Rugiel MM, Setkowicz ZK, Drozdz AK, Janeczko KJ, Kutorasińska J, Chwiej JG. The Use of Fourier Transform Infrared Microspectroscopy for the Determination of
Biochemical Anomalies of the Hippocampal Formation Characteristic for the Kindling Model of Seizures.
ACS Chem Neurosci 2021;
12:4564-4579. [PMID:
34817152 PMCID:
PMC8678993 DOI:
10.1021/acschemneuro.1c00642]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
![]()
The animal models
of seizures and/or epilepsy are widely used to
identify the pathomechanisms of the disease as well as to look for
and test the new antiseizure therapies. The understanding of the mechanisms
of action of new drugs and evaluation of their safety in animals require
previous knowledge concerning the biomolecular anomalies characteristic
for the particular model. Among different models of seizures, one
of the most widely used is the kindling model that was also applied
in our study. To examine the influence of multiple transauricular
electroshocks on the biochemical composition of rat hippocampal formation,
Fourier transform infrared (FT-IR) microspectrosopy was utilized.
The chemical mapping of the main absorption bands and their ratios
allowed us to detect significant anomalies in both the distribution
and structure of main biomolecules for electrically stimulated rats.
They included an increased relative content of proteins with β-sheet
conformation (an increased ratio of the absorbance at the wavenumbers
of 1635 and 1658 cm–1), a decreased level of cholesterol
and/or its esters and compounds containing phosphate groups (a diminished
intensity of the massif of 1360–1480 cm–1 and the band at 1240 cm–1), as well as increased
accumulation of carbohydrates and the compounds containing carbonyl
groups (increased intensity of the bands at 1080 and 1740 cm–1, respectively). The observed biomolecular abnormalities seem to
be the consequence of lipid peroxidation promoted by reactive oxygen
species as well as the mobilization of glucose that resulted from
the increased demand to energy during postelectroshock seizures.
Collapse