Zhong X, Luo L, Wu J, Li W, Liu X, Ye T, Li Z, Shi P. Adhesion-Assisted Antioxidant-Engineered Mesenchymal Stromal Cells for Enhanced Cardiac Repair in Myocardial Infarction.
ACS NANO 2025;
19:11412-11426. [PMID:
40073336 DOI:
10.1021/acsnano.5c00820]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair. Anti-VCAM1 modification facilitates MSC adhesion to inflamed tissue, ensuring MSC retention in the injured myocardium, while PD scavenges ROS surrounding MSCs, creating a conducive environment for cell transplantation. Our data indicate that chemically engineered MSCs effectively disrupt the inflammation-ROS cycle and modulate inflammation-related immune responses, thus improving MI microenvironments. Single-cell RNA sequencing of rat hearts reveals that treatment with engineered MSCs inhibits cardiac fibrosis by suppressing HB-EGF-EGFR signaling between anti-inflammatory macrophages and activated fibrillates. Ultimately, engineered MSCs demonstrate superior therapeutic efficacy in a rat model of MI. This study presents a straightforward, safe, and efficient chemical method for enhancing MSC therapy.
Collapse