1
|
Kahn SE, Zraika S, Utzschneider KM, Hull RL. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 2009; 52:1003-12. [PMID: 19326096 PMCID: PMC2737455 DOI: 10.1007/s00125-009-1321-z] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/10/2009] [Indexed: 12/14/2022]
Abstract
The critical role of the beta cell in the pathogenesis of type 2 diabetes is now well established. When examined in patients with type 2 diabetes and individuals at increased risk, reductions in beta cell mass and abnormalities of beta cell function can both be demonstrated. The question of whether one alone is sufficient or both are necessary for the development of hyperglycaemia has been debated. Based on human and animal studies, it appears that neither alone is sufficient. Rather, for glucose to rise to the level at which diabetes would be diagnosed, defects in beta cell mass and in beta cell function are required.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
214 |
2
|
Dysfunction of Persisting β Cells Is a Key Feature of Early Type 2 Diabetes Pathogenesis. Cell Rep 2021; 31:107469. [PMID: 32268101 DOI: 10.1016/j.celrep.2020.03.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is characterized by peripheral insulin resistance and insufficient insulin release from pancreatic islet β cells. However, the role and sequence of β cell dysfunction and mass loss for reduced insulin levels in type 2 diabetes pathogenesis are unclear. Here, we exploit freshly explanted pancreas specimens from metabolically phenotyped surgical patients using an in situ tissue slice technology. This approach allows assessment of β cell volume and function within pancreas samples of metabolically stratified individuals. We show that, in tissue of pre-diabetic, impaired glucose-tolerant subjects, β cell volume is unchanged, but function significantly deteriorates, exhibiting increased basal release and loss of first-phase insulin secretion. In individuals with type 2 diabetes, function within the sustained β cell volume further declines. These results indicate that dysfunction of persisting β cells is a key factor in the early development and progression of type 2 diabetes, representing a major target for diabetes prevention and therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
92 |
3
|
Qian J, Man CD, Morris CJ, Cobelli C, Scheer FAJL. Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans. Diabetes Obes Metab 2018; 20:2481-2485. [PMID: 29862620 PMCID: PMC6167165 DOI: 10.1111/dom.13391] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 01/22/2023]
Abstract
Glucose tolerance is lower at night and higher in the morning. Shift workers, who often eat at night and experience circadian misalignment (i.e. misalignment between the central circadian pacemaker and the environmental/behavioural cycles), have an increased risk of type 2 diabetes. To determine the separate and relative impacts of the circadian system, behavioural/environmental cycles, and their interaction (i.e. circadian misalignment) on insulin sensitivity and β-cell function, the oral minimal model was used to quantitatively assess the major determinants of glucose control in 14 healthy adults using a randomized, cross-over design with two 8-day laboratory protocols. Both protocols involved 3 baseline inpatient days with habitual sleep/wake cycles, followed by 4 inpatient days with the same nocturnal bedtime (circadian alignment) or with 12-hour inverted behavioural/environmental cycles (circadian misalignment). The data showed that circadian phase and circadian misalignment affect glucose tolerance through different mechanisms. While the circadian system reduces glucose tolerance in the biological evening compared to the biological morning mainly by decreasing both dynamic and static β-cell responsivity, circadian misalignment reduced glucose tolerance mainly by lowering insulin sensitivity, not by affecting β-cell function.
Collapse
|
Randomized Controlled Trial |
7 |
90 |
4
|
Polidori D, Mari A, Ferrannini E. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes. Diabetologia 2014; 57:891-901. [PMID: 24585202 PMCID: PMC3980039 DOI: 10.1007/s00125-014-3196-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/29/2014] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS In rodent models of diabetes, treatment with sodium glucose co-transporter 2 (SGLT2) inhibitors improves beta cell function. This analysis assessed the effects of the SGLT2 inhibitor, canagliflozin, on model-based measures of beta cell function in patients with type 2 diabetes. METHODS Data from three Phase 3 studies were analysed, in which: (Study 1) canagliflozin 100 and 300 mg were compared with placebo as monotherapy for 26 weeks; (Study 2) canagliflozin 100 and 300 mg were compared with placebo as add-on to metformin + sulfonylurea for 26 weeks; or (Study 3) canagliflozin 300 mg was compared with sitagliptin 100 mg as add-on to metformin + sulfonylurea for 52 weeks. In each study, a subset of patients was given mixed-meal tolerance tests at baseline and study endpoint, and model-based beta cell function parameters were calculated from plasma glucose and C-peptide. RESULTS In Studies 1 and 2, both canagliflozin doses increased beta cell glucose sensitivity compared with placebo. Placebo-subtracted least squares mean (LSM) (SEM) changes were 23 (9) and 18 (9) pmol min(-1) m(-2) (mmol/l)(-1) with canagliflozin 100 and 300 mg, respectively (p < 0.002, Study 1), and 16 (8) and 10 (9) pmol min(-1) m(-2) (mmol/l)(-1) (p < 0.02, Study 2). In Study 3, beta cell glucose sensitivity was minimally affected, but the insulin secretion rate at 9 mmol/l glucose increased to similar degrees from baseline with canagliflozin and sitagliptin [LSM (SEM) changes 38 (8) and 28 (9) pmol min(-1) m(-2), respectively; p < 0.05 for both]. CONCLUSIONS/INTERPRETATION Treatment with canagliflozin for 6 to 12 months improved model-based measures of beta cell function in three separate Phase 3 studies. TRIAL REGISTRATION Clinicaltrials.gov NCT01081834 (Study 1); NCT01106625 (Study 2); NCT01137812 (Study 3).
Collapse
|
Clinical Trial, Phase III |
11 |
89 |
5
|
Sjaarda LG, Bacha F, Lee S, Tfayli H, Andreatta E, Arslanian S. Oral disposition index in obese youth from normal to prediabetes to diabetes: relationship to clamp disposition index. J Pediatr 2012; 161:51-7. [PMID: 22325254 PMCID: PMC3366166 DOI: 10.1016/j.jpeds.2011.12.050] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/15/2011] [Accepted: 12/29/2011] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We sought to assess the glucose disposition index using an oral glucose tolerance test (OGTT; oDI) compared with the glucose disposition index measured from the combination of the euglycemic-hyperinsulinemic and hyperglycemic clamps (cDI) in obese pediatric subjects spanning the range of glucose tolerance. STUDY DESIGN Overweight/obese adolescents (n = 185) with varying glucose tolerance (87 normal, 54 impaired, 31 with type 2 diabetes, and 13 with type 1 diabetes) completed an OGTT and both a hyperinsulinemic-euglycemic and a hyperglycemic clamp study. Indices of insulin sensitivity and β-cell function were calculated, and 4 different oDI estimates were calculated as the products of insulin and C-peptide-based sensitivity and secretion indices. RESULTS Mirroring the differences across groups by cDI, the oDI estimates were greatest in normal glucose tolerance adolescents and lowest in type 2 diabetes mellitus and obese with type 1 diabetes mellitus adolescents. The insulin-based oDI estimates correlated with cDI overall (r ≥ 0.74, P < .001) and within each glucose tolerance group (r ≥ 0.40, P < .001). Also, oDI and cDI predicted 2-hour OGTT glucose similarly. CONCLUSIONS The oDI is a simple surrogate estimate of β-cell function relative to insulin sensitivity that can be applied to obese adolescents with varying glucose tolerance in large-scale epidemiological studies where the applicability of clamp studies is limited due to feasibility, cost, and labor intensiveness.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
76 |
6
|
Kelly LA, Lane CJ, Weigensberg MJ, Toledo-Corral CM, Goran MI. Pubertal changes of insulin sensitivity, acute insulin response, and β-cell function in overweight Latino youth. J Pediatr 2011; 158:442-6. [PMID: 20888012 PMCID: PMC3039101 DOI: 10.1016/j.jpeds.2010.08.046] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/22/2010] [Accepted: 08/25/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To examine changes in insulin sensitivity (SI), compensatory acute insulin response (AIR), and β-cell function/disposition index (DI) across puberty in overweight Latino boys and girls. STUDY DESIGN Latino children (n = 253) were followed annually for up to 5 years. Longitudinal modeling was used to examine changes in SI, AIR, DI, and fasting and 2-hour glucose and insulin across Tanner stage. RESULTS In boys, SI decreased in early puberty with a recovery by late puberty. The compensatory increase in AIR was appropriate in early maturation, but after Tanner stage 3, AIR declined by more than that predicted from the recovery in SI. For girls, SI decreased in early puberty and across all stages of maturation. In early maturation, there was an appropriate compensatory increase in AIR, but after Tanner stage 3, AIR decreased. Thus, DI deteriorated across puberty in boys and girls. CONCLUSIONS In overweight Hispanic youth, compensatory changes in insulin secretion fails after Tanner stage 3 in both sexes, indicating β-cell deterioration during this critical period of development, thus increasing risk for type 2 diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
75 |
7
|
Izzi‐Engbeaya C, Comninos AN, Clarke SA, Jomard A, Yang L, Jones S, Abbara A, Narayanaswamy S, Eng PC, Papadopoulou D, Prague JK, Bech P, Godsland IF, Bassett P, Sands C, Camuzeaux S, Gomez‐Romero M, Pearce JTM, Lewis MR, Holmes E, Nicholson JK, Tan T, Ratnasabapathy R, Hu M, Carrat G, Piemonti L, Bugliani M, Marchetti P, Johnson PR, Hughes SJ, James Shapiro AM, Rutter GA, Dhillo WS. The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans. Diabetes Obes Metab 2018; 20:2800-2810. [PMID: 29974637 PMCID: PMC6282711 DOI: 10.1111/dom.13460] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the effect of kisspeptin on glucose-stimulated insulin secretion and appetite in humans. MATERIALS AND METHODS In 15 healthy men (age: 25.2 ± 1.1 years; BMI: 22.3 ± 0.5 kg m-2 ), we compared the effects of 1 nmol kg-1 h-1 kisspeptin versus vehicle administration on glucose-stimulated insulin secretion, metabolites, gut hormones, appetite and food intake. In addition, we assessed the effect of kisspeptin on glucose-stimulated insulin secretion in vitro in human pancreatic islets and a human β-cell line (EndoC-βH1 cells). RESULTS Kisspeptin administration to healthy men enhanced insulin secretion following an intravenous glucose load, and modulated serum metabolites. In keeping with this, kisspeptin increased glucose-stimulated insulin secretion from human islets and a human pancreatic cell line in vitro. In addition, kisspeptin administration did not alter gut hormones, appetite or food intake in healthy men. CONCLUSIONS Collectively, these data demonstrate for the first time a beneficial role for kisspeptin in insulin secretion in humans in vivo. This has important implications for our understanding of the links between reproduction and metabolism in humans, as well as for the ongoing translational development of kisspeptin-based therapies for reproductive and potentially metabolic conditions.
Collapse
|
Randomized Controlled Trial |
7 |
75 |
8
|
Foley JE, Bunck MC, Möller-Goede DL, Poelma M, Nijpels G, Eekhoff EM, Schweizer A, Heine RJ, Diamant M. Beta cell function following 1 year vildagliptin or placebo treatment and after 12 week washout in drug-naive patients with type 2 diabetes and mild hyperglycaemia: a randomised controlled trial. Diabetologia 2011; 54:1985-91. [PMID: 21547496 PMCID: PMC3131517 DOI: 10.1007/s00125-011-2167-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Traditional blood glucose lowering agents do not prevent the progressive loss of beta cell function in patients with type 2 diabetes. The dipeptidylpeptidase (DPP)-4 inhibitor vildagliptin improves beta cell function both acutely and chronically (up to 2 years). Whether this effect persists after cessation of treatment remains unknown. Here, we assessed the insulin secretory capacity in drug-naive patients with type 2 diabetes after a 52 week treatment period with vildagliptin or placebo, and again after a 12 week washout period. METHODS This study was conducted at a single university medical centre, and was a double-blind, randomised clinical trial in 59 drug-naive patients with type 2 diabetes and mild hyperglycaemia to either vildagliptin 100 mg (n = 29) or placebo (n = 30). Randomisation was performed by a validated 1:1 system. Neither patient, nor caregiver, was informed about the assigned treatment. Inclusion criteria were drug-naive patients ≥30 years, with HbA(1c) ≤7.5% and BMI of 22-45 kg/m(2). The mildly hyperglycaemic patient population was chosen to minimise glucose toxicity as a confounding variable. Beta-cell function was measured during an arginine-stimulated hyperglycaemic clamp at week 0, week 52 and after a 12 week washout period. All patients with at least one post-randomisation measure were analysed (intent-to-treat). RESULTS Fifty-two week vildagliptin 100 mg (n = 26) treatment increased the primary efficacy variable, combined hyperglycaemia and arginine-stimulated C-peptide secretion (AIR(arg)), by 5.0 ± 1.8 nmol/l × min, while it decreased by 0.8 ± 1.8 nmol/l × min with placebo (n = 25) (between-group difference p = 0.030). No significant between-group difference in AIR(arg) was seen after the 12 week washout period. The between-group difference adjusted mean 52 week changes from baseline was -0.19 ± 0.11, p = 0.098 and -0.22 ± 0.23%, p = 0.343 for HbA(1c) and fasting plasma glucose, respectively. There were no suspected drug treatment-related serious adverse events. CONCLUSIONS/INTERPRETATION One year treatment with vildagliptin significantly increased beta cell secretory capacity. This effect was not maintained after the washout, indicating that this increased capacity was not a disease modifying effect on beta cell mass and/or function. TRIAL REGISTRATION ClinicalTrials.gov NCT00260156.
Collapse
|
Randomized Controlled Trial |
14 |
70 |
9
|
Ding C, Leow MKS, Magkos F. Oxytocin in metabolic homeostasis: implications for obesity and diabetes management. Obes Rev 2019; 20:22-40. [PMID: 30253045 PMCID: PMC7888317 DOI: 10.1111/obr.12757] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Oxytocin was once understood solely as a neuropeptide with a central role in social bonding, reproduction, parturition, lactation and appetite regulation. Recent evidence indicates that oxytocin enhances glucose uptake and lipid utilization in adipose tissue and skeletal muscle, suggesting that dysfunction of the oxytocin system could underlie the pathogenesis of insulin resistance and dyslipidaemia. Murine studies revealed that deficiencies in oxytocin signalling and oxytocin receptor expression lead to obesity despite normal food intake, motor activity and increased leptin levels. In addition, plasma oxytocin concentration is notably lower in obese individuals with diabetes, which may suggest an involvement of the oxytocin system in the pathogenesis of cardiometabolic disease. More recently, small scale studies demonstrated that intranasal administration of oxytocin was associated with significant weight loss as well as improvements in insulin sensitivity and pancreatic β-cell responsivity in human subjects. The multi-pronged effects of oxytocin signalling on improving peripheral insulin sensitivity, pancreatic function and lipid homeostasis strongly suggest a role for this system as a therapeutic target in obesity and diabetes management. The complexity of obesity aetiology and the pathogenesis of obesity-related metabolic complications underscore the need for a systems approach to better understand the role of oxytocin in metabolic function.
Collapse
|
Review |
6 |
64 |
10
|
Dabelea D, Mayer-Davis EJ, Andrews JS, Dolan LM, Pihoker C, Hamman RF, Greenbaum C, Marcovina S, Fujimoto W, Linder B, Imperatore G, D'Agostino R. Clinical evolution of beta cell function in youth with diabetes: the SEARCH for Diabetes in Youth study. Diabetologia 2012; 55:3359-68. [PMID: 22990715 PMCID: PMC4492685 DOI: 10.1007/s00125-012-2719-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/17/2012] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS Few studies have explored the epidemiology of beta cell loss in youth with diabetes. This report describes the evolution and major determinants of beta cell function, assessed by fasting C-peptide (FCP), in the SEARCH for Diabetes in Youth study. METHODS Participants were 1,277 youth with diabetes (948 positive for diabetes autoantibodies [DAs] and 329 negative for DAs), diagnosed when aged <20 years, who were followed from a median of 8 months post diagnosis, for approximately 30 months. We modelled the relationship between rate of change in log FCP and determinants of interest using repeated measures general linear models. RESULTS Among DA-positive youth, there was a progressive decline in beta cell function of 4% per month, independent of demographics (age, sex, race/ethnicity), genetic susceptibility to autoimmunity (HLA risk), HbA(1c) and BMI z score, or presence of insulin resistance. Among DA-negative youth, there was marked heterogeneity in beta cell loss, reflecting an aetiologically mixed group. This group likely includes youths with undetected autoimmunity (whose decline is similar to that of DA-positive youth) and youth with non-autoimmune, insulin-resistant diabetes, with limited decline (~0.7% per month). CONCLUSIONS/INTERPRETATION SEARCH provides unique estimates of beta cell function decline in a large sample of youth with diabetes, indicating that autoimmunity is the major contributor. These data contribute to a better understanding of clinical evolution of beta cell function in youth with diabetes, provide strong support for the aetiological classification of diabetes type and may inform tertiary prevention efforts targeted at high-risk groups.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
62 |
11
|
Jang I, Pottekat A, Poothong J, Yong J, Lagunas-Acosta J, Charbono A, Chen Z, Scheuner DL, Liu M, Itkin-Ansari P, Arvan P, Kaufman RJ. PDIA1/P4HB is required for efficient proinsulin maturation and ß cell health in response to diet induced obesity. eLife 2019; 8:e44528. [PMID: 31184304 PMCID: PMC6559792 DOI: 10.7554/elife.44528] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Regulated proinsulin biosynthesis, disulfide bond formation and ER redox homeostasis are essential to prevent Type two diabetes. In ß cells, protein disulfide isomerase A1 (PDIA1/P4HB), the most abundant ER oxidoreductase of over 17 members, can interact with proinsulin to influence disulfide maturation. Here we find Pdia1 is required for optimal insulin production under metabolic stress in vivo. ß cell-specific Pdia1 deletion in young high-fat diet fed mice or aged mice exacerbated glucose intolerance with inadequate insulinemia and increased the proinsulin/insulin ratio in both serum and islets compared to wildtype mice. Ultrastructural abnormalities in Pdia1-null ß cells include diminished insulin granule content, ER vesiculation and distention, mitochondrial swelling and nuclear condensation. Furthermore, Pdia1 deletion increased accumulation of disulfide-linked high molecular weight proinsulin complexes and islet vulnerability to oxidative stress. These findings demonstrate that PDIA1 contributes to oxidative maturation of proinsulin in the ER to support insulin production and ß cell health.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
57 |
12
|
Xiang AH, Takayanagi M, Black MH, Trigo E, Lawrence JM, Watanabe RM, Buchanan TA. Longitudinal changes in insulin sensitivity and beta cell function between women with and without a history of gestational diabetes mellitus. Diabetologia 2013; 56:2753-60. [PMID: 24030069 PMCID: PMC4139094 DOI: 10.1007/s00125-013-3048-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/13/2013] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The aim of the study was to compare longitudinal changes in insulin sensitivity (SI) and beta cell function between women with and without a history of gestational diabetes mellitus (GDM). METHODS The prospective follow-up cohort included 235 parous non-diabetic Mexican-American women, 93 with and 142 without a history of GDM. The participants underwent dual-energy x-ray absorptiometry, OGTTs and IVGTTs at baseline and at a median of 4.1 years follow-up. The baseline values and rates of change of metabolic measures were compared between groups. RESULTS At baseline, women with prior GDM (mean age 36.3 years) had similar values of SI but higher percentages of body fat and trunk fat (p ≤ 0.02), a lower acute insulin response and poorer beta cell compensation (disposition index [DI]) (p < 0.0001) than women without GDM (mean age 37.9 years). During the follow-up, women with GDM had a faster decline in SI (p = 0.02) and DI (p = 0.02) than their counterparts without GDM, with no significant differences in changes of weight or fat (p > 0.50). Adjustment for baseline age, adiposity, calorie intake, physical activity, age at first pregnancy, additional pregnancies and changes in adiposity during follow-up increased the between-group differences in the rates of change of SI and DI (p ≤ 0.003). CONCLUSIONS/INTERPRETATION Mexican-American women with recent GDM had a faster deterioration in insulin sensitivity and beta cell compensation than their parous counterparts without GDM. The differences were not explained by differences in adiposity, suggesting more deleterious effects of existing fat and/or reduced beta cell robustness in women with GDM.
Collapse
|
Comparative Study |
12 |
52 |
13
|
Florez JC, Jablonski KA, McAteer J, Sandhu MS, Wareham NJ, Barroso I, Franks PW, Altshuler D, Knowler WC, Diabetes Prevention Program Research Group. Testing of diabetes-associated WFS1 polymorphisms in the Diabetes Prevention Program. Diabetologia 2008; 51:451-7. [PMID: 18060660 PMCID: PMC2483955 DOI: 10.1007/s00125-007-0891-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 10/30/2007] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Wolfram syndrome (diabetes insipidus, diabetes mellitus, optic atrophy and deafness) is caused by mutations in the WFS1 gene. Recently, single nucleotide polymorphisms (SNPs) in WFS1 have been reproducibly associated with type 2 diabetes. We therefore examined the effects of these variants on diabetes incidence and response to interventions in the Diabetes Prevention Program (DPP), in which a lifestyle intervention or metformin treatment was compared with placebo. METHODS We genotyped the WFS1 SNPs rs10010131, rs752854 and rs734312 (H611R) in 3,548 DPP participants and performed Cox regression analysis using genotype, intervention and their interactions as predictors of diabetes incidence. We also evaluated the effect of these SNPs on insulin resistance and beta cell function at 1 year. RESULTS Although none of the three SNPs was associated with diabetes incidence in the overall cohort, white homozygotes for the previously reported protective alleles appeared less likely to develop diabetes in the lifestyle arm. Examination of the publicly available Diabetes Genetics Initiative genome-wide association dataset revealed that rs10012946, which is in strong linkage disequilibrium with the three WFS1 SNPs (r(2)=0.88-1.0), was associated with type 2 diabetes (allelic odds ratio 0.85, 95% CI 0.75-0.97, p=0.026). In the DPP, we noted a trend towards increased insulin secretion in carriers of the protective variants, although for most SNPs this was seen as compensatory for the diminished insulin sensitivity. CONCLUSIONS/INTERPRETATION The previously reported protective effect of select WFS1 alleles may be magnified by a lifestyle intervention. These variants appear to confer an improvement in beta cell function.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
51 |
14
|
Alcazar O, Buchwald P. Concentration-Dependency and Time Profile of Insulin Secretion: Dynamic Perifusion Studies With Human and Murine Islets. Front Endocrinol (Lausanne) 2019; 10:680. [PMID: 31632354 PMCID: PMC6783504 DOI: 10.3389/fendo.2019.00680] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
The detailed characterization and quantification of the kinetics of glucose-stimulated insulin secretion (GSIS) by normal pancreatic islets is of considerable interest for characterizing β-cell dysfunction, assessing the quality of isolated islets, and improving the design of artificial pancreas devices. Here, we performed dynamic evaluation of GSIS by human and mouse islets at high temporal resolution (every minute) in response to different glucose steps using an automated multichannel perifusion instrument. In both species, insulin responses were biphasic (a transient first-phase peak followed by a sustained second-phase), and the amount of insulin released showed a sigmoid-type dependence on glucose concentration. However, compared to murine islets, human islets have (1) a less pronounced first-phase response, (2) a flat secretion rate during second-phase response, (3) a left-shifted concentration response (reaching half-maximal response at 7.9 ± 0.4 vs. 13.7 ± 0.6 mM), and (4) an ~3-fold lower maximal secretion rate (8.3 ± 2.3 vs. 23.9 ± 5.1 pg/min/islet at 30 mM glucose). These results can be used to establish a more informative protocol for the calculation of the stimulation index, which is widely used for islet assessment in both research and clinical applications, but without an accepted standard or clear evidence as to what low- to high-glucose steps can provide better characterization of islet function. Data obtained here suggest that human islet functionality might be best characterized with a dynamic stimulation index obtained with a glucose step from a low of 4-5 to a high of 14-17 mM (e.g., G4 → G16).
Collapse
|
research-article |
6 |
48 |
15
|
King M, Pearson T, Rossini AA, Shultz LD, Greiner DL. Humanized mice for the study of type 1 diabetes and beta cell function. Ann N Y Acad Sci 2008; 1150:46-53. [PMID: 19120266 PMCID: PMC2620029 DOI: 10.1196/annals.1447.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our understanding of the basic biology of diabetes has been guided by observations made using animal models, particularly rodents. However, humans are not mice, and outcomes predicted by murine studies are not always representative of actual outcomes in the clinic. In particular, investigators studying diabetes have relied heavily on mouse and rat models of autoimmune type 1-like diabetes, and experimental results using these models have not been representative of many of the clinical trials in type 1 diabetes. In this article, we describe the availability of new models of humanized mice for the study of three areas of diabetes. These include the use of humanized mice for the study of (1) human islet stem and progenitor cells, (2) human islet allograft rejection, and (3) human immunity and autoimmunity. These humanized mouse models provide an important preclinical bridge between in vitro studies and rodent models and the translation of discoveries in these model systems to the clinic.
Collapse
|
Evaluation Study |
17 |
38 |
16
|
Wagner R, Jaghutriz BA, Gerst F, Barroso Oquendo M, Machann J, Schick F, Löffler MW, Nadalin S, Fend F, Königsrainer A, Peter A, Siegel-Axel D, Ullrich S, Häring HU, Fritsche A, Heni M. Pancreatic Steatosis Associates With Impaired Insulin Secretion in Genetically Predisposed Individuals. J Clin Endocrinol Metab 2020; 105:dgaa435. [PMID: 32725157 PMCID: PMC7497818 DOI: 10.1210/clinem/dgaa435] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Pancreatic steatosis leading to beta-cell failure might be involved in type 2 diabetes (T2D) pathogenesis. OBJECTIVE We hypothesized that the genetic background modulates the effect of pancreatic fat on beta-cell function and investigated genotype × pancreatic fat interactions on insulin secretion. DESIGN Two observational studies. SETTING University hospital. PATIENTS OR PARTICIPANTS A total of 360 nondiabetic individuals with elevated risk for T2D (Tuebingen Family Study [TUEF]), and 64 patients undergoing pancreatectomy (Pancreas Biobank [PB], HbA1c <9%, no insulin therapy). MAIN OUTCOME MEASURES Insulin secretion calculated from 5-point oral glucose tolerance test (TUEF) and fasting blood collection before surgery (PB). A genome-wide polygenic score for T2D was computed from 484,788 genotyped variants. The interaction of magnetic resonance imaging-measured and histologically quantified pancreatic fat with the polygenic score was investigated. Partitioned risk scores using genome-wide significant variants were also computed to gain insight into potential mechanisms. RESULTS Pancreatic steatosis interacted with genome-wide polygenic score on insulin secretion (P = 0.003), which was similar in the replication cohort with histological measurements (P = 0.03). There was a negative association between pancreatic fat and insulin secretion in participants with high genetic risk, whereas individuals with low genetic risk showed a positive correlation between pancreatic fat and insulin secretion. Consistent interactions were found with insulin resistance-specific and a liver/lipid-specific polygenic scores. CONCLUSIONS The associations suggest that pancreatic steatosis only impairs beta-cell function in subjects at high genetic risk for diabetes. Genetically determined insulin resistance specifically renders pancreatic fat deleterious for insulin secretion.
Collapse
|
Observational Study |
5 |
36 |
17
|
Laferrère B, Pattou F. Weight-Independent Mechanisms of Glucose Control After Roux-en-Y Gastric Bypass. Front Endocrinol (Lausanne) 2018; 9:530. [PMID: 30250454 PMCID: PMC6140402 DOI: 10.3389/fendo.2018.00530] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
Roux-en-Y gastric bypass results in large and sustained weight loss and resolution of type 2 diabetes in 60% of cases at 1-2 years. In addition to calorie restriction and weight loss, various gastro-intestinal mediated mechanisms, independent of weight loss, also contribute to glucose control. The anatomical re-arrangement of the small intestine after gastric bypass results in accelerated nutrient transit, enhances the release of post-prandial gut hormones incretins and of insulin, alters the metabolism and the entero-hepatic cycle of bile acids, modifies intestinal glucose uptake and metabolism, and alters the composition and function of the microbiome. The amelioration of beta cell function after gastric bypass in individuals with type 2 diabetes requires enteric stimulation. However, beta cell function in response to intravenous glucose stimulus remains severely impaired, even in individuals in full clinical diabetes remission. The permanent impairment of the beta cell may explain diabetes relapse years after surgery.
Collapse
|
Review |
7 |
36 |
18
|
Petersen MC, Smith GI, Palacios HH, Farabi SS, Yoshino M, Yoshino J, Cho K, Davila-Roman VG, Shankaran M, Barve RA, Yu J, Stern JH, Patterson BW, Hellerstein MK, Shulman GI, Patti GJ, Klein S. Cardiometabolic characteristics of people with metabolically healthy and unhealthy obesity. Cell Metab 2024; 36:745-761.e5. [PMID: 38569471 PMCID: PMC11025492 DOI: 10.1016/j.cmet.2024.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).
Collapse
|
research-article |
1 |
36 |
19
|
Zheng S, Zhou H, Han T, Li Y, Zhang Y, Liu W, Hu Y. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride. BMC Endocr Disord 2015; 15:21. [PMID: 25924608 PMCID: PMC4423127 DOI: 10.1186/s12902-015-0018-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To explore clinical characteristics and beta cell function in Chinese patients with newly diagnosed drug naive type 2 diabetes mellitus (T2DM) with different levels of serum triglyceride (TG). METHODS Patients with newly diagnosed T2DM (n = 624) were enrolled and divided into different groups according to levels of serum TG. All patients underwent oral glucose tolerance tests and insulin releasing tests. Demographic data, lipid profiles, glucose levels, and insulin profiles were compared between different groups. Basic insulin secretion function index (homeostasis model assessment for beta cell function index, HOMA-β), modified beta cell function index (MBCI), glucose disposition indices (DI), and early insulin secretion function index (insulinogenic index, IGI) were used to evaluate the beta cell function. RESULTS Patients of newly diagnosed T2DM with hypertriglyceridemia were younger, fatter and had worse lipid profiles, glucose profiles, and high insulin levels than those with normal TG. There is no difference in early phase insulin secretion among groups of newly diagnosed T2DM patients with different TG levels. The basal beta cell function (HOMA-β and MBCI) initially increased along rising TG levels and then decreased as the TG levels rose further. The insulin sensitivity was relatively high in patients with a low level of TG and low with a high level of TG. CONCLUSIONS Hypertriglyceridemia influences clinical characteristics and β cell function of Chinese patients with newly diagnosed T2DM. A better management of dyslipidemia may, to some extent, reduce the effect of lipotoxicity, thereby improving glucose homeostasis in patients with newly diagnosed T2DM.
Collapse
|
research-article |
10 |
34 |
20
|
Kim SY, Lee JH, Merrins MJ, Gavrilova O, Bisteau X, Kaldis P, Satin LS, Rane SG. Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary β-Cell Dysfunction to Progressive Depletion of β-Cell Mass and Diabetes. J Biol Chem 2017; 292:3841-3853. [PMID: 28100774 DOI: 10.1074/jbc.m116.754077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
The failure of pancreatic islet β-cells is a major contributor to the etiology of type 2 diabetes. β-Cell dysfunction and declining β-cell mass are two mechanisms that contribute to this failure, although it is unclear whether they are molecularly linked. Here, we show that the cell cycle regulator, cyclin-dependent kinase 2 (CDK2), couples primary β-cell dysfunction to the progressive deterioration of β-cell mass in diabetes. Mice with pancreas-specific deletion of Cdk2 are glucose-intolerant, primarily due to defects in glucose-stimulated insulin secretion. Accompanying this loss of secretion are defects in β-cell metabolism and perturbed mitochondrial structure. Persistent insulin secretion defects culminate in progressive deficits in β-cell proliferation, reduced β-cell mass, and diabetes. These outcomes may be mediated directly by the loss of CDK2, which binds to and phosphorylates the transcription factor FOXO1 in a glucose-dependent manner. Further, we identified a requirement for CDK2 in the compensatory increases in β-cell mass that occur in response to age- and diet-induced stress. Thus, CDK2 serves as an important nexus linking primary β-cell dysfunction to progressive β-cell mass deterioration in diabetes.
Collapse
|
Journal Article |
8 |
33 |
21
|
Tricò D, Galderisi A, Mari A, Santoro N, Caprio S. One-hour post-load plasma glucose predicts progression to prediabetes in a multi-ethnic cohort of obese youths. Diabetes Obes Metab 2019; 21:1191-1198. [PMID: 30663201 PMCID: PMC6459710 DOI: 10.1111/dom.13640] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/11/2023]
Abstract
AIMS One-hour post-load hyperglycaemia has been proposed as an independent predictor of type 2 diabetes in adults. We examined whether 1-hour plasma glucose (1hPG) during an oral glucose tolerance test (OGTT) can predict changes in the glucose tolerance status of a multi-ethnic cohort of youths with normal glucose tolerance (NGT). MATERIALS AND METHODS A total of 202 obese youths with NGT (33.7% Caucasian, 31.1% Hispanic, 32.2% African American) underwent a 3-hour OGTT at baseline and after a 2-year follow-up period. Whole-body insulin sensitivity, insulin secretion, β-cell function and insulin clearance were estimated by modeling plasma glucose, insulin and C-peptide levels. RESULTS Obese youths with 1hPG ≥7.4 mmol/L (or 133 mg/dL; n = 83) exhibited higher body mass index (BMI), plasma triglycerides and fasting and post-load glucose concentrations than individuals with 1hPG <7.4 mmol/L. Also, 1hPG ≥7.4 mmol/L was associated with a lower disposition index (DI) (P < 0.0001) and with alterations in whole-body insulin sensitivity, β-cell function and insulin clearance. Adolescents with 1hPG ≥7.4 mmol/L were approximately three times more likely to develop prediabetes (ie, impaired glucose tolerance and/or impaired fasting glucose) over time (OR, 2.92 [1.22-6.98]; P = 0.02), independent of age, sex, race/ethnicity, BMI, insulin sensitivity, DI and plasma glucose concentrations. No differences emerged in the risk of prediabetes related to 1-hour hyperglycaemia among different ethnic groups. CONCLUSIONS A plasma glucose concentration ≥ 7.4 mmol/L at 1 hour during an OGTT is associated with a worse clinical and metabolic phenotype and may be an independent predictor of progression to prediabetes in obese youths with NGT.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
32 |
22
|
Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals. Nutrients 2021; 13:nu13041345. [PMID: 33919503 PMCID: PMC8074206 DOI: 10.3390/nu13041345] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Low-calorie Mediterranean-style or low-carbohydrate dietary regimens are widely used nutritional strategies against obesity and associated metabolic diseases, including type 2 diabetes. The aim of this study was to compare the effectiveness of a balanced Mediterranean diet with a low-carbohydrate diet on weight loss and glucose homeostasis in morbidly obese individuals at high risk to develop diabetes. Insulin secretion, insulin clearance, and different β-cell function components were estimated by modeling plasma glucose, insulin and C-peptide profiles during 75-g oral glucose tolerance tests (OGTTs) performed at baseline and after 4 weeks of each dietary intervention. The average weight loss was 5%, being 58% greater in the low-carbohydrate-group than Mediterranean-group. Fasting plasma glucose and glucose tolerance were not affected by the diets. The two dietary regimens proved similarly effective in improving insulin resistance and fasting hyperinsulinemia, while enhancing endogenous insulin clearance and β-cell glucose sensitivity. In summary, we demonstrated that a low-carbohydrate diet is a successful short-term approach for weight loss in morbidly obese patients and a feasible alternative to the Mediterranean diet for its glucometabolic benefits, including improvements in insulin resistance, insulin clearance and β-cell function. Further studies are needed to compare the long-term efficacy and safety of the two diets.
Collapse
|
Randomized Controlled Trial |
4 |
32 |
23
|
Kim SH, Liu A, Ariel D, Abbasi F, Lamendola C, Grove K, Tomasso V, Reaven G. Pancreatic beta cell function following liraglutide-augmented weight loss in individuals with prediabetes: analysis of a randomised, placebo-controlled study. Diabetologia 2014; 57:455-62. [PMID: 24326527 PMCID: PMC5072364 DOI: 10.1007/s00125-013-3134-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Liraglutide can modulate insulin secretion by directly stimulating beta cells or indirectly through weight loss and enhanced insulin sensitivity. Recently, we showed that liraglutide treatment in overweight individuals with prediabetes (impaired fasting glucose and/or impaired glucose tolerance) led to greater weight loss (-7.7% vs -3.9%) and improvement in insulin resistance compared with placebo. The current study evaluates the effects on beta cell function of weight loss augmented by liraglutide compared with weight loss alone. METHODS This was a parallel, randomised study conducted in a single academic centre. Both participants and study administrators were blinded to treatment assignment. Individuals who were 40-70 years old, overweight (BMI 27-40 kg/m(2)) and with prediabetes were randomised (via a computerised system) to receive liraglutide (n = 35) or matching placebo (n = 33), and 49 participants were analysed. All were instructed to follow an energy-restricted diet. Primary outcome was insulin secretory function, which was evaluated in response to graded infusions of glucose and day-long mixed meals. RESULTS Liraglutide treatment (n = 24) significantly (p ≤ 0.03) increased the insulin secretion rate (% mean change [95% CI]; 21% [12, 31] vs -4% [-11, 3]) and pancreatic beta cell sensitivity to intravenous glucose (229% [161, 276] vs -0.5% (-15, 14]), and decreased insulin clearance rate (-3.5% [-11, 4] vs 8.2 [0.2, 16]) as compared with placebo (n = 25). The liraglutide-treated group also had significantly (p ≤ 0.03) lower day-long glucose (-8.2% [-11, -6] vs -0.1 [-3, 2]) and NEFA concentrations (-14 [-20, -8] vs -2.1 [-10, 6]) following mixed meals, whereas day-long insulin concentrations did not significantly differ as compared with placebo. In a multivariate regression analysis, weight loss was associated with a decrease in insulin secretion rate and day-long glucose and insulin concentrations in the placebo group (p ≤ 0.05), but there was no association with weight loss in the liraglutide group. The most common side effect of liraglutide was nausea. CONCLUSIONS/INTERPRETATION A direct stimulatory effect on beta cell function was the predominant change in liraglutide-augmented weight loss. These changes appear to be independent of weight loss. TRIAL REGISTRATION ClinicalTrials.gov NCT01784965 FUNDING: The study was funded by the ADA.
Collapse
|
Randomized Controlled Trial |
11 |
30 |
24
|
Piemonti L, Keymeulen B, Gillard P, Linn T, Bosi E, Rose L, Pozzilli P, Giorgino F, Cossu E, Daffonchio L, Goisis G, Ruffini PA, Maurizi AR, Mantelli F, Allegretti M. Ladarixin, an inhibitor of the interleukin-8 receptors CXCR1 and CXCR2, in new-onset type 1 diabetes: A multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2022; 24:1840-1849. [PMID: 35589610 PMCID: PMC9540558 DOI: 10.1111/dom.14770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023]
Abstract
AIM To evaluate the ability of ladarixin (LDX, 400 mg twice-daily for three cycles of 14 days on/14 days off), an inhibitor of the CXCR1/2 chemokine receptors, to maintain C-peptide production in adult patients with newly diagnosed type 1 diabetes. MATERIALS AND METHODS A double-blind, randomized (2:1), placebo-controlled study was conducted in 45 males and 31 females (aged 18-46 years) within 100 days of the first insulin administration. The primary endpoint was the area under the curve (AUC) for C-peptide in response to a 2-hour mixed meal tolerance test (AUC[0-120 min] ) at week 13 ± 1. Secondary endpoints included C-peptide AUC(15-120 min) , HbA1c, daily insulin requirement, severe hypoglycaemic events (SHE), the proportion of subjects achieving HbA1c less than 7.0% without SHE and maintaining a residual beta cell function. Follow-up assessments were scheduled at weeks 13 ± 1, 26 ± 2 and 52 ± 2. RESULTS In total, 26/26 (100%, placebo) and 49/50 (98%, LDX) patients completed week 13. The mean change from baseline to week 13 in C-peptide AUC(0-120 min) was -0.144 ± 0.449 nmol/L with placebo and 0.003 ± .322 nmol/L with LDX. The difference was not significant (0.149 nmol/L, 95% CI -0.04 to 0.33; P = .122). At week 26, the proportion of patients with HbA1c less than 7.0% without SHE was transiently higher in the LDX group (81% vs. 54%, P = .024). Otherwise, no significant secondary endpoint differences were noted. Transient metabolic benefit was seen at week 26 in favour of the LDX group in the prespecified subpopulation with fasting C-peptide less than the median value at screening. CONCLUSIONS In newly diagnosed patients with type 1 diabetes, short-term LDX treatment had no appreciable effect on preserving residual beta cell function.
Collapse
|
Multicenter Study |
3 |
29 |
25
|
Insulin Metabolism in Polycystic Ovary Syndrome: Secretion, Signaling, and Clearance. Int J Mol Sci 2023; 24:ijms24043140. [PMID: 36834549 PMCID: PMC9962893 DOI: 10.3390/ijms24043140] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in women of reproductive age. Its heterogeneous clinical presentation is characterized by hyperandrogenemia, reproductive changes, polycystic ovary morphology, and insulin resistance (IR). The primary pathophysiological process in its multifactorial etiology has not yet been identified. However, the two most proposed core etiologies are the disruption of insulin metabolism and hyperandrogenemia, both of which begin to intertwine and propagate each other in the later stages of the disease. Insulin metabolism can be viewed as the interconnectedness of beta cell function, IR or insulin sensitivity, and insulin clearance. Previous studies of insulin metabolism in PCOS patients have yielded conflicting results, and literature reviews have focused mainly on the molecular mechanisms and clinical implications of IR. In this narrative review, we comprehensively explored the role of insulin secretion, clearance, and decreased sensitivity in target cells as a potential primary insult in PCOS pathogenesis, along with the molecular mechanism behind IR in PCOS.
Collapse
|
review-article |
2 |
26 |