1
|
Wilson SA, Roberts SC. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:249-68. [PMID: 22059985 PMCID: PMC3288596 DOI: 10.1111/j.1467-7652.2011.00664.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field-grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field-grown crops is significant and therefore processes must be optimized with regard to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
159 |
2
|
Wollmann F, Dietze S, Ackermann J, Bley T, Walther T, Steingroewer J, Krujatz F. Microalgae wastewater treatment: Biological and technological approaches. Eng Life Sci 2019; 19:860-871. [PMID: 32624978 PMCID: PMC6999062 DOI: 10.1002/elsc.201900071] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 01/28/2023] Open
Abstract
Current global environmental issues raise unavoidable challenges for our use of natural resources. Supplying the human population with clean water is becoming a global problem. Numerous organic and inorganic impurities in municipal, industrial, and agricultural waters, ranging from microplastics to high nutrient loads and heavy metals, endanger our nutrition and health. The development of efficient wastewater treatment technologies and circular economic approaches is thus becoming increasingly important. The biomass production of microalgae using industrial wastewater offers the possibility of recycling industrial residues to create new sources of raw materials for energy and material use. This review discusses algae-based wastewater treatment technologies with a special focus on industrial wastewater sources, the potential of non-conventional extremophilic (thermophilic, acidophilic, and psychrophilic) microalgae, and industrial algae-wastewater treatment concepts that have already been put into practice.
Collapse
|
Review |
6 |
108 |
3
|
Robb KP, Fitzgerald JC, Barry F, Viswanathan S. Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy 2018; 21:289-306. [PMID: 30528726 DOI: 10.1016/j.jcyt.2018.10.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cell (MSC) therapies have been pursued for a broad spectrum of indications but mixed reports on clinical efficacy have given rise to some degree of skepticism regarding the effectiveness of this approach. However, recent reports of successful clinical outcomes and regulatory approvals for graft-versus-host disease, Crohn's disease and critical limb ischemia have prompted a shift in this perspective. With hundreds of clinical trials involving MSCs currently underway and an increasing demand for large-scale manufacturing protocols, there is a critical need to develop standards that can be applied to processing methods and to establish consensus assays for both MSC processing control and MSC product release. Reference materials and validated, uniformly applied tests for quality control of MSC products are needed. Here, we review recent developments in MSC manufacturing technologies, release testing and potency assays. We conclude that, although MSCs hold considerable promise clinically, economies of scale have yet to be achieved although numerous bioreactor technologies for scalable production of MSCs exist. Additionally, rigorous disease-specific product testing and comprehensive understanding of mechanisms of action, which are linked to relevant process and product release potency assays, will be required to ensure that these therapies continue to be successful.
Collapse
|
Review |
7 |
106 |
4
|
de Almeida Fuzeta M, Bernardes N, Oliveira FD, Costa AC, Fernandes-Platzgummer A, Farinha JP, Rodrigues CAV, Jung S, Tseng RJ, Milligan W, Lee B, Castanho MARB, Gaspar D, Cabral JMS, da Silva CL. Scalable Production of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Under Serum-/Xeno-Free Conditions in a Microcarrier-Based Bioreactor Culture System. Front Cell Dev Biol 2020; 8:553444. [PMID: 33224943 PMCID: PMC7669752 DOI: 10.3389/fcell.2020.553444] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSC) hold great promise for tissue engineering and cell-based therapies due to their multilineage differentiation potential and intrinsic immunomodulatory and trophic activities. Over the past years, increasing evidence has proposed extracellular vesicles (EVs) as mediators of many of the MSC-associated therapeutic features. EVs have emerged as mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. EVs are derived from cell membranes, allowing high biocompatibility to target cells, while their small size makes them ideal candidates to cross biological barriers. Despite the promising potential of EVs for therapeutic applications, robust manufacturing processes that would increase the consistency and scalability of EV production are still lacking. In this work, EVs were produced by MSC isolated from different human tissue sources [bone marrow (BM), adipose tissue (AT), and umbilical cord matrix (UCM)]. A serum-/xeno-free microcarrier-based culture system was implemented in a Vertical-WheelTM bioreactor (VWBR), employing a human platelet lysate culture supplement (UltraGROTM-PURE), toward the scalable production of MSC-derived EVs (MSC-EVs). The morphology and structure of the manufactured EVs were assessed by atomic force microscopy, while EV protein markers were successfully identified in EVs by Western blot, and EV surface charge was maintained relatively constant (between −15.5 ± 1.6 mV and −19.4 ± 1.4 mV), as determined by zeta potential measurements. When compared to traditional culture systems under static conditions (T-flasks), the VWBR system allowed the production of EVs at higher concentration (i.e., EV concentration in the conditioned medium) (5.7-fold increase overall) and productivity (i.e., amount of EVs generated per cell) (3-fold increase overall). BM, AT and UCM MSC cultured in the VWBR system yielded an average of 2.8 ± 0.1 × 1011, 3.1 ± 1.3 × 1011, and 4.1 ± 1.7 × 1011 EV particles (n = 3), respectively, in a 60 mL final volume. This bioreactor system also allowed to obtain a more robust MSC-EV production, regarding their purity, compared to static culture. Overall, we demonstrate that this scalable culture system can robustly manufacture EVs from MSC derived from different tissue sources, toward the development of novel therapeutic products.
Collapse
|
Journal Article |
5 |
95 |
5
|
Auchtung JM, Robinson CD, Britton RA. Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). MICROBIOME 2015; 3:42. [PMID: 26419531 PMCID: PMC4588258 DOI: 10.1186/s40168-015-0106-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 09/01/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Continuous-flow culture models are one tool for studying complex interactions between members of human fecal microbiotas because they allow studies to be completed during an extended period of time under conditions where pH, nutrient availability, and washout of waste products and dead cells can be controlled. Because many of the existing well-validated continuous-flow models are large and complex, we were interested in developing a simpler continuous-flow system that would allow microbial community dynamics to be examined in higher throughput while still maintaining complex microbial communities. To this end, we developed minibioreactor arrays (MBRAs), small volume bioreactors (15 ml) that allow simultaneous cultivation of up to 48 microbial communities in a single anaerobic chamber. RESULTS We used MBRA to characterize the microbial community dynamics of replicate reactors inoculated from three different human fecal donors and reactors seeded with feces pooled from these three donors. We found that MBRA could be used to efficiently cultivate complex microbial communities that were a subset of the initial fecal inoculum (15-25 % of fecal OTUs initially observed). After an initial acclimation period of approximately 1 week, communities in each reactor stabilized and exhibited day-to-day variation similar to that observed in stable mouse fecal communities. Replicate reactors were predominately populated by shared core microbial communities; variation between replicate reactors was primarily driven by shifts in abundance of shared operational taxonomic units (OTUs). Consistent with differences between fecal donors, MBRA communities present in reactors seeded with different fecal samples had distinct composition and structure. CONCLUSIONS From these analyses, we conclude that MBRAs can be used to cultivate communities that recapitulate key features of human fecal communities and are a useful tool to facilitate higher-throughput studies of the dynamics of these communities.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
91 |
6
|
Hogrebe NJ, Ishahak M, Millman JR. Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell Stem Cell 2023; 30:530-548. [PMID: 37146579 PMCID: PMC10167558 DOI: 10.1016/j.stem.2023.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
The generation of islet-like endocrine clusters from human pluripotent stem cells (hPSCs) has the potential to provide an unlimited source of insulin-producing β cells for the treatment of diabetes. In order for this cell therapy to become widely adopted, highly functional and well-characterized stem cell-derived islets (SC-islets) need to be manufactured at scale. Furthermore, successful SC-islet replacement strategies should prevent significant cell loss immediately following transplantation and avoid long-term immune rejection. This review highlights the most recent advances in the generation and characterization of highly functional SC-islets as well as strategies to ensure graft viability and safety after transplantation.
Collapse
|
Review |
2 |
74 |
7
|
Direct current electrical stimulation chamber for treating cells in vitro. Biotechniques 2016; 60:95-8. [PMID: 26842356 DOI: 10.2144/000114382] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/28/2015] [Indexed: 11/23/2022] Open
Abstract
Electrical stimulation has been shown to promote healing and regeneration in skin, bone, muscle, and nerve tissues in clinical studies. Recently, studies applying electrical stimulation to influence cell behavior associated with proliferation, differentiation, and migration have provided a better understanding of the underlying mechanisms of electrical stimulation-based clinical treatments and improved tissue-engineered products through electro-bioreactor technologies. Here, we present a novel device for delivering direct current (DC) electrical stimulation (ES) to cultivated cells in vitro. Our simplified electro-bioreactor is customized for applying DC electrical current simultaneously in six individual tissue culture wells. The design overcomes previous experimental replicate limitations, thus reducing experimental time and cost.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
63 |
8
|
Marchev AS, Yordanova ZP, Georgiev MI. Green (cell) factories for advanced production of plant secondary metabolites. Crit Rev Biotechnol 2020; 40:443-458. [PMID: 32178548 DOI: 10.1080/07388551.2020.1731414] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For centuries plants have been intensively utilized as reliable sources of food, flavoring, agrochemical and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to climate change and agriculture. Plant biotechnology offers a sustainable method for the bioproduction of plant secondary metabolites using plant in vitro systems. The unique structural features of plant-derived secondary metabolites, such as their safety profile, multi-target spectrum and "metabolite likeness," have led to the establishment of many plant-derived drugs, comprising approximately a quarter of all drugs approved by the Food and Drug Administration and/or European Medicinal Agency. However, there are still many challenges to overcome to enhance the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant secondary metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this review, we present an integrated overview of the possible avenues for enhancing the biosynthesis of high-value marketable molecules produced by plant in vitro systems. These include metabolic engineering and CRISPR/Cas9 technology for the regulation of plant metabolism through overexpression/repression of single or multiple structural genes or transcriptional factors. The use of NMR-based metabolomics for monitoring metabolite concentrations and additionally as a tool to study the dynamics of plant cell metabolism and nutritional management is discussed here. Different types of bioreactor systems, their modification and optimal process parameters for the lab- or industrial-scale production of plant secondary metabolites are specified.
Collapse
|
Review |
5 |
63 |
9
|
Zhou Y, Shen JX, Lauschke VM. Comprehensive Evaluation of Organotypic and Microphysiological Liver Models for Prediction of Drug-Induced Liver Injury. Front Pharmacol 2019; 10:1093. [PMID: 31616302 PMCID: PMC6769037 DOI: 10.3389/fphar.2019.01093] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major concern for the pharmaceutical industry and constitutes one of the most important reasons for the termination of promising drug development projects. Reliable prediction of DILI liability in preclinical stages is difficult, as current experimental model systems do not accurately reflect the molecular phenotype and functionality of the human liver. As a result, multiple drugs that passed preclinical safety evaluations failed due to liver toxicity in clinical trials or postmarketing stages in recent years. To improve the selection of molecules that are taken forward into the clinics, the development of more predictive in vitro systems that enable high-throughput screening of hepatotoxic liabilities and allow for investigative studies into DILI mechanisms has gained growing interest. Specifically, it became increasingly clear that the choice of cell types and culture method both constitute important parameters that affect the predictive power of test systems. In this review, we present current 3D culture paradigms for hepatotoxicity tests and critically evaluate their utility and performance for DILI prediction. In addition, we highlight possibilities of these emerging platforms for mechanistic evaluations of selected drug candidates and present current research directions towards the further improvement of preclinical liver safety tests. We conclude that organotypic and microphysiological liver systems have provided an important step towards more reliable DILI prediction. Furthermore, we expect that the increasing availability of comprehensive benchmarking studies will facilitate model dissemination that might eventually result in their regulatory acceptance.
Collapse
|
Review |
6 |
63 |
10
|
Scheinpflug J, Pfeiffenberger M, Damerau A, Schwarz F, Textor M, Lang A, Schulze F. Journey into Bone Models: A Review. Genes (Basel) 2018; 9:E247. [PMID: 29748516 PMCID: PMC5977187 DOI: 10.3390/genes9050247] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Bone is a complex tissue with a variety of functions, such as providing mechanical stability for locomotion, protection of the inner organs, mineral homeostasis and haematopoiesis. To fulfil these diverse roles in the human body, bone consists of a multitude of different cells and an extracellular matrix that is mechanically stable, yet flexible at the same time. Unlike most tissues, bone is under constant renewal facilitated by a coordinated interaction of bone-forming and bone-resorbing cells. It is thus challenging to recreate bone in its complexity in vitro and most current models rather focus on certain aspects of bone biology that are of relevance for the research question addressed. In addition, animal models are still regarded as the gold-standard in the context of bone biology and pathology, especially for the development of novel treatment strategies. However, species-specific differences impede the translation of findings from animal models to humans. The current review summarizes and discusses the latest developments in bone tissue engineering and organoid culture including suitable cell sources, extracellular matrices and microfluidic bioreactor systems. With available technology in mind, a best possible bone model will be hypothesized. Furthermore, the future need and application of such a complex model will be discussed.
Collapse
|
Review |
7 |
61 |
11
|
Tsai AC, Jeske R, Chen X, Yuan X, Li Y. Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Front Bioeng Biotechnol 2020; 8:640. [PMID: 32671039 PMCID: PMC7327111 DOI: 10.3389/fbioe.2020.00640] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a promising candidate in cell therapy as they exhibit multilineage differentiation, homing to the site of injury, and secretion of trophic factors that facilitate tissue healing and/or modulate immune response. As a result, hMSC-derived products have attracted growing interests in preclinical and clinical studies. The development of hMSC culture platforms for large-scale biomanufacturing is necessary to meet the requirements for late-phase clinical trials and future commercialization. Microcarriers in stirred-tank bioreactors have been widely utilized in large-scale expansion of hMSCs for translational applications because of a high surface-to-volume ratio compared to conventional 2D planar culture. However, recent studies have demonstrated that microcarrier-expanded hMSCs differ from dish- or flask-expanded cells in size, morphology, proliferation, viability, surface markers, gene expression, differentiation potential, and secretome profile which may lead to altered therapeutic potency. Therefore, understanding the bioprocessing parameters that influence hMSC therapeutic efficacy is essential for the optimization of microcarrier-based bioreactor system to maximize hMSC quantity without sacrificing quality. In this review, biomanufacturing parameters encountered in planar culture and microcarrier-based bioreactor culture of hMSCs are compared and discussed with specific focus on cell-adhesion surface (e.g., discontinuous surface, underlying curvature, microcarrier stiffness, porosity, surface roughness, coating, and charge) and the dynamic microenvironment in bioreactor culture (e.g., oxygen and nutrients, shear stress, particle collision, and aggregation). The influence of dynamic culture in bioreactors on hMSC properties is also reviewed in order to establish connection between bioprocessing and stem cell function. This review addresses fundamental principles and concepts for future design of biomanufacturing systems for hMSC-based therapy.
Collapse
|
Review |
5 |
61 |
12
|
Urciuolo F, Casale C, Imparato G, Netti PA. Bioengineered Skin Substitutes: the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds. J Clin Med 2019; 8:E2083. [PMID: 31805652 PMCID: PMC6947552 DOI: 10.3390/jcm8122083] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
The formation of severe scars still represents the result of the closure process of extended and deep skin wounds. To address this issue, different bioengineered skin substitutes have been developed but a general consensus regarding their effectiveness has not been achieved yet. It will be shown that bioengineered skin substitutes, although representing a valid alternative to autografting, induce skin cells in repairing the wound rather than guiding a regeneration process. Repaired skin differs from regenerated skin, showing high contracture, loss of sensitivity, impaired pigmentation and absence of cutaneous adnexa (i.e., hair follicles and sweat glands). This leads to significant mobility and aesthetic concerns, making the development of more effective bioengineered skin models a current need. The objective of this review is to determine the limitations of either commercially available or investigational bioengineered skin substitutes and how advanced skin tissue engineering strategies can be improved in order to completely restore skin functions after severe wounds.
Collapse
|
Review |
6 |
58 |
13
|
Fishman JM, Wiles K, Lowdell MW, De Coppi P, Elliott MJ, Atala A, Birchall MA. Airway tissue engineering: an update. Expert Opin Biol Ther 2014; 14:1477-91. [PMID: 25102044 DOI: 10.1517/14712598.2014.938631] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Prosthetic materials, autologous tissues, cryopreserved homografts and allogeneic tissues have thus far proven unsuccessful in providing long-term functional solutions to extensive upper airway disease and damage. Research is therefore focusing on the rapidly expanding fields of regenerative medicine and tissue engineering in order to provide stem cell-based constructs for airway reconstruction, substitution and/or regeneration. AREAS COVERED Advances in stem cell technology, biomaterials and growth factor interactions have been instrumental in guiding optimization of tissue-engineered airways, leading to several first-in-man studies investigating stem cell-based tissue-engineered tracheal transplants in patients. Here, we summarize current progress, outstanding research questions, as well as future directions within the field. EXPERT OPINION The complex immune interaction between the transplant and host in vivo is only beginning to be untangled. Recent progress in our understanding of stem cell biology, decellularization techniques, biomaterials and transplantation immunobiology offers the prospect of transplanting airways without the need for lifelong immunosuppression. In addition, progress in airway revascularization, reinnervation and ever-increasingly sophisticated bioreactor design is opening up new avenues for the construction of a tissue-engineered larynx. Finally, 3D printing is a novel technique with the potential to render microscopic control over how cells are incorporated and grown onto the tissue-engineered airway.
Collapse
|
Review |
11 |
58 |
14
|
Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol 2015; 33:401-7. [PMID: 25937289 DOI: 10.1016/j.tibtech.2015.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023]
Abstract
This review examines important robust methods for sustained, steady-state, in vitro culture. To achieve 'physiologically relevant' tissues in vitro additional complexity must be introduced to provide suitable transport, cell signaling, and matrix support for cells in 3D environments to achieve stable readouts of tissue function. Most tissue engineering systems draw conclusions on tissue functions such as responses to toxins, nutrition, or drugs based on short-term outcomes with in vitro cultures (2-14 days). However, short-term cultures limit insight with physiological relevance because the cells and tissues have not reached a steady-state.
Collapse
|
Review |
10 |
57 |
15
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
55 |
16
|
Abstract
The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and substrates, monitoring spontaneous differentiation and heterogeneity in the cultures, and maintaining karyotypic integrity in the cells. This review will describe our current understanding of environmental factors that regulate hESC self-renewal and efforts to provide these cues in various scalable bioreactor culture systems.
Collapse
|
research-article |
15 |
51 |
17
|
Bioengineering Approaches for Bladder Regeneration. Int J Mol Sci 2018; 19:ijms19061796. [PMID: 29914213 PMCID: PMC6032229 DOI: 10.3390/ijms19061796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022] Open
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Collapse
|
Review |
7 |
50 |
18
|
Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine. J Clin Med 2021; 10:jcm10214966. [PMID: 34768485 PMCID: PMC8584432 DOI: 10.3390/jcm10214966] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is an emerging field that centers on the restoration and regeneration of functional components of damaged tissue. Tissue engineering is an application of regenerative medicine and seeks to create functional tissue components and whole organs. Using 3D printing technologies, native tissue mimics can be created utilizing biomaterials and living cells. Recently, regenerative medicine has begun to employ 3D bioprinting methods to create highly specialized tissue models to improve upon conventional tissue engineering methods. Here, we review the use of 3D bioprinting in the advancement of tissue engineering by describing the process of 3D bioprinting and its advantages over other tissue engineering methods. Materials and techniques in bioprinting are also reviewed, in addition to future clinical applications, challenges, and future directions of the field.
Collapse
|
Review |
4 |
49 |
19
|
Bunpetch V, Wu H, Zhang S, Ouyang H. From "Bench to Bedside": Current Advancement on Large-Scale Production of Mesenchymal Stem Cells. Stem Cells Dev 2018; 26:1662-1673. [PMID: 28934885 DOI: 10.1089/scd.2017.0104] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are the primary cell source in cell therapy and regenerative medicine due to its extraordinary self-renewing capacity and multilineage differentiation potential. Clinical trials involving MSCs are being conducted in a range of human diseases and the number of registered cases is continuously increasing. However, a wide gap exists between the number of MSCs obtainable from the donor site and the number required for implantation to damage tissues, and also between MSC scalability and MSC phenotype stability. The clinical translation of MSCs necessitates a scalable expansion bioprocess for the biomanufacturing of therapeutically qualified cells. This review presents current achievements for expansion of MSCs. Issues involving culture condition modification, bioreactor systems, as well as microcarrier and scaffold platforms for optimal MSC systems are discussed. Most importantly, the gap between current MSC expansion and clinical application, as well as outbreak directions for the future are discussed. The present systemic review will bring new insights into future large-scale MSC expansion and clinical application.
Collapse
|
Review |
7 |
47 |
20
|
Abstract
Ex vivo production of human platelets has been pursued as an alternative measure to resolve limitations in the supply and safety of current platelet transfusion products. To this end, induced pluripotent stem cells (iPSCs) are considered an ideal global source, as they are not only pluripotent and self-renewing, but are also available from basically any person, have relatively few ethical issues, and are easy to manipulate. From human iPSCs, megakaryocyte (MK) lines with robust proliferation capacity have been established by the introduction of specified sets of genes. These expandable MKs are also cryopreservable and thus would be suitable as master cells for good manufacturing practice (GMP)-grade production of platelets, assuring availability on demand and safety against blood-borne infections. Meanwhile, developments in bioreactors that physically mimic the in vivo environment and discovery of substances that promote thrombopoiesis have yielded competent platelets with improved efficiency. The derivation of platelets from iPSCs could further resolve transfusion-related alloimmune complications through the manufacturing of autologous products and human leukocyte antigen (HLA)-compatible platelets from stocked homologous HLA-type iPSC libraries or by manipulation of HLAs and human platelet antigens (HPAs). Considering these key advances in the field, HLA-deleted platelets could become a universal product that is manufactured at industrial level to safely fulfill almost all demands. In this review, we provide an overview of the ex vivo production of iPSC-derived platelets toward clinical applications, a production that would revolutionize the blood transfusion system and lead the field of iPSC-based regenerative medicine.
Collapse
|
Review |
8 |
47 |
21
|
Bellani CF, Ajeian J, Duffy L, Miotto M, Groenewegen L, Connon CJ. Scale-Up Technologies for the Manufacture of Adherent Cells. Front Nutr 2020; 7:575146. [PMID: 33251241 PMCID: PMC7672005 DOI: 10.3389/fnut.2020.575146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Great importance is being given to the impact our food supply chain and consumers' food habits are having on the environment, human health, and animal welfare. One of the latest developments aiming at positively changing the food ecosystem is represented by cultured meat. This form of cellular agriculture has the objective to generate slaughter-free meat products starting from the cultivation of few cells harvested from the animal tissue of interest. As a consequence, a large number of cells has to be generated at a reasonable cost. Just to give an idea of the scale, there were billions of cells just in a bite of the first cultured-meat burger. Thus, one of the major challenges faced by the scientists involved in this new ambitious and fascinating field, is how to efficiently scale-up cell manufacture. Considering the great potential presented by cultured meat, audiences from different backgrounds are very interested in this topic and eager to be informed of the challenges and possible solutions in this area. In light of this, we will provide an overview of the main existing bioprocessing technologies used to scale-up adherent cells at a small and large scale. Thus, giving a brief technical description of these bioprocesses, with the main associated advantages and disadvantages. Moreover, we will introduce an alternative solution we believe has the potential to revolutionize the way adherent cells are grown, helping cultured meat become a reality.
Collapse
|
Review |
5 |
45 |
22
|
Chen J, Gomez JA, Höffner K, Phalak P, Barton PI, Henson MA. Spatiotemporal modeling of microbial metabolism. BMC SYSTEMS BIOLOGY 2016; 10:21. [PMID: 26932448 PMCID: PMC4774267 DOI: 10.1186/s12918-016-0259-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/22/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Microbial systems in which the extracellular environment varies both spatially and temporally are very common in nature and in engineering applications. While the use of genome-scale metabolic reconstructions for steady-state flux balance analysis (FBA) and extensions for dynamic FBA are common, the development of spatiotemporal metabolic models has received little attention. RESULTS We present a general methodology for spatiotemporal metabolic modeling based on combining genome-scale reconstructions with fundamental transport equations that govern the relevant convective and/or diffusional processes in time and spatially varying environments. Our solution procedure involves spatial discretization of the partial differential equation model followed by numerical integration of the resulting system of ordinary differential equations with embedded linear programs using DFBAlab, a MATLAB code that performs reliable and efficient dynamic FBA simulations. We demonstrate our methodology by solving spatiotemporal metabolic models for two systems of considerable practical interest: (1) a bubble column reactor with the syngas fermenting bacterium Clostridium ljungdahlii; and (2) a chronic wound biofilm with the human pathogen Pseudomonas aeruginosa. Despite the complexity of the discretized models which consist of 900 ODEs/600 LPs and 250 ODEs/250 LPs, respectively, we show that the proposed computational framework allows efficient and robust model solution. CONCLUSIONS Our study establishes a new paradigm for formulating and solving genome-scale metabolic models with both time and spatial variations and has wide applicability to natural and engineered microbial systems.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
44 |
23
|
Cheng CS, Davis BNJ, Madden L, Bursac N, Truskey GA. Physiology and metabolism of tissue-engineered skeletal muscle. Exp Biol Med (Maywood) 2014; 239:1203-14. [PMID: 24912506 DOI: 10.1177/1535370214538589] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle is a major target for tissue engineering, given its relative size in the body, fraction of cardiac output that passes through muscle beds, as well as its key role in energy metabolism and diabetes, and the need for therapies for muscle diseases such as muscular dystrophy and sarcopenia. To date, most studies with tissue-engineered skeletal muscle have utilized murine and rat cell sources. On the other hand, successful engineering of functional human muscle would enable different applications including improved methods for preclinical testing of drugs and therapies. Some of the requirements for engineering functional skeletal muscle include expression of adult forms of muscle proteins, comparable contractile forces to those produced by native muscle, and physiological force-length and force-frequency relations. This review discusses the various strategies and challenges associated with these requirements, specific applications with cultured human myoblasts, and future directions.
Collapse
|
Review |
11 |
44 |
24
|
Dahan N, Sarig U, Bronshtein T, Baruch L, Karram T, Hoffman A, Machluf M. Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study. Tissue Eng Part A 2016; 23:69-79. [PMID: 27784199 PMCID: PMC5240014 DOI: 10.1089/ten.tea.2016.0126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Effective cellularization is a key approach to prevent small-caliber (<4 mm) tissue-engineered vascular graft (TEVG) failure and maintain patency and contractility following implantation. To achieve this goal, however, improved biomimicking designs and/or relatively long production times (typically several months) are required. We previously reported on porcine carotid artery decellularization yielding biomechanically stable and cell supportive small-caliber (3–4 mm diameter, 5 cm long) arterial extracellular matrix (scaECM) vascular grafts. In this study, we aimed to study the scaECM graft patency in vivo and possibly improve that patency by graft pre-endothelialization with the recipient porcine autologous cells using our previously reported custom-designed dynamic perfusion bioreactor system. Decellularized scaECM vascular grafts were histologically characterized, their immunoreactivity studied in vitro, and their biocompatibility profile evaluated as a xenograft subcutaneous implantation in a mouse model. To study the scaECM cell support and remodeling ability, pig autologous endothelial and smooth muscle cells (SMCs) were seeded and dynamically cultivated within the scaECM lumen and externa/media, respectively. Finally, endothelialized-only scaECMs—hypothesized as a prerequisite for maintaining graft patency and controlling intimal hyperplasia—were transplanted as an interposition carotid artery graft in a porcine model. Graft patency was evaluated through angiography online and endpoint pathological assessment for up to 6 weeks. Our results demonstrate the scaECM-TEVG biocompatibility preserving a structurally and mechanically stable vascular wall not just following decellularization and recellularization but also after implantation. Using our dynamic perfusion bioreactor, we successfully demonstrated the ability of this TEVG to support in vitro recellularization and remodeling by primary autologous endothelial and SMCs, which were seeded on the lumen and the externa/media layers, respectively. Following transplantation, dynamically endothelialized scaECM-TEVGs remained patent for 6 weeks in a pig carotid interposition bypass model. When compared with nonrevitalized control grafts, reendothelialized grafts provided excellent antithrombogenic activity, inhibited intimal hyperplasia formation, and encouraged media wall infiltration and reorganization with recruited host SMCs. We thus demonstrate that readily available decellularized scaECM can be promptly revitalized with autologous cells in a 3-week period before implantation, indicating applicability as a future platform for vascular reconstructive procedures.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
42 |
25
|
Yan X, Zhang K, Yang Y, Deng D, Lyu C, Xu H, Liu W, Du Y. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Tissue Eng Part C Methods 2020; 26:263-275. [PMID: 32268824 DOI: 10.1089/ten.tec.2020.0039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) have wide applications in regenerative medicine but their clinical translation is largely hindered by limited production capacity of current cell expansion regime. This study utilizes a novel dispersible and dissolvable porous microcarrier tablet, 3D TableTrix™, in stirred bioreactor to demonstrate a scalable expansion protocol for industrial manufacturing of hMSCs. The 3D TableTrix is a ready-to-use tablet that disperses into 10s of 1000s porous microcarriers upon contact with culture media, eliminating the need to prepare microcarriers before cell seeding, hence simplifying operation process. We demonstrate over 500 times expansion of adipose-derived hMSCs using serum-free culture medium in 11 days with bead-to-bead transfer for a partial scale-up from laboratory-scale spinner flasks to a 1-L bioreactor system. A final yield of 1.05 ± 0.11 × 109 hMSCs was achieved, and yield of over 3 × 109 with an overall expansion factor of 1530 could theoretically be realized with full scale-up. Cells were harvested by dissolving microcarriers with 98.6% ± 0.1% recovery rate. Cells retained their immunophenotypic characteristics, trilineage differentiation potential, and genome stability with low indications of senescence phenotype. This study illuminates the potential of industrializing clinical-grade hMSC production using 3D TableTrix microcarrier tablets and stirred tank bioreactors. Impact statement The 3D TableTrix™ is a newly available microcarrier ingeniously designed as dispersible and dissolvable porous microcarrier tablets for human mesenchymal stem cell (hMSC) expansion. This eliminates the need of tedious preparation work usually required for microcarriers and its dissolvable nature allows for high cell recovery rate of 98.6% ± 0.1%. Over 500 times expansion of adipose-derived mesenchymal stem cells in serum-free culture media using a 1-L bioreactor system demonstrates its tremendous potential for industrial production of hMSCs.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
41 |