutic strategies and potential therapeutic targets for obesity-associated breast cancer.
Collapse
|
Review |
12 |
115 |
8
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
Review |
6 |
109 |
9
|
Fonseca ACRG, Ferreiro E, Oliveira CR, Cardoso SM, Pereira CF. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2191-203. [PMID: 23994613 DOI: 10.1016/j.bbadis.2013.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/28/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023]
Abstract
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
98 |
10
|
Guan J, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release 2007; 120:70-8. [PMID: 17509717 PMCID: PMC2698790 DOI: 10.1016/j.jconrel.2007.04.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/20/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Scaffolds that better approximate the mechanical properties of cardiovascular and other soft tissues might provide a more appropriate mechanical environment for tissue development or healing in vivo. An ability to induce local angiogenesis by controlled release of an angiogenic factor, such as basic fibroblast growth factor (bFGF), from a biodegradable scaffold with mechanical properties more closely approximating soft tissue could find application in a variety of settings. Toward this end biodegradable poly(ester urethane)urea (PEUU) scaffolds loaded with bFGF were fabricated by thermally induced phase separation. Scaffold morphology, mechanical properties, release kinetics, hydrolytic degradation and bioactivity of the released bFGF were assessed. The scaffolds had inter-connected pores with porosities of 90% or greater and pore sizes ranging from 34-173 microm. Scaffolds had tensile strengths of 0.25-2.8 MPa and elongations at break of 81-443%. Incorporation of heparin into the scaffold increased the initial burst release of bFGF, while the initial bFGF loading content did not change release kinetics significantly. The released bFGF remained bioactive over 21 days as assessed by smooth muscle mitogenicity. Scaffolds loaded with bFGF showed slightly higher degradation rates than unloaded control scaffolds. Smooth muscle cells seeded into the scaffolds with bFGF showed higher cell densities than for control scaffolds after 7 days of culture. The bFGF-releasing PEUU scaffolds thus exhibited a combination of mechanical properties and bioactivity that might be attractive for use in cardiovascular and other soft tissue applications.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
98 |
11
|
Boyd SR, Tan D, Bunce C, Gittos A, Neale MH, Hungerford JL, Charnock-Jones S, Cree IA. Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window. Br J Ophthalmol 2002; 86:448-52. [PMID: 11914216 PMCID: PMC1771104 DOI: 10.1136/bjo.86.4.448] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2001] [Indexed: 11/04/2022]
Abstract
BACKGROUND Improved local treatment of uveal melanoma makes it possible for many patients to retain the affected eye, but a proportion will develop secondary complications such as neovascularisation of the iris (NVI) and require enucleation. Although vascular endothelial growth factor A (VEGF-A) is known to correlate with NVI and can cause NVI in experimental models, this pro-angiogenic cytokine is consistently reported to be absent in uveal melanoma. Novel anti-VEGF therapies are now in clinical trial, and the authors therefore wished to determine whether VEGF-A was indeed elevated in melanoma bearing eyes. METHODS VEGF-A concentrations were measured in aqueous and vitreous from 19 and 30 enucleated eyes respectively. RESULTS Elevated VEGF-A concentrations (up to 21.6 ng/ml) were found in melanoma bearing eyes compared with samples from patients undergoing routine cataract extraction (all had values below 0.96 ng/ml). Immunohistochemistry showed VEGF-A protein in the iris and/or ciliary body of 54% and basic fibroblast growth factor (bFGF) in 82% of the eyes examined. VEGF was found to a limited extent and at very low levels in only 9% of these tumours. Aqueous or vitreous VEGF levels showed no apparent correlation with retinal detachment, tumour size, vascularity, or immunohistochemistry. Though limited in number, the highest VEGF levels correlated with previous radiation therapy, and with the presence neovascularisation of the iris or optic nerve head. bFGF was not significantly elevated in ocular fluids: it is known to be a pro-angiogenic agent and was detected in the majority of primary uveal melanomas. CONCLUSION Based on this study, though the source of VEGF within eyes harbouring uveal melanoma is not clear, these data suggest that anti-VEGF therapy might prove useful in the management of some patients with NVI secondary to uveal melanoma.
Collapse
|
research-article |
23 |
93 |
12
|
Radisic M, Christman KL. Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 2013; 88:884-98. [PMID: 23910415 PMCID: PMC3786696 DOI: 10.1016/j.mayocp.2013.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 01/12/2023]
Abstract
Heart failure after a myocardial infarction continues to be a leading killer in the Western world. Currently, there are no therapies that effectively prevent or reverse the cardiac damage and negative left ventricular remodeling process that follows a myocardial infarction. Because the heart has limited regenerative capacity, there has been considerable effort to develop new therapies that could repair and regenerate the myocardium. Although cell transplantation alone was initially studied, more recently, tissue engineering strategies using biomaterial scaffolds have been explored. In this review, we cover the different approaches to engineering the myocardium, including cardiac patches, which are in vitro-engineered constructs of functional myocardium, and injectable scaffolds, which can either encourage endogenous repair and regeneration or act as vehicles to support the delivery of cells and other therapeutics.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
86 |
13
|
Hebert TL, Wu X, Yu G, Goh BC, Halvorsen YDC, Wang Z, Moro C, Gimble JM. Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. J Tissue Eng Regen Med 2009; 3:553-61. [PMID: 19670348 PMCID: PMC2763318 DOI: 10.1002/term.198] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated that EGF and bFGF maintain the stem cell properties of proliferating human adipose-derived stromal/stem cells (hASCs) in vitro. While the expansion and cryogenic preservation of isolated hASCs are routine, these manipulations can impact their proliferative and differentiation potential. This study examined cryogenically preserved hASCs (n = 4 donors), with respect to these functions, after culture with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) at varying concentrations (0-10 ng/ml). Relative to the control, cells supplemented with EGF and bFGF significantly increased proliferation by up to three-fold over 7-8 days. Furthermore, cryopreserved hASCs expanded in the presence of EGF and bFGF displayed increased oil red O staining following adipogenic induction. This was accompanied by significantly increased levels of several adipogenesis-related mRNAs: aP2, C/EBPalpha, lipoprotein lipase (LPL), PPARgamma and PPARgamma co-activator-1 (PGC1). Adipocytes derived from EGF- and bFGF-cultured hASCs exhibited more robust functionality based on insulin-stimulated glucose uptake and atrial natriuretic peptide (ANP)-stimulated lipolysis. These findings indicate that bFGF and EGF can be used as culture supplements to optimize the proliferative capacity of cryopreserved human ASCs and their adipogenic differentiation potential.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
85 |
14
|
Zhang L, Furst EM, Kiick KL. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions. J Control Release 2006; 114:130-42. [PMID: 16890321 PMCID: PMC2606047 DOI: 10.1016/j.jconrel.2006.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 04/13/2006] [Indexed: 01/12/2023]
Abstract
The design of materials in which assembly, mechanical response, and biological properties are controlled by protein-polysaccharide interactions could provide materials that mimic the biological environment and find use in the delivery of growth factors. In the investigations reported here, a heparin-binding, coiled-coil peptide, PF4 ZIP, was employed to mediate the assembly of heparinized polymers. The heparin-binding affinity of this peptide was compared with that of other heparin-binding peptides (HBP) via heparin-sepharose chromatography and surface plasmon resonance (SPR) experiments. Results from these experiments indicate that PF4 ZIP demonstrates a higher heparin-binding affinity and heparin association rate when compared to the heparin-binding domains of antithrombin III (ATIII) and heparin-interacting protein (HIP). Viscoelastic hydrogels were formed upon the association of PF4 ZIP-functionalized star poly(ethylene glycol) (PEG-PF4 ZIP) with low-molecular-weight heparin-functionalized star PEG (PEG-LMWH). The viscoelastic properties of the hydrogels can be altered via variations in the ratio of LMWH to PF4 ZIP. bFGF release from these gels have also been investigated. Comparison of the bFGF release profiles with the hydrogel erosion profiles indicates that bFGF delivery from this class of hydrogels is mainly an erosion-controlled process and the rates of bFGF release can be modulated via choice of HBP or via variations in the mechanical properties of the hydrogels. Manipulation of hydrogel physical properties and erosion profiles will provide novel materials for controlled growth factor delivery and other biomedical applications.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
82 |
15
|
Elevated specific peripheral cytokines found in major depressive disorder patients with childhood trauma exposure: a cytokine antibody array analysis. Compr Psychiatry 2013; 54:953-61. [PMID: 23639406 DOI: 10.1016/j.comppsych.2013.03.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 01/18/2023] Open
Abstract
Taking into consideration the previous evidence of revealing the relationship of early life adversity, major depressive disorder (MDD), and stress-linked immunological changes, we recruited 22 MDD patients with childhood trauma exposures (CTE), 21 MDD patients without CTE, and 22 healthy controls without CTE, and then utilized a novel cytokine antibody array methodology to detect potential biomarkers underlying MDD in 120 peripheral cytokines and to evaluate the effect of CTE on cytokine changes in MDD patients. Although 13 cytokines were identified with highly significant differences in expressions between MDD patients and normal controls, this relationship was significantly attenuated and no longer significant after consideration of the effect of CTE in MDD patients. Depressed individuals with CTE (TD patients) were more likely to have higher peripheral levels of those cytokines. Severity of depression was associated with plasma levels of certain increased cytokines; meanwhile, the increased cytokines led to a proper separation of TD patients from normal controls during clustering analyses. Our research outcomes add great strength to the relationship between depression and cytokine changes and suggest that childhood trauma may play a vital role in the co-appearance of cytokine changes and depression.
Collapse
|
|
12 |
78 |
16
|
Mammoto T, Jiang A, Jiang E, Mammoto A. Platelet rich plasma extract promotes angiogenesis through the angiopoietin1-Tie2 pathway. Microvasc Res 2013; 89:15-24. [PMID: 23660186 DOI: 10.1016/j.mvr.2013.04.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/23/2013] [Accepted: 04/28/2013] [Indexed: 12/18/2022]
Abstract
Development and regeneration of tissues and organs require precise coordination among endothelial, epithelial and mesenchymal morphogenesis. Angiogenesis plays key roles in normal development, wound healing, recovery from ischemic disease, and organ regeneration. It has been recognized that the combination of various angiogenic factors in an appropriate physiological ratio is critical for long-term functional blood vessel formation. Here we show that mouse soluble platelet-rich-plasma (PRP) extract, which includes abundant angiopoetin-1 (Ang1) and other angiogenic factors, stimulates endothelial cell growth, migration and differentiation in cultured human dermal microvascular endothelial cells in vitro and neonatal mouse retinal angiogenesis in vivo. Mouse platelet rich fibrin (PRF) matrix, the three-dimensional fibrin matrix that releases angiogenic factors with similar concentrations and proportions to the PRP extract, also recapitulates robust angiogenesis inside the matrix when implanted subcutaneously on the living mouse. Inhibition of Ang1-Tie2 signaling suppresses PRP extract-induced angiogenesis in vitro and angiogenic ability of the PRF matrix in vivo. Since human PRP extract and PRF matrix can be prepared from autologous peripheral blood, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related diseases as well as to the improvement of strategies for tissue engineering and organ regeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
78 |
17
|
Benington L, Rajan G, Locher C, Lim LY. Fibroblast Growth Factor 2-A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics 2020; 12:E508. [PMID: 32498439 PMCID: PMC7356611 DOI: 10.3390/pharmaceutics12060508] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Basic fibroblast growth factor (FGF)-2 has been shown to regulate many cellular functions including cell proliferation, migration, and differentiation, as well as angiogenesis in a variety of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve. These multiple functions make FGF-2 an attractive component for wound healing and tissue engineering constructs; however, the stability of FGF-2 is widely accepted to be a major concern for the development of useful medicinal products. Many approaches have been reported in the literature for preserving the biological activity of FGF-2 in aqueous solutions. Most of these efforts were directed at sustaining FGF-2 activity for cell culture research, with a smaller number of studies seeking to develop sustained release formulations of FGF-2 for tissue engineering applications. The stabilisation approaches may be classified into the broad classes of ionic interaction modification with excipients, chemical modification, and physical adsorption and encapsulation with carrier materials. This review discusses the underlying causes of FGF-2 instability and provides an overview of the approaches reported in the literature for stabilising FGF-2 that may be relevant for clinical applications. Although efforts have been made to stabilise FGF-2 for both in vitro and in vivo applications with varying degrees of success, the lack of comprehensive published stability data for the final FGF-2 products represents a substantial gap in the current knowledge, which has to be addressed before viable products for wider tissue engineering applications can be developed to meet regulatory authorisation.
Collapse
|
Review |
5 |
73 |
18
|
Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, Ikada Y, Nakamura H. Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res A 2013; 102:1370-8. [PMID: 23733515 DOI: 10.1002/jbm.a.34816] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/02/2013] [Accepted: 05/17/2013] [Indexed: 12/14/2022]
Abstract
Various modifications including addition of Schwann cells or incorporation of growth factors with bioabsorbable nerve conduits have been explored as options for peripheral nerve repair. However, no reports of nerve conduits containing both supportive cells and growth factors have been published as a regenerative therapy for peripheral nerves. In the present study, sciatic nerve gaps in mice were reconstructed in the following groups: nerve conduit alone (control group), nerve conduit coated with induced pluripotent stem cell (iPSc)-derived neurospheres (iPSc group), nerve conduit coated with iPSc-derived neurospheres and basic fibroblast growth factor (bFGF)-incorporated gelatin microspheres (iPSc + bFGF group), and autograft. The fastest functional recovery and the greatest axon regeneration occurred in the autograft group, followed in order by the iPSc + bFGF group, iPSc group, and control group until 12 weeks after reconstruction. Thus, peripheral nerve regeneration using nerve conduits and functional recovery in mice was accelerated by a combination of iPSc-derived neurospheres and a bFGF drug delivery system. The combination of all three fundamental methodologies, iPSc technology for supportive cells, bioabsorbable nerve conduits for scaffolds, and a bFGF drug delivery system for growth factors, was essential for peripheral nerve regenerative therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
72 |
19
|
Shou Y, Hirano T, Gong Y, Kato Y, Yoshida K, Ohira T, Ikeda N, Konaka C, Ebihara Y, Zhao F, Kato H. Influence of angiogenetic factors and matrix metalloproteinases upon tumour progression in non-small-cell lung cancer. Br J Cancer 2001; 85:1706-12. [PMID: 11742492 PMCID: PMC2363988 DOI: 10.1054/bjoc.2001.2137] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We attempted to investigate immunohistochemical expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PD-ECGF), c-erbB-2, matrix metalloproteinase-2 (MMP-2), and MMP-9 using surgical specimens of 119 non-small-cell lung carcinoma (NSCLC) cases and to evaluate the relationship between the expression levels of each molecule and clinicopathological factors or prognosis. VEGF expression levels were significantly associated with the local invasion (P = 0.0001), lymph node involvement (pN-factor) (P = 0.0019), pathological stage (p-stage) (P = 0.0027) and lymphatic permeation (P = 0.0389). PD-ECGF expression levels were associated with pN-factor (P = 0.0347). MMP-2 expression levels were associated with pN-factor (P = 0.004) and lymphatic permeation (P = 0.0056). Also, MMP-9 expression levels showed a significant correlation to local invasion (P = 0.0012), pN-factor (P = 0.0093) and p-stage (P = 0.0142). Multivariate analysis showed VEGF to be the most related to local invasion (P = 0.0084), and MMP-2 was the only factor with significant independent impact on lymphatic permeation (P = 0.0228). Furthermore, log-rank analysis showed significant association with poor survival by VEGF, bFGF, MMP-2 and MMP-9. Especially, combined overexpression of VEGF and MMP-2 revealed poor prognosis, our study might provide a basis for the better evaluation of biological characteristics and a new therapeutic strategy based on chemotherapy.
Collapse
|
research-article |
24 |
71 |
20
|
Therapeutic angiogenesis for revascularization in peripheral artery disease. Gene 2013; 525:220-8. [PMID: 23566831 DOI: 10.1016/j.gene.2013.03.097] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 01/15/2023]
Abstract
Therapeutic angiogenesis for peripheral artery disease (PAD), achieved by gene and cell therapy, has recently raised a great deal of hope for patients who cannot undergo standard revascularizing treatment. Although pre-clinical studies gave very promising data, still clinical trials of gene therapy have not provided satisfactory results. On the other hand, cell therapy approach, despite several limitations, demonstrated more beneficial effects but initial clinical studies must be constantly validated by larger randomized, multi-center, double-blinded, placebo-controlled trials. This review focuses on previous and recent gene and cell therapy studies for limb ischemia, including both experimental and clinical research, and summarizes some important papers published in this field. Moreover, it provides a short comment on combined gene and cell therapy approach on the example of heme oxygenase-1 overexpressing cells with therapeutic properties.
Collapse
|
Review |
12 |
69 |
21
|
Ravenhall C, Guida E, Harris T, Koutsoubos V, Stewart A. The importance of ERK activity in the regulation of cyclin D1 levels and DNA synthesis in human cultured airway smooth muscle. Br J Pharmacol 2000; 131:17-28. [PMID: 10960064 PMCID: PMC1572283 DOI: 10.1038/sj.bjp.0703454] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2000] [Revised: 05/04/2000] [Accepted: 05/04/2000] [Indexed: 11/08/2022] Open
Abstract
The relationship between persistent ERK (extracellular signal-regulated kinase) activity, cyclin D1 protein and mRNA levels and cell cycle progression in human cultured airway smooth muscle was examined in response to stimulation by ET-1 (endothelin-1), thrombin and bFGF (basic fibroblast growth factor). Thrombin (0.3 and 3 u ml(-1)) and bFGF (0.3 and 3 nM) increased ERK activity for more than 2 h and increased cell number, whereas ET-1 (100 nM) transiently stimulated ERK activity and was non-mitogenic. The MEK1 (mitogen-activated ERK kinase) inhibitor, PD 98059 (30 microM), inhibited both ERK phosphorylation and activity, and either prevented (thrombin 0.3 and 3 u ml(-1), bFGF 300 pM) or attenuated (bFGF 3 nM) DNA synthesis. Thrombin and bFGF increased both cyclin D1 mRNA and protein levels. PD 98059 decreased cyclin D1 protein levels stimulated by the lower but not higher thrombin concentrations. Moreover, increases in cyclin D1 mRNA levels were unaffected by PD 98059 pretreatment, irrespective of the mitogen or its concentration, suggesting that inhibition of cyclin D1 protein levels occurred by a post-transcriptional mechanism. These findings indicate that the control of cyclin D1 protein levels may occur independently of the MEK1/ERK signalling pathways. The inhibition of S phase entry by PD 98059 at higher thrombin concentrations appears to result from effects on pathways downstream or parallel to those regulating cyclin D1 protein levels. These findings suggest heterogeneity in the signalling of DNA synthesis in human cultured airway smooth muscle.
Collapse
|
research-article |
25 |
63 |
22
|
Welham NV, Montequin DW, Tateya I, Tateya T, Choi SH, Bless DM. A rat excised larynx model of vocal fold scar. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2009; 52:1008-20. [PMID: 19641079 PMCID: PMC2719832 DOI: 10.1044/1092-4388(2009/08-0049)] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. METHOD Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic fibroblast growth factor (bFGF), chronic vocal fold scar treated with saline (sham treatment), and unscarred untreated control. Following tissue harvest, histological and immunohistochemical data were collected to confirm extracellular matrix alteration in the chronic scar group; acoustic, aerodynamic, and high-speed digital imaging data were collected using an excised larynx setup in all groups. Phonation threshold pressure (P(th)), glottal resistance (R(g)), glottal efficiency (E(g)), vibratory amplitude, and vibratory area were used as dependent variables. RESULTS Chronically scarred vocal folds were characterized by elevated collagen Types I and III and reduced hyaluronic acid abundance. Phonation was achieved, and data were collected from all control and bFGF-treated larynges; however, phonation was not achieved with 3 of 6 chronically scarred and 1 of 6 saline-treated larynges. Compared with control, the chronic scar group was characterized by elevated P(th), reduced E(g), and intralarynx vibratory amplitude and area asymmetry. The bFGF group was characterized by P(th) below control-group levels, E(g) comparable with control, and vocal fold vibratory amplitude and area symmetry comparable with control. The sham group was characterized by P(th) comparable with control, E(g) superior to control, and vocal fold vibratory amplitude and area symmetry comparable with control. CONCLUSIONS The excised larynx model reported here demonstrated robust deterioration across phonatory indices under the scar condition and sensitivity to treatment-induced change under the bFGF condition. The improvement observed under the sham condition may reflect unanticipated therapeutic benefit or artifact. This model holds promise as a tool for the functional characterization of biomechanical tissue changes resulting from vocal fold scar and the evaluation of experimental therapies.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
55 |
23
|
Verheul HM, Panigrahy D, Yuan J, D'Amato RJ. Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br J Cancer 1999; 79:114-8. [PMID: 10408702 PMCID: PMC2362163 DOI: 10.1038/sj.bjc.6690020] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neovascularization facilitates tumour growth and metastasis formation. In our laboratory, we attempt to identify clinically available oral efficacious drugs for antiangiogenic activity. Here, we report which non-steroidal anti-inflammatory drugs (NSAIDs) can inhibit corneal neovascularization, induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). This antiangiogenic activity may contribute to the known effects of NSAIDs on gastric ulcers, polyps and tumours. We found that sulindac was one of the most potent antiangiogenic NSAIDs, inhibiting bFGF-induced neovascularization by 50% and VEGF-induced neovascularization by 55%. Previously, we reported that thalidomide inhibited growth factor-induced corneal neovascularization. When we combined sulindac with thalidomide, we found a significantly increased inhibition of bFGF- or VEGF-induced corneal neovascularization (by 63% or 74% respectively) compared with either agent alone (P < 0.01). Because of this strong antiangiogenic effect, we tested the oral combination of thalidomide and sulindac for its ability to inhibit the growth of V2 carcinoma in rabbits. Oral treatment of thalidomide or sulindac alone inhibited tumour growth by 55% and 35% respectively. When given together, the growth of the V2 carcinoma was inhibited by 75%. Our results indicated that oral antiangiogenic combination therapy with thalidomide and sulindac may be a useful non-toxic treatment for cancer.
Collapse
|
research-article |
26 |
53 |
24
|
Adams CF, Pickard MR, Chari DM. Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:737-41. [PMID: 23751375 DOI: 10.1016/j.nano.2013.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Safe genetic modification of neural stem cell (NSC) transplant populations is a key goal for regenerative neurology. We describe a technically simple and safe method to increase transfection in NSCs propagated in the neurosphere (suspension culture) model, using magnetic nanoparticles deployed with applied oscillating magnetic fields ('magnetofection technology'). We show that transfection efficiency was enhanced over two-fold by oscillating magnetic fields (frequency=4 Hz). The protocols had no effect on cell viability, cell number, stem cell marker expression and differentiation profiles of 'magnetofected' cultures, highlighting the safety of the technique. As far as we are aware, this is the first successful application of magnetofection technology to suspension cultures of neural cells. The procedures described offer a means to augment the therapeutic potential of NSCs propagated as neurospheres - a culture model of high clinical translational relevance - by safe genetic manipulation, with further potential for incorporation into 'magneto-multifection' (repeat transfection) protocols. FROM THE CLINICAL EDITOR This team of investigators describe a simple and safe method to increase transfection in neural stem cells using magnetic nanoparticles deployed with oscillating magnetic fields, demonstrating a greater than two-fold transfection efficiency increase by applying low frequency magnetic oscillation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
51 |
25
|
Wang J, Xu M, Liang R, Zhao M, Zhang Z, Li Y. Oral administration of marine collagen peptides prepared from chum salmon (Oncorhynchus keta) improves wound healing following cesarean section in rats. Food Nutr Res 2015; 59:26411. [PMID: 25976613 PMCID: PMC4432022 DOI: 10.3402/fnr.v59.26411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The goal of the present study was to investigate the wound-healing potential of marine collagen peptides (MCPs) from chum salmon skin administered to rats following cesarean section (CS). METHODS Ninety-six pregnant Sprague-Dawley rats were randomly divided into four groups: a vehicle group and three MCP groups. After CS, rats were intragastrically given MCPs at doses of 0, 0.13, 0.38, 1.15 g/kg*bw, respectively. On postoperative days 7, 14, and 21, the uterine bursting pressure, skin tensile strength, hydroxyproline (Hyp) concentrations, and histological and immunohistochemical characteristics of the scar tissue were examined. RESULTS In the MCP groups, the skin tensile strength, uterine bursting pressure, and Hyp were significantly higher than those in the vehicle group at all three time points (p<0.05). The formation of capillary, fibroblast, and collagen fiber, the expression of platelet-endothelial cell adhesion molecule-1, basic fibroblast growth factor, and transforming growth factor beta-1 were increased in the MCP groups (p<0.05). CONCLUSION MCPs could accelerate the process of wounding healing in rats after CS.
Collapse
|
research-article |
10 |
46 |