Park SJ, Jung YH, Kim YG, Park HJ. Identification of novel ligands for the RNA pseudoknot that regulate -1 ribosomal frameshifting.
Bioorg Med Chem 2008;
16:4676-84. [PMID:
18321712 PMCID:
PMC7125880 DOI:
10.1016/j.bmc.2008.02.025]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 11/24/2022]
Abstract
In many viruses, -1 ribosomal frameshifting (-1RF) regulates synthesis of proteins and is crucial for virus production. An RNA pseudoknot is one of the essential components of the viral -1RF system. Thermodynamic or kinetic control of pseudoknot folding may be important in regulating the efficiency of -1RF. Thus, small molecules that interact with viral RNA pseudoknots may disrupt the -1RF system and show antiviral activity. In this study, we conducted virtual screening of a chemical database targeting the X-ray crystal structure of RNA pseudoknot complexed with biotin to identify ligands that may regulate an -1RF system containing biotin-aptamer as an RNA pseudoknot component. After docking screening of about 80,000 compounds, 58 high-ranked hits were selected and their activities were examined by in vitro and cell-based -1 frameshifting assays. Six compounds increased the efficiency of -1 frameshifting, and these are novel small molecule compounds that regulate the -1RF.
Collapse