1
|
Souter I, Smith KW, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, Hauser R. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod Toxicol 2013; 42:224-31. [PMID: 24100206 DOI: 10.1016/j.reprotox.2013.09.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
In this prospective cohort of women undergoing infertility treatments, we measured specific-gravity adjusted urinary BPA (SG-BPA) concentrations and used regression models to evaluate the association of BPA with antral follicle count (AFC), day-3 serum follicle stimulating hormone levels (FSH), and ovarian volume (OV). BPA, detected in >80% of women, had a geometric mean (±GSD) of 1.6±2.0, 1.7±2.1, and 1.5±1.8μg/L for the women contributing to the AFC (n=154), day-3 FSH (n=120), and OV (n=114) analyses, respectively. There was an average decrease in AFC of 12% (95% CI: -23%, -0.6%), 22% (95% CI: -31%, -11%), and 17% (95% CI: -27%, -6%), in the 2nd, 3rd, and 4th SG-BPA quartile compared to the 1st quartile, respectively (p-trend: <0.001). No association of SG-BPA with FSH or OV was observed. Among women from an infertility clinic, higher urinary BPA concentrations were associated with lower AFC, raising concern for possible accelerated follicle loss and reproductive aging.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
115 |
2
|
Machtinger R, Combelles CM, Missmer SA, Correia KF, Williams P, Hauser R, Racowsky C. Bisphenol-A and human oocyte maturation in vitro. Hum Reprod 2013; 28:2735-45. [PMID: 23904465 PMCID: PMC3777571 DOI: 10.1093/humrep/det312] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/26/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Does exposure to bisphenol-A (BPA) affect the maturation of human oocytes in vitro? SUMMARY ANSWER There was a dose-response association of BPA exposure with altered human oocyte maturation in vitro. WHAT IS KNOWN ALREADY There is widespread exposure of the general population to BPA. BPA has been detected in the human follicular fluid. Animal studies have shown that BPA exposure is associated with maturation arrest and spindle abnormalities in maturing oocytes. STUDY DESIGN, SIZE, DURATION A randomized trial, using 352 clinically discarded oocytes from 121 patients. PARTICIPANTS/MATERIALS, SETTING, METHODS The study population was drawn from patients undergoing IVF/ICSI cycles in our program at Brigham and Women's Hospital from March 2011 to April 2012. Oocytes from only one cycle for each patient were included in the study. Cycles with at least two germinal vesicle stage oocytes were included with random allocation of one oocyte to culture for 30 h without BPA and remaining sibling oocytes to medium-containing BPA (20, 200 ng/ml or 20 µg/ml). Oocytes were fixed and labeled for tubulin, actin and chromatin and examined with immunofluorescence and confocal microscopy. Oocytes were assessed for meiotic stage (n = 292), and those at metaphase II (MII, n = 175) were further classified according to their spindle configurations and patterns of chromosome alignment. McNemar's test was used to compare dichotomized maturation status. Generalized estimating equations were used to account for the correlation between oocytes from the same woman and for the spindle analysis. MAIN RESULTS AND THE ROLE OF CHANCE As the BPA dose increased, there was a decrease in the percentage of oocytes that progressed to MII (P = 0.002) and increases in the percentage of oocytes that were degenerated (P = 0.01) or that had undergone spontaneous activation (P = 0.007). Among MII oocytes, as the BPA dose increased, there was a significant trend (by test for trend) for a decreased incidence of bipolar spindles (P < 0.0001) and aligned chromosomes (P = 0.02). LIMITATIONS, REASONS FOR CAUTION Although we used sibling oocytes to overcome potential confounders, such as infertility diagnosis and maternal age, additional studies with a larger number of oocytes are required to confirm the present results. Having access only to clinically discarded oocytes, we were limited to evaluating only those oocytes that failed to mature in vivo despite having been exposed to gonadotrophin stimulation and the ovulatory trigger of HCG. WIDER IMPLICATIONS OF THE FINDINGS To our knowledge, this is the first study investigating the effect of BPA on oocyte meiotic maturation, spindle morphology and chromosome alignment in human oocytes. Together with prior animal studies, the data support the negative influences of BPA on cell cycle progression, spindle architecture and chromosome organization during oocyte maturation. Furthermore, the increased rates of abnormal maturation in oocytes exposed to BPA may be relevant to our understanding of the decrease in fertility reported in the last decades. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the NIEHS Center Grant Pilot Project (P30-ES000002). R.M. was sponsored by a fellowship from the Environmental Health Fund, Israel and by the Frederick L. Hisaw Endowment, Harvard School of Public Health. There are no conflicts of interest. TRIAL REGISTRATION NUMBER n/a.
Collapse
|
Randomized Controlled Trial |
12 |
95 |
3
|
Zhang T, Li L, Qin XS, Zhou Y, Zhang XF, Wang LQ, De Felici M, Chen H, Qin GQ, Shen W. Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:343-353. [PMID: 24458533 DOI: 10.1002/em.21847] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Bisphenol-A (BPA) and diethylhexyl phthalate (DEHP) are estrogenic compounds widely used in commercial plastic products. Previous studies have shown that exposure to such compounds have adverse effects on various aspects of mammalian reproduction including folliculogenesis. The objective of this study was to examine the effects of BPA and DEHP exposure on primordial follicle formation. We found that germ cell nest breakdown and primordial follicle assembly were significantly reduced when newborn mouse ovaries were exposed to 10 or 100 μM BPA and DEHP in vitro. Moreover, BPA and DEHP exposure increased the number of TUNEL positive oocytes and the mRNA level of the pro-apoptotic gene Bax in oocytes. These effects were associated with decreased expression of oocyte specific genes such as LIM homeobox 8 (Lhx8), factor in the germline alpha (Figla), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and newborn ovary homeobox (Nobox). Interestingly, BPA and DEHP exposure also prevented DNA demethylation of CpG sites of the Lhx8 gene in oocytes, a process normally associated with folliculogenesis. Finally, folliculogenesis was severely impaired in BPA and DEHP exposed ovaries after transplantation into the kidney capsules of immunodeficient mice. In conclusion, BPA and DEHP exposures impair mouse primordial follicle assembly in vitro.
Collapse
|
|
11 |
90 |
4
|
Huo X, Chen D, He Y, Zhu W, Zhou W, Zhang J. Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11101-16. [PMID: 26371021 PMCID: PMC4586663 DOI: 10.3390/ijerph120911101] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Background: Bisphenol-A (BPA) is widely used and ubiquitous in the environment. Animal studies indicate that BPA affects reproduction, however, the gene-environment interaction mechanism(s) involved in this association remains unclear. We performed a literature review to summarize the evidence on this topic. Methods: A comprehensive search was conducted in PubMed using as keywords BPA, gene, infertility and female reproduction. Full-text articles in both human and animals published in English prior to December 2014 were selected. Results: Evidence shows that BPA can interfere with endocrine function of hypothalamic-pituitary axis, such as by changing gonadotropin-releasing hormones (GnRH) secretion in hypothalamus and promoting pituitary proliferation. Such actions affect puberty, ovulation and may even result in infertility. Ovary, uterus and other reproductive organs are also targets of BPA. BPA exposure impairs the structure and functions of female reproductive system in different times of life cycle and may contribute to infertility. Both epidemiological and experimental evidences demonstrate that BPA affects reproduction-related gene expression and epigenetic modification that are closely associated with infertility. The detrimental effects on reproduction may be lifelong and transgenerational. Conclusions: Evidence on gene-environment interactions, especially from human studies, is still limited. Further research on this topic is warranted.
Collapse
|
Review |
10 |
73 |
5
|
van der Meer TP, Artacho-Cordón F, Swaab DF, Struik D, Makris KC, Wolffenbuttel BHR, Frederiksen H, van Vliet-Ostaptchouk JV. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14091059. [PMID: 28902174 PMCID: PMC5615596 DOI: 10.3390/ijerph14091059] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain regions: the hypothalamus and white-matter tissue. In addition, a potential association between these npEDCs concentrations and obesity was investigated. Post-mortem brain material was obtained from 24 individuals, made up of 12 obese and 12 normal-weight subjects (defined as body mass index (BMI) > 30 and BMI < 25 kg/m², respectively). Nine phenols and seven parabens were measured by isotope dilution TurboFlow-LC-MS/MS. In the hypothalamus, seven suspect npEDCs (bisphenol A, triclosan, triclocarban and methyl-, ethyl-, n-propyl-, and benzyl paraben) were detected, while five npEDCs (bisphenol A, benzophenone-3, triclocarban, methyl-, and n-propyl paraben) were found in the white-matter brain tissue. We observed higher levels of methylparaben (MeP) in the hypothalamic tissue of obese subjects as compared to controls (p = 0.008). Our findings indicate that some suspected npEDCs are able to cross the blood-brain barrier. Whether the presence of npEDCs can adversely affect brain function and to which extent the detected concentrations are physiologically relevant needs to be further investigated.
Collapse
|
Journal Article |
8 |
59 |
6
|
Alonso-Magdalena P, Quesada I, Nadal Á. Prenatal Exposure to BPA and Offspring Outcomes: The Diabesogenic Behavior of BPA. Dose Response 2015; 13:1559325815590395. [PMID: 26676280 PMCID: PMC4674176 DOI: 10.1177/1559325815590395] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are the most common metabolic disorders, with prevalence rates that are reaching epidemic proportions. Both are complex conditions affecting virtually all ages and with serious health consequences. The underlying cause of the problem is still puzzling, but both genetic and environmental factors including unhealthy diet, sedentary lifestyle, or the exposure to some environmental endocrine disrupting chemicals (EDCs) are thought to have a causal influence. In addition, the impact of early environment has recently emerged as an important factor responsible for the increased propensity to develop adult-onset metabolic disease. Suboptimal maternal nutrition during critical windows in fetal development is the most commonly studied factor affecting early programming of obesity and T2DM. In recent years, increasing experimental evidence shows that exposure to EDCs could also account for this phenomenon. In the present review, we will overview the most relevant findings that confirm the critical role of bisphenol-A, one of the most widespread EDCs, in the development of metabolic disorders.
Collapse
|
Review |
10 |
51 |
7
|
Oz F, Seyyar E. Formation of Heterocyclic Aromatic Amines and Migration Level of Bisphenol-A in Sous-Vide-Cooked Trout Fillets at Different Cooking Temperatures and Cooking Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3070-3082. [PMID: 27029998 DOI: 10.1021/acs.jafc.5b05716] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of different cooking temperatures (65, 75, and 85 °C) and cooking levels (medium and well) on some quality properties, the formation of heterocyclic aromatic amines (HCAs), and the migration level of bisphenol-A (BPA) in trout fillets cooked by sous-vide were investigated. As a result, as expected, cooking caused a reduction in water content of the samples, whereas pH, TBARS, L*, and b* values increased. Cooking loss values ranged between 14.78 and 20.51%. Whereas IQ, MeIQ, 7,8-DiMeIQx, 4,8-DiMeIQx, PhIP, AαC and MeAαC could not be detected in the analyzed samples, varying levels of IQx (up to 0.16 ng/g) and MeIQx (up to 5.66 ng/g) were detected. It was determined that total HCA amounts ranged between 1.28 and 5.75 ng/g, and all or a big part of the total HCAs belonged to MeIQx. In addition, the migration level of BPA in sous-vide-cooked samples ranged between 4.93 and 27.11 ng/g.
Collapse
|
|
9 |
51 |
8
|
Wang C, Fu W, Quan C, Yan M, Liu C, Qi S, Yang K. The role of Pten/Akt signaling pathway involved in BPA-induced apoptosis of rat Sertoli cells. ENVIRONMENTAL TOXICOLOGY 2015; 30:793-802. [PMID: 24464975 DOI: 10.1002/tox.21958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/24/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Bisphenol-A (BPA), one of endocrine-disrupting chemicals, is a male reproductive toxicant. Previous studies have revealed the direct cytotoxicity of BPA in many cultured cells, such as mitotic aneuploidy in embryonic cells and somatic cells, and apoptosis in neurons and testicular Sertoli cells. To understand the action of BPA and assess its risk, the Pten/Akt pathway was investigated in cultured Sertoli cells to elucidate the mechanism of the reproductive effects of BPA. The results showed that over 50 μM BPA treatment could decrease the viability of Sertoli cells and cause more apoptosis. In addition, BPA could induce the increase in mRNA levels of Pten and Akt. The protein level of Pten was increased; however, the protein levels of phospho-Akt and procaspase-3 were decreased after BPA exposure. Taken together, observed results suggested that the Pten/Akt pathway might be involved in the apoptotic effects of BPA on Sertoli cells.
Collapse
|
|
10 |
37 |
9
|
Kim EJ, Lee D, Chung BC, Pyo H, Lee J. Association between urinary levels of bisphenol-A and estrogen metabolism in Korean adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1401-7. [PMID: 23954212 DOI: 10.1016/j.scitotenv.2013.07.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/21/2013] [Accepted: 07/12/2013] [Indexed: 05/26/2023]
Abstract
Bisphenol-A (BPA) possesses estrogenic properties both in vitro and in vivo as an endocrine disrupting chemical. Humans experience a long-term and cumulative exposure to BPA. BPA was detectable in 97.3% of 1904 urine specimens from Korean adults. We investigated urinary estrogen concentrations in subjects with low and high BPA concentrations and its possible association with estrogen metabolism. Urine samples were collected from a high BPA concentration group (BPA-H; n=100, 11.05 ± 20.47 μg/g creatinine) and a low BPA concentration group (BPA-L; n=100, 0.70 ± 0.22 μg/g creatinine) from Korea Biomonitoring Program of Hazardous Materials Survey 2009-2010. Urinary estrogens were enzymatically hydrolyzed, extracted, and then derivatized for quantitative analysis by gas chromatography-mass spectrometry. Estrogen levels were higher in the BPA-H group than in the BPA-L group. Concentrations of estrone, 17β-estradiol, and their hydroxylated metabolites in both men and women were significantly higher in the BPA-H group than in the BPA-L group (p<0.04). Furthermore, in the BPA-H group, estrogen metabolism to 4-hydroxy-estrone and 4-hydroxy-17β-estradiol was more active than that to 2-hydroxy-estrone and 2-hydroxy-17β-estradiol. Although single measurement and/or single spot urine samples limit the measurement of long-term exposure to BPA, we found significant differences of estrogen metabolism in the BPA-H and the BPA-L groups. The increase of hydroxyestrogens, especially 4-hydroxyestrogens, can be an important factor resulting negative effects of prolonged exposure to BPA.
Collapse
|
|
11 |
36 |
10
|
Wang C, Qi S, Liu C, Yang A, Fu W, Quan C, Duan P, Yu T, Yang K. Mitochondrial Dysfunction and Ca 2+ Overload in Injured Sertoli Cells Exposed to Bisphenol A. ENVIRONMENTAL TOXICOLOGY 2017; 32:823-831. [PMID: 27189055 DOI: 10.1002/tox.22282] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 04/08/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Bisphenol-A (BPA) is well known as one of endocrine-disrupting chemicals and testicular toxicant. In this present study, we determined whether BPA caused cell injury through mitochondria impairment and ROS overproduction. The cellular ROS production, mitochondrial ATP synthetase activity and Ca2+ concentration were examined. We have found BPA caused the cellular mitochondria dysfunction and followed by cell death in Sertoli cells. Moreover cytoplasm Ca2+ overload was also involved. Furthermore, pretreatment with N-acetyl-L-cysteine (NAC) could alleviate the damage by causing a remarkable decrease in ROS production and mitochondrial dysfunction. Collectively, our results showed that BPA exposure induced Sertoli cell apoptosis because of excessive ROS generation and mitochondrial dysfunction. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 823-831, 2017.
Collapse
|
|
8 |
32 |
11
|
İnce T, Balcı A, Yalçın SS, Özkemahlı G, Erkekoglu P, Kocer-Gumusel B, Yurdakök K. Urinary bisphenol-A levels in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2018; 31:829-836. [PMID: 29975667 DOI: 10.1515/jpem-2018-0141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bisphenol-A (BPA) is one of the most abundantly produced chemicals globally. Concerns have been raised about BPA's possible role in the pathogenesis of type 1 diabetes mellitus (T1DM). The main aim of the current study was to evaluate the possible association between BPA exposure and T1DM. The second aim was to investigate children's possible BPA exposure routes in Turkey. METHODS A total of 100 children aged between 5 and 18 years including 50 children with T1DM and 50 healthy children were included. Urinary BPA levels of all children were measured using high-performance liquid chromatography. Mothers of children enrolled in the study were also requested to complete a survey that included questions on the sociodemographic characteristics, medical history and possible BPA exposure routes of their children. RESULTS In the T1DM group, urinary BPA levels were slightly higher compared to the control group, but this difference was not significant (p=0.510). However, there was an inverse relationship between current urinary BPA levels and birth weight. It was found that the use of plastic kettles and the consumption of dairy products in plastic boxes significantly increased the urinary BPA concentrations in all subjects. CONCLUSIONS Although there was no significant association between urinary BPA levels and T1DM, we found an inverse relationship between current urinary BPA levels and birth weight. This finding might be important for prenatal exposure, and further prospective research must be conducted. Also, the use of plastic kettles, which has not been mentioned much in the literature before, was found to be an important exposure route for BPA.
Collapse
|
|
7 |
28 |
12
|
Beydoun HA, Beydoun MA, Jeng HA, Zonderman AB, Eid SM. Bisphenol-A and Sleep Adequacy among Adults in the National Health and Nutrition Examination Surveys. Sleep 2016; 39:467-76. [PMID: 26446109 DOI: 10.5665/sleep.5466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES To evaluate bisphenol-A (BPA) level and its relationship to sleep adequacy in a nationally representative sample of U.S. adults. METHODS A population-based cross-sectional study was conducted using 2005-2010 National Health and Nutrition Examination Survey whereby data were collected using in-person interviews, physical examination and laboratory testing. BPA level was measured in urine samples and analyzed as loge-transformed variable and in quartiles (< 0.9 ng/mL; 0.9 to < 1.9 ng/mL; 1.9 to < 3.7 ng/mL; 3.7+ ng/mL). Sleep adequacy was operationalized with three questions: "How much sleep do you usually get at night on weekdays or workdays?", "Have you ever told a doctor or other health professionals that you have trouble sleeping?" and "Have you ever been told by a doctor or other health professional that you have a sleep disorder?" Sleep duration was further categorized as (< 6 h, ≥ 6 h); (< 7 h, 7-8 h, > 8 h); (< 5 h, 5-6 h, 7-8 h, ≥ 9 h). Linear, binary, and ordinal logistic regression models were constructed. RESULTS Loge-transformed BPA level was inversely related to sleep duration defined, in hours, as a continuous variable, a dichotomous variable (≥ 6, < 6), or an ordinal variable (≥ 9, 7-8, 5-6, < 5), after adjustment for confounders. Help-seeking behavior for sleep problems and diagnosis with sleep disorders were not significantly associated with loge-transformed BPA level in fully adjusted models. CONCLUSIONS Loge-transformed BPA level may be associated with fewer hours of sleep among U.S. adults, with implications for prevention. Further research involving diverse populations are needed to confirm these study findings.
Collapse
|
Research Support, N.I.H., Intramural |
9 |
24 |
13
|
Bisconti M, Simon JF, Grassi S, Leroy B, Martinet B, Arcolia V, Isachenko V, Hennebert E. Influence of Risk Factors for Male Infertility on Sperm Protein Composition. Int J Mol Sci 2021; 22:13164. [PMID: 34884971 PMCID: PMC8658491 DOI: 10.3390/ijms222313164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a common health problem that can be influenced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. These effects have been largely demonstrated on sperm parameters (e.g., motility, numeration, vitality, DNA integrity). In addition, several studies showed the deregulation of sperm proteins in relation to some of these factors. This review inventories the literature related to the identification of sperm proteins showing abundance variations in response to the four risk factors for male infertility that are the most investigated in this context: obesity, diabetes, tobacco smoking, and exposure to bisphenol-A (BPA). First, we provide an overview of the techniques used to identify deregulated proteins. Then, we summarise the main results obtained in the different studies and provide a compiled list of deregulated proteins in relation to each risk factor. Gene ontology analysis of these deregulated proteins shows that oxidative stress and immune and inflammatory responses are common mechanisms involved in sperm alterations encountered in relation to the risk factors.
Collapse
|
Review |
4 |
21 |
14
|
Iliadi A, Koletsi D, Papageorgiou SN, Eliades T. Safety Considerations for Thermoplastic-Type Appliances Used as Orthodontic Aligners or Retainers. A Systematic Review and Meta-Analysis of Clinical and In-Vitro Research. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1843. [PMID: 32295303 PMCID: PMC7215465 DOI: 10.3390/ma13081843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022]
Abstract
Use of thermoplastic material in orthodontics, either as aligner or as retainer appliances, is common practice and is likely to increase in the years to come. However, no systematic assessment on safety considerations of these adjuncts has been implemented up to date. The aim of this systematic review was to collectively appraise the existing evidence from both clinical and laboratory studies, on whether these appliances are associated with any estrogenic/cytotoxic effects or bisphenol-A (BPA) and monomer leaching. Eight electronic databases were searched with no limits in December 22, 2019, for published and unpublished research. Eligibility criteria comprised of studies of any design, describing use of any type of thermoplastic aligner. Study selection, data extraction and risk of bias (RoB) assessment was done independently, either in duplicate or confirmed by a second reviewer. Random effects meta-analyses of weighted mean differences (WMD) with associated 95% Confidence Intervals (CIs) were planned. Quality of the evidence was evaluated with Grading of Recommendations Assessment, Development and Evaluation (GRADE). A total of 58 articles were initially identified, while 5 were included in qualitative synthesis and 2 of those contributed to the quantitative syntheses. Four studies were in-vitro, while one was a randomized controlled trial; all assessed some type of orthodontic aligner or retainer, either as-received or retrieved. Risk of bias recordings ranged between unclear and high for all studies. Proliferation induction capacity of thermoplastic appliances' eluents on MCF-7 cells failed to be confirmed compared to beta-estradiol (2 studies: 5% v/v, WMD: -182.08; 95% CI: -198.83, -165.33; p-value < 0.001; and 20% v/v, WMD: -184.53; 95% CI: -206.17, -162.88; p-value < 0.001). No cytotoxic activity was detected as well. In addition, although evidence from in-vitro studies was indicative of no traceable detection of BPA or other monomers, the findings from a single clinical trial were allied to increased levels of BPA in whole stimulated saliva, after up to 30 days of thermoplastic retainer usage, compared to standard Hawley retainer. The quality of the evidence overall was low to medium. Current data from in-vitro research are indicative of an absence of an estrogenic or cytotoxic effect of thermoplastic aligners or retainers. Regarding BPA or monomer release, evidence from clinical and laboratory studies appear inconsistent.
Collapse
|
Review |
5 |
20 |
15
|
Lu IC, Chao HR, Mansor WNW, Peng CW, Hsu YC, Yu TY, Chang WH, Fu LM. Levels of Phthalates, Bisphenol-A, Nonylphenol, and Microplastics in Fish in the Estuaries of Northern Taiwan and the Impact on Human Health. TOXICS 2021; 9:toxics9100246. [PMID: 34678942 PMCID: PMC8540681 DOI: 10.3390/toxics9100246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Due to the sparsity in knowledge, we investigated the presence of various estrogenic endocrine-disrupting chemicals (EEDCs), including phthalates (PAEs), bisphenol-A (BPA), and nonylphenol (NP), as well as microplastics (MPs) in samples of the most widely consumed fish collected from different estuaries in northern Taiwan. We then proceeded to determine the likely contribution that this exposure has on the potential for health impacts in humans following consumption of the fish. Six hundred fish caught from five river estuaries (producing 130 pooled samples) were analyzed to determine how different factors (such as the river, benthic, pelagic, and migratory species) influence EEDCs’ contamination and the possible impacts on human health following typical consumption patterns. The predominant EEDCs was diethyl phthalates (DEP), bis (2-ethylhexyl) phthalates (DEHP), and di-iso-nonylphthalate (DINP) in fish, present at 52.9 ± 77.3, 45.3 ± 79.8, and 42.5 ± 79.3 ng/g dry weight (d.w.), respectively. Residual levels of NP, BPA, and MPs in the fish were 17.4 ± 29.1 and 1.50 ± 2.20 ng/g d.w. and 0.185 ± 0.338 mg/g d.w., respectively. EEDCs and MPs levels varied widely among the five river estuaries sampled due, in part, to differences in habitat types and the associated diversity of fish species sampled. For DEP, the Lao-Jie River and pelagic environments produced the most severely contaminated fish species, respectively. DEP residues were also associated with the burden of MPs in the fish. Based on our analysis, we predict no substantial direct human health risk by EEDCs based on typical consumption rates of estuarine fish by the Taiwanese people. However, other sources of EEDC exposure cannot be ignored.
Collapse
|
|
4 |
19 |
16
|
Behavior of phenols and phenoxyacids on a bisphenol-A imprinted polymer. Application for selective solid-phase extraction from water and urine samples. Int J Mol Sci 2011; 12:3322-39. [PMID: 21686187 PMCID: PMC3116193 DOI: 10.3390/ijms12053322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/08/2011] [Accepted: 05/10/2011] [Indexed: 11/23/2022] Open
Abstract
A molecularly imprinted polymer (MIP), obtained by precipitation polymerisation with 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as cross-linker, and bisphenol-A (BPA) as template, was prepared. The binding site configuration of the BPA-MIP was examined using Scatchard analysis. Moreover, the behaviour of the BPA-MIP for the extraction of several phenolic compounds (bisphenol-A, bisphenol-F, 4-nitrophenol, 3-methyl-4-nitrophenol) and phenoxyacid herbicides such as 2,4-D, 2,4,5-T and 2,4,5-TP has been studied in organic and aqueous media in the presence of other pesticides in common use. It was possible to carry out the selective preconcentration of the target analytes from the organic medium with recoveries of higher than 70%. In an aqueous medium, hydrophobic interactions were found to exert a remarkably non-specific contribution to the overall binding process. Several parameters affecting the extraction efficiency of the BPA-MIP were evaluated to achieve the selective preconcentration of phenols and phenoxyacids from aqueous samples. The possibility of using the BPA-MIP as a selective sorbent to preconcentrate these compounds from other samples such as urine and river water was also explored.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
19 |
17
|
Güleş Ö, Kum Ş, Yıldız M, Boyacıoğlu M, Ahmad E, Naseer Z, Eren Ü. Protective effect of coenzyme Q10 against bisphenol-A-induced toxicity in the rat testes. Toxicol Ind Health 2020; 35:466-481. [PMID: 31364507 DOI: 10.1177/0748233719862475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study was conducted to investigate the antioxidant, histomorphometric, histochemical, immunohistochemical, biochemical, and cytological effects of coenzyme Q10 (CoQ10) against bisphenol-A (BPA)-induced testicular toxicity in rats. A total of 40 adult male Wistar rats were divided into five equal groups. The control group remained untreated. The vehicle control group was administered corn oil (2 ml/kg/day), the BPA group was given BPA (100 mg/kg/day), the CoQ10 group was supplemented with CoQ10 (10 mg/kg/day), and the rats in the CoQ10-BPA group received CoQ10 (10 mg/kg/day) followed by BPA (100 mg/kg/day) 1 h later. The treatments were administered by oral gavage for 14 days. Results showed that the seminiferous tubule diameters (STDs) and seminiferous epithelium heights (SEHs) at stages VII-VIII and XII-XIV, number of undifferentiated embryonic cell transcription factor-1 (UTF-1) positive cells per tubule, UTF-1 positive tubules (%), plasma glutathione (GSH), and serum superoxide dismutase activities, testicular GSH activity and sperm viability (%) decreased whereas the number of terminal dUTP nick end labeling (TUNEL) positive cells per tubule, TUNEL positive tubules (%), testicular and serum malondialdehyde (MDA) levels, and the rate of mid-piece sperm abnormality increased in the BPA administered group. However, while the STDs at stages VII-VIII and XII-XIV, SEHs at stages VII-VIII, plasma GSH, and serum SOD activities increased, serum MDA level decreased in the CoQ10-BPA group. In conclusion, these results suggest a protective effect of CoQ10 against BPA-induced testicular toxicity in rats.
Collapse
|
Journal Article |
5 |
16 |
18
|
Arita Y, Park HJ, Cantillon A, Getahun D, Menon R, Peltier MR. Effect of bisphenol-A (BPA) on placental biomarkers for inflammation, neurodevelopment and oxidative stress. J Perinat Med 2019; 47:741-749. [PMID: 31339859 DOI: 10.1515/jpm-2019-0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Background Bisphenol-A (BPA) is a widespread pollutant whose effects on pregnant women are poorly understood. Therefore, we investigated the effects of BPA on basal and bacteria-stimulated production of proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6], anti-inflammatory mediators [soluble glycoprotein 130 (sgp) 130, heme oxidase-1 (HO-1) and IL-10] and biomarkers for neurodevelopment [brain-derived neurotrophic factor (BDNF)], and oxidative stress [8-isoprostane (8-IsoP)] by the placenta. Methods Placental explant cultures were treated with BPA (0-10,000 nM) in the presence or absence of 107 colony-forming unit (CFU)/mL heat-killed Escherichia coli for 24 h. Biomarker concentrations in conditioned medium were quantified by the enzyme-linked immunosorbent assay (ELISA). Results Under basal conditions, IL-1β and IL-6 production was enhanced by BPA in a dose-dependent manner. Sgp130, a soluble receptor that reduces IL-6 bioactivity, was suppressed by BPA at 1000-10,000 nM. BPA also enhanced BDNF production at 1000 and 10,000 nM, and 8-IsoP expression at 10 and 100 nM. For bacteria-treated cultures, BPA increased IL-6 production at 100 nM and reduced sgp130 at 1000 nM but had no effect on IL-1β, TNF-α, BDNF, HO-1, 8-IsoP or IL-10 production. Conclusion BPA may increase placental inflammation by promoting IL-1β and IL-6 but inhibiting sgp130. It may also disrupt oxidative balance and neurodevelopment by increasing 8-IsoP and BDNF production.
Collapse
|
|
6 |
15 |
19
|
Stavridis K, Triantafyllidou O, Pisimisi M, Vlahos N. Bisphenol-A and Female Fertility: An Update of Existing Epidemiological Studies. J Clin Med 2022; 11:jcm11237227. [PMID: 36498800 PMCID: PMC9736436 DOI: 10.3390/jcm11237227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Humans interfere with a variety of endocrine disruptors on a daily basis, which may result in adverse health effects. Among them, Bisphenol-A (BPA) is the most debated endocrine disruptor, despite being widely studied, regarding its effects on fertility. The aim of this review was to investigate the interrelation of BPA and female fertility. PubMed (Medline) was searched from 2013 until 2022 to identify epidemiological studies that report the association of BPA with fertility parameters, in vitro fertilization (IVF) outcomes, polycystic ovarian syndrome (PCOS) and endometriosis. Regarding general fertility, most studies report an inverse association between BPA and ovarian reserve markers, namely antral follicle count (AFC) and anti-Müllerian hormone (AMH). The BPA and estradiol (E2) levels did not correlate significantly in the majority of studies. No definite conclusions can be reached regarding BPA and IVF endpoints or endometriosis. Lastly, most studies report higher prevalence of PCOS in women with higher BPA concentrations, although no casualty has been proven. Although most studies fail to reach definite conclusion regarding the impact of BPA on fertility, there is accumulating evidence suggesting a negative role of BPA in female reproductive health.
Collapse
|
review-article |
3 |
14 |
20
|
Sèdes L, Desdoits-Lethimonier C, Rouaisnel B, Holota H, Thirouard L, Lesne L, Damon-Soubeyrand C, Martinot E, Saru JP, Mazaud-Guittot S, Caira F, Beaudoin C, Jégou B, Volle DH. Crosstalk between BPA and FXRα Signaling Pathways Lead to Alterations of Undifferentiated Germ Cell Homeostasis and Male Fertility Disorders. Stem Cell Reports 2018; 11:944-958. [PMID: 30245210 PMCID: PMC6178796 DOI: 10.1016/j.stemcr.2018.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Several studies have reported an association between the farnesoid X receptor alpha (FXRα) and estrogenic signaling pathways. Fxrα could thus be involved in the reprotoxic effects of endocrine disruptors such as bisphenol-A (BPA). To test this hypothesis, mice were exposed to BPA and/or stigmasterol (S), an FXRα antagonist. Following the exposure to both molecules, wild-type animals showed impaired fertility and lower sperm cell production associated with the alteration of the establishment and maintenance of the undifferentiated germ cell pool. The crosstalk between BPA and FXRα is further supported by the lower impact of BPA in mice genetically ablated for Fxrα and the fact that BPA counteracted the effects of FXRα agonists. These effects might result from the downregulation of Fxrα expression following BPA exposure. BPA and S act additively in human testis. Our data demonstrate that FXRα activity modulates the impact of BPA on male gonads and on undifferentiated germ cell population.
BPA and S exposures synergistically induce male fertility disorders BPA regulates Fxr expression BPA and S act additively in human testis
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
13 |
21
|
Kelly EA, Opanashuk LA, Majewska AK. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex. Front Neuroanat 2014; 8:117. [PMID: 25374513 PMCID: PMC4205826 DOI: 10.3389/fnana.2014.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 01/03/2023] Open
Abstract
Bisphenol-A (BPA) is a monomer used in the production of polycarbonate plastics, epoxies and resins and is present in many common household objects ranging from water bottles, can linings, baby bottles, and dental resins. BPA exposure has been linked to numerous negative health effects throughout the body, although the mechanisms of BPA action on the developing brain are still poorly understood. In this study, we sought to investigate whether low dose BPA exposure during a developmental phase when brain connectivity is being organized can cause long-term deleterious effects on brain function and plasticity that outlast the BPA exposure. Lactating dams were orally exposed to 25 μg/kg/day of BPA (one half the U.S. Environmental Protection Agency's 50 μg/kg/day rodent dose reference) or vehicle alone from postnatal day (P)5 to P21. Pups exposed to BPA in their mother's milk exhibited deficits in activity-dependent plasticity in the visual cortex during the visual critical period (P28). To determine the possible mechanisms underlying BPA action, we used immunohistochemistry to examine histological markers known to impact cortical maturity and developmental plasticity and quantified cortical dendritic spine density, morphology, and dynamics. While we saw no changes in parvalbumin neuron density, myelin basic protein expression or microglial density in BPA-exposed animals, we observed increases in spine density on apical dendrites in cortical layer five neurons but no significant alterations in other morphological parameters. Taken together our results suggest that exposure to very low levels of BPA during a critical period of brain development can have profound consequences for the normal wiring of sensory circuits and their plasticity later in life.
Collapse
|
Journal Article |
11 |
12 |
22
|
Hassan R, Aslam Khan MU, Abdullah AM, Abd Razak SI. A Review on Current Trends of Polymers in Orthodontics: BPA-Free and Smart Materials. Polymers (Basel) 2021; 13:1409. [PMID: 33925332 PMCID: PMC8123702 DOI: 10.3390/polym13091409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials have always established an edge over other classes of materials due to their potential applications in various fields of biomedical engineering. Orthodontics is an emerging field in which polymers have attracted the enormous attention of researchers. In particular, thermoplastic materials have a great future utility in orthodontics, both as aligners and as retainer appliances. In recent years, the use of polycarbonate brackets and base monomers bisphenol A glycerolate dimethacrylate (bis-GMA) has been associated with the potential release of bisphenol A (BPA) in the oral environment. BPA is a toxic compound that acts as an endocrine disruptor that can affect human health. Therefore, there is a continuous search for non-BPA materials with satisfactory mechanical properties and an esthetic appearance as an alternative to polycarbonate brackets and conventional bis-GMA compounds. This study aims to review the recent developments of BPA-free monomers in the application of resin dental composites and adhesives. The most promising polymeric smart materials are also discussed for their relevance to future orthodontic applications.
Collapse
|
Review |
4 |
12 |
23
|
Dominguez GA, Bisesi JH, Kroll KJ, Denslow ND, Sabo-Attwood T. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes. Toxicol Sci 2014; 141:423-31. [PMID: 25061109 DOI: 10.1093/toxsci/kfu145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
11 |
24
|
Campos MS, Galvão ALV, Rodríguez DAO, Biancardi MF, Marques MR, Vilamaior PSL, Santos FCA, Taboga SR. Prepubertal exposure to bisphenol-A induces ERα upregulation and hyperplasia in adult gerbil female prostate. Int J Exp Pathol 2015; 96:188-95. [PMID: 26098999 DOI: 10.1111/iep.12120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 12/16/2022] Open
Abstract
Prostate physiology is highly dependent on oestrogenic and androgenic homeostasis. Interferences in this equilibrium, especially in early periods of life, may disrupt the prostate and increase the susceptibility to the development of diseases with ageing. Taking this into account, and considering the increase of environmental chemicals with endocrine-disrupting potential such as bisphenol-A (BPA), this study aimed to evaluate the prostates of adult female gerbils exposed to BPA and BPA plus testosterone from pubertal to adult periods. Morphological, stereological and chemical analyses revealed that long-term BPA exposure, even in environmental dosages, increases the proliferative status of the prostate, increases the number of ERα-positive stromal cells and elicits the development of prostatic hyperplasia in adult female gerbils. Moreover, we also observed that the association with testosterone did not increase the proliferative status of the gland, which shows that low levels of BPA are enough to cause an oestrogenic disruption of the prostate in young adults. This evidence suggests that this oestrogenic endocrine disruptor may increase the susceptibility to prostatic disorders with ageing.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
11 |
25
|
García-Arévalo M, Lorza-Gil E, Cardoso L, Batista TM, Araujo TR, Ramos LAF, Areas MA, Nadal A, Carneiro EM, Davel AP. Ventricular Fibrosis and Coronary Remodeling Following Short-Term Exposure of Healthy and Malnourished Mice to Bisphenol A. Front Physiol 2021; 12:638506. [PMID: 33912069 PMCID: PMC8072349 DOI: 10.3389/fphys.2021.638506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
Bisphenol-A (BPA) is an endocrine disruptor associated with higher risk of insulin resistance, type 2 diabetes, and cardiovascular diseases especially in susceptible populations. Because malnutrition is a nutritional disorder associated with high cardiovascular risk, we sought to compare the effects of short-term BPA exposure on cardiovascular parameters of healthy and protein-malnourished mice. Postweaned male mice were fed a normo- (control) or low-protein (LP) diet for 8 weeks and then exposed or not to BPA (50 μg kg−1 day−1) for the last 9 days. Systolic blood pressure was higher in BPA or LP groups compared with the control group. However, diastolic blood pressure was enhanced by BPA only in malnourished mice. Left ventricle (LV) end diastolic pressure (EDP), collagen deposition, and CTGF mRNA expression were higher in the control or malnourished mice exposed to BPA than in the respective nonexposed groups. Nevertheless, mice fed LP diet exposed to BPA exhibited higher angiotensinogen and cardiac TGF-β1 mRNA expression than mice treated with LP or BPA alone. Wall:lumen ratio and cross-sectional area of intramyocardial arteries were higher either in the LP or BPA group compared with the control mice. Taken together, our data suggest that short-term BPA exposure results in LV diastolic dysfunction and fibrosis, and intramyocardial arteries inward remodeling, besides potentiate protein malnutrition-induced hypertension and cardiovascular risk.
Collapse
|
|
4 |
9 |