1
|
Purdon PL, Pavone KJ, Akeju O, Smith AC, Sampson AL, Lee J, Zhou DW, Solt K, Brown EN. The Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br J Anaesth 2015; 115 Suppl 1:i46-i57. [PMID: 26174300 DOI: 10.1093/bja/aev213] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Anaesthetic drugs act at sites within the brain that undergo profound changes during typical ageing. We postulated that anaesthesia-induced brain dynamics observed in the EEG change with age. METHODS We analysed the EEG in 155 patients aged 18-90 yr who received propofol (n=60) or sevoflurane (n=95) as the primary anaesthetic. The EEG spectrum and coherence were estimated throughout a 2 min period of stable anaesthetic maintenance. Age-related effects were characterized by analysing power and coherence as a function of age using linear regression and by comparing the power spectrum and coherence in young (18- to 38-yr-old) and elderly (70- to 90-yr-old) patients. RESULTS Power across all frequency bands decreased significantly with age for both propofol and sevoflurane; elderly patients showed EEG oscillations ∼2- to 3-fold smaller in amplitude than younger adults. The qualitative form of the EEG appeared similar regardless of age, showing prominent alpha (8-12 Hz) and slow (0.1-1 Hz) oscillations. However, alpha band dynamics showed specific age-related changes. In elderly compared with young patients, alpha power decreased more than slow power, and alpha coherence and peak frequency were significantly lower. Older patients were more likely to experience burst suppression. CONCLUSIONS These profound age-related changes in the EEG are consistent with known neurobiological and neuroanatomical changes that occur during typical ageing. Commercial EEG-based depth-of-anaesthesia indices do not account for age and are therefore likely to be inaccurate in elderly patients. In contrast, monitoring the unprocessed EEG and its spectrogram can account for age and individual patient characteristics.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
252 |
2
|
Iyer KK, Roberts JA, Hellström-Westas L, Wikström S, Hansen Pupp I, Ley D, Vanhatalo S, Breakspear M. Cortical burst dynamics predict clinical outcome early in extremely preterm infants. Brain 2015; 138:2206-18. [PMID: 26001723 DOI: 10.1093/brain/awv129] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/19/2015] [Indexed: 01/15/2023] Open
Abstract
Intermittent bursts of electrical activity are a ubiquitous signature of very early brain activity. Previous studies have largely focused on assessing the amplitudes of these transient cortical bursts or the intervals between them. Recent advances in basic neuroscience have identified the presence of scale-free 'avalanche' processes in bursting patterns of cortical activity in other clinical contexts. Here, we hypothesize that cortical bursts in human preterm infants also exhibit scale-free properties, providing new insights into the nature, temporal evolution, and prognostic value of spontaneous brain activity in the days immediately following preterm birth. We examined electroencephalographic recordings from 43 extremely preterm infants (gestational age 22-28 weeks) and demonstrated that their cortical bursts exhibit scale-free properties as early as 12 h after birth. The scaling relationships of cortical bursts correlate significantly with later mental development-particularly within the first 12 h of life. These findings show that early preterm brain activity is characterized by scale-free dynamics which carry developmental significance, hence offering novel means for rapid and early clinical prediction of neurodevelopmental outcomes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
79 |
3
|
Enzyme immobilization strategies and electropolymerization conditions to control sensitivity and selectivity parameters of a polymer-enzyme composite glucose biosensor. SENSORS 2010; 10:6439-62. [PMID: 22163559 PMCID: PMC3231131 DOI: 10.3390/s100706439] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/21/2010] [Accepted: 06/13/2010] [Indexed: 11/17/2022]
Abstract
In an ongoing programme to develop characterization strategies relevant to biosensors for in-vivo monitoring, glucose biosensors were fabricated by immobilizing the enzyme glucose oxidase (GOx) on 125 μm diameter Pt cylinder wire electrodes (Pt(C)), using three different methods: before, after or during the amperometric electrosynthesis of poly(ortho-phenylenediamine), PoPD, which also served as a permselective membrane. These electrodes were calibrated with H(2)O(2) (the biosensor enzyme signal molecule), glucose, and the archetypal interference compound ascorbic acid (AA) to determine the relevant polymer permeabilities and the apparent Michaelis-Menten parameters for glucose. A number of selectivity parameters were used to identify the most successful design in terms of the balance between substrate sensitivity and interference blocking. For biosensors electrosynthesized in neutral buffer under the present conditions, entrapment of the GOx within the PoPD layer produced the design (Pt(C)/PoPD-GOx) with the highest linear sensitivity to glucose (5.0 ± 0.4 μA cm(-2) mM(-1)), good linear range (K(M) = 16 ± 2 mM) and response time (< 2 s), and the greatest AA blocking (99.8% for 1 mM AA). Further optimization showed that fabrication of Pt(C)/PoPD-GOx in the absence of added background electrolyte (i.e., electropolymerization in unbuffered enzyme-monomer solution) enhanced glucose selectivity 3-fold for this one-pot fabrication protocol which provided AA-rejection levels at least equal to recent multi-step polymer bilayer biosensor designs. Interestingly, the presence of enzyme protein in the polymer layer had opposite effects on permselectivity for low and high concentrations of AA, emphasizing the value of studying the concentration dependence of interference effects which is rarely reported in the literature.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
51 |
4
|
Koolen N, Dereymaeker A, Räsänen O, Jansen K, Vervisch J, Matic V, Naulaers G, De Vos M, Van Huffel S, Vanhatalo S. Early development of synchrony in cortical activations in the human. Neuroscience 2016; 322:298-307. [PMID: 26876605 PMCID: PMC4819727 DOI: 10.1016/j.neuroscience.2016.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/26/2022]
Abstract
We study the early development of cortical activations synchrony index (ASI). Cortical activations become increasingly synchronized during the last trimester. Interhemispheric synchrony increases more than intrahemispheric synchrony. Our EEG metric ASI can be directly translated to experimental animal studies. ASI holds promise as an early functional biomarker of brain networks. Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
28 |
5
|
Matic V, Cherian PJ, Koolen N, Ansari AH, Naulaers G, Govaert P, Van Huffel S, De Vos M, Vanhatalo S. Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis. Front Hum Neurosci 2015; 9:189. [PMID: 25954174 PMCID: PMC4407610 DOI: 10.3389/fnhum.2015.00189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/20/2015] [Indexed: 12/22/2022] Open
Abstract
A quantitative and objective assessment of background electroencephalograph (EEG) in sick neonates remains an everyday clinical challenge. We studied whether long range temporal correlations quantified by detrended fluctuation analysis (DFA) could be used in the neonatal EEG to distinguish different grades of abnormality in the background EEG activity. Long-term EEG records of 34 neonates were collected after perinatal asphyxia, and their background was scored in 1 h epochs (8 h in each neonate) as mild, moderate or severe. We applied DFA on 15 min long, non-overlapping EEG epochs (n = 1088) filtered from 3 to 8 Hz. Our formal feasibility study suggested that DFA exponent can be reliably assessed in only part of the EEG epochs, and in only relatively short time scales (10-60 s), while it becomes ambiguous if longer time scales are considered. This prompted further exploration whether paradigm used for quantifying multifractal DFA (MF-DFA) could be applied in a more efficient way, and whether metrics from MF-DFA paradigm could yield useful benchmark with existing clinical EEG gradings. Comparison of MF-DFA metrics showed a significant difference between three visually assessed background EEG grades. MF-DFA parameters were also significantly correlated to interburst intervals quantified with our previously developed automated detector. Finally, we piloted a monitoring application of MF-DFA metrics and showed their evolution during patient recovery from asphyxia. Our exploratory study showed that neonatal EEG can be quantified using multifractal metrics, which might offer a suitable parameter to quantify the grade of EEG background, or to monitor changes in brain state that take place during long-term brain monitoring.
Collapse
|
Journal Article |
10 |
28 |
6
|
Koolen N, Dereymaeker A, Räsänen O, Jansen K, Vervisch J, Matic V, De Vos M, Van Huffel S, Naulaers G, Vanhatalo S. Interhemispheric synchrony in the neonatal EEG revisited: activation synchrony index as a promising classifier. Front Hum Neurosci 2014; 8:1030. [PMID: 25566040 PMCID: PMC4274973 DOI: 10.3389/fnhum.2014.01030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/07/2014] [Indexed: 01/19/2023] Open
Abstract
A key feature of normal neonatal EEG at term age is interhemispheric synchrony (IHS), which refers to the temporal co-incidence of bursting across hemispheres during trace alternant EEG activity. The assessment of IHS in both clinical and scientific work relies on visual, qualitative EEG assessment without clearly quantifiable definitions. A quantitative measure, activation synchrony index (ASI), was recently shown to perform well as compared to visual assessments. The present study was set out to test whether IHS is stable enough for clinical use, and whether it could be an objective feature of EEG normality. We analyzed 31 neonatal EEG recordings that had been clinically classified as normal (n = 14) or abnormal (n = 17) using holistic, conventional visual criteria including amplitude, focal differences, qualitative synchrony, and focal abnormalities. We selected 20-min epochs of discontinuous background pattern. ASI values were computed separately for different channel pair combinations and window lengths to define them for the optimal ASI intraindividual stability. Finally, ROC curves were computed to find trade-offs related to compromised data lengths, a common challenge in neonatal EEG studies. Using the average of four consecutive 2.5-min epochs in the centro-occipital bipolar derivations gave ASI estimates that very accurately distinguished babies clinically classified as normal vs. abnormal. It was even possible to draw a cut-off limit (ASI~3.6) which correctly classified the EEGs in 97% of all cases. Finally, we showed that compromising the length of EEG segments from 20 to 5 min leads to increased variability in ASI-based classification. Our findings support the prior literature that IHS is an important feature of normal neonatal brain function. We show that ASI may provide diagnostic value even at individual level, which strongly supports its use in prospective clinical studies on neonatal EEG as well as in the feature set of upcoming EEG classifiers.
Collapse
|
Journal Article |
11 |
24 |
7
|
Caccioppola A, Carbonara M, Macrì M, Longhi L, Magnoni S, Ortolano F, Triulzi F, Zanier ER, Zoerle T, Stocchetti N. Ultrasound-tagged near-infrared spectroscopy does not disclose absent cerebral circulation in brain-dead adults. Br J Anaesth 2018; 121:588-594. [PMID: 30115257 DOI: 10.1016/j.bja.2018.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/09/2018] [Accepted: 05/04/2018] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Near-infrared spectroscopy, a non-invasive technique for monitoring cerebral oxygenation, is widely used, but its accuracy is questioned because of the possibility of extra-cranial contamination. Ultrasound-tagged near-infrared spectroscopy (UT-NIRS) has been proposed as an improvement over previous methods. We investigated UT-NIRS in healthy volunteers and in brain-dead patients. METHODS We studied 20 healthy volunteers and 20 brain-dead patients with two UT-NIRS devices, CerOx™ and c-FLOW™ (Ornim Medical, Kfar Saba, Israel), which measure cerebral flow index (CFI), a parameter related to changes in cerebral blood flow (CBF). Monitoring started after the patients had been declared brain dead for a median of 34 (range: 11-300) min. In 11 cases, we obtained further demonstration of absent CBF. RESULTS In healthy volunteers, CFI was markedly different in the two hemispheres in the same subject, with wide variability amongst subjects. In brain-dead patients (median age: 64 yr old, 45% female; 20% traumatic brain injury, 40% subarachnoid haemorrhage, and 40% intracranial haemorrhage), the median (inter-quartile range) CFI was 41 (36-47), significantly higher than in volunteers (33; 27-36). CONCLUSIONS In brain-dead patients, where CBF is absent, the UT-NIRS findings can indicate an apparently perfused brain. This might reflect an insufficient separation of signals from extra-cranial structures from a genuine appraisal of cerebral perfusion. For non-invasive assessment of CBF-related parameters, the near-infrared spectroscopy still needs substantial improvement.
Collapse
|
Journal Article |
7 |
17 |
8
|
Sortica da Costa C, Placek MM, Czosnyka M, Cabella B, Kasprowicz M, Austin T, Smielewski P. Complexity of brain signals is associated with outcome in preterm infants. J Cereb Blood Flow Metab 2017; 37:3368-3379. [PMID: 28075691 PMCID: PMC5624386 DOI: 10.1177/0271678x16687314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A characteristic feature of complex healthy biological systems is the ability to react and adapt to minute changes in the environment. This 'complexity' manifests itself in highly irregular patterns of various physiological measurements. Here, we apply Multiscale Entropy (MSE) analysis to assess the complexity of systemic and cerebral near-infrared spectroscopy (NIRS) signals in a cohort of 61 critically ill preterm infants born at median (range) gestational age of 26 (23-31) weeks, before 24 h of life. We further correlate the complexity of these parameters with brain injury and mortality. Lower complexity index (CoI) of oxygenated haemoglobin (HbO2), deoxygenated haemoglobin (Hb) and tissue oxygenation index (TOI) were observed in those infants who developed intraventricular haemorrhage (IVH) compared to those who did not (P = 0.002, P = 0.010 and P = 0.038, respectively). Mean CoI of HbO2, Hb and total haemoglobin index (THI) were lower in those infants who died compared to those who survived (P = 0.012, P = 0.004 and P = 0.003, respectively). CoI-HbO2 was an independent predictor of IVH (P = 0.010). Decreased complexity of brain signals was associated with mortality and brain injury. Measurement of brain signal complexity in preterm infants is feasible and could represent a significant advance in the brain-oriented care.
Collapse
|
|
8 |
13 |
9
|
Leikos S, Tokariev A, Koolen N, Nevalainen P, Vanhatalo S. Cortical responses to tactile stimuli in preterm infants. Eur J Neurosci 2019; 51:1059-1073. [PMID: 31679163 DOI: 10.1111/ejn.14613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
The conventional assessment of preterm somatosensory functions using averaged cortical responses to electrical stimulation ignores the characteristic components of preterm somatosensory evoked responses (SERs). Our study aimed to systematically evaluate the occurrence and development of SERs after tactile stimulus in preterm infants. We analysed SERs performed during 45 electroencephalograms (EEGs) from 29 infants at the mean post-menstrual age of 30.7 weeks. Altogether 2,087 SERs were identified visually at single-trial level from unfiltered signals capturing also their slowest components. We observed salient SERs with a high-amplitude slow component at a high success rate after hand (95%) and foot (83%) stimuli. There was a clear developmental change in both the slow wave and the higher-frequency components of the SERs. Infants with intraventricular haemorrhage (IVH; eleven infants) had initially normal SERs, but those with bilateral IVH later showed a developmental decrease in the ipsilateral SER occurrence after 30 weeks of post-menstrual age. Our study shows that tactile stimulus applied at bedside elicits salient SERs with a large slow component and an overriding fast oscillation, which are specific to the preterm period. Prior experimental research indicates that such SERs allow studying both subplate and cortical functions. Our present findings further suggest that they might offer a window to the emergence of neurodevelopmental sequelae after major structural brain lesions and, hence, an additional tool for both research and clinical neurophysiological evaluation of infants before term age.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
13 |
10
|
Aileni RM, Pasca S, Florescu A. EEG-Brain Activity Monitoring and Predictive Analysis of Signals Using Artificial Neural Networks. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3346. [PMID: 32545622 PMCID: PMC7348967 DOI: 10.3390/s20123346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
Predictive observation and real-time analysis of the values of biomedical signals and automatic detection of epileptic seizures before onset are beneficial for the development of warning systems for patients because the patient, once informed that an epilepsy seizure is about to start, can take safety measures in useful time. In this article, Daubechies discrete wavelet transform (DWT) was used, coupled with analysis of the correlations between biomedical signals that measure the electrical activity in the brain by electroencephalogram (EEG), electrical currents generated in muscles by electromyogram (EMG), and heart rate monitoring by photoplethysmography (PPG). In addition, we used artificial neural networks (ANN) for automatic detection of epileptic seizures before onset. We analyzed 30 EEG recordings 10 min before a seizure and during the seizure for 30 patients with epilepsy. In this work, we investigated the ANN dimensions of 10, 50, 100, and 150 neurons, and we found that using an ANN with 150 neurons generates an excellent performance in comparison to a 10-neuron-based ANN. However, this analyzes requests in an increased amount of time in comparison with an ANN with a lower neuron number. For real-time monitoring, the neurons number should be correlated with the response time and power consumption used in wearable devices.
Collapse
|
research-article |
5 |
13 |
11
|
Eagleman SL, Drover CM, Li X, MacIver MB, Drover DR. Offline comparison of processed electroencephalogram monitors for anaesthetic-induced electroencephalogram changes in older adults. Br J Anaesth 2021; 126:975-984. [PMID: 33640118 DOI: 10.1016/j.bja.2020.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Several devices record and interpret patient brain activity via electroencephalogram (EEG) to aid physician assessment of anaesthetic effect. Few studies have compared EEG monitors on data from the same patient. Here, we describe a set-up to simultaneously compare the performance of three processed EEG monitors using pre-recorded EEG signals from older surgical patients. METHODS A playback system was designed to replay EEG signals into three different commercially available EEG monitors. We could then simultaneously calculate indices from the SedLine® Root (Masimo Inc., Irvine, CA, USA; patient state index [PSI]), bilateral BIS VISTA™ (Medtronic Inc., Minneapolis, MN, USA; bispectral index [BIS]), and Datex Ohmeda S/5 monitor with the Entropy™ Module (GE Healthcare, Chicago, IL, USA; E-entropy index [Entropy]). We tested the ability of each system to distinguish activity before anaesthesia administration (pre-med) and before/after loss of responsiveness (LOR), and to detect suppression incidences in EEG recorded from older surgical patients receiving beta-adrenergic blockers. We show examples of processed EEG monitor output tested on 29 EEG recordings from older surgical patients. RESULTS All monitors showed significantly different indices and high effect sizes between comparisons pre-med to after LOR and before/after LOR. Both PSI and BIS showed the highest percentage of deeply anaesthetised indices during periods with suppression ratios (SRs) > 25%. We observed significant negative correlations between percentage of suppression and indices for all monitors (at SR >5%). CONCLUSIONS All monitors distinguished EEG changes occurring before anaesthesia administration and during LOR. The PSI and BIS best detected suppressed periods. Our results suggest that the PSI and BIS monitors might be preferable for older patients with risk factors for intraoperative awareness or increased sensitivity to anaesthesia.
Collapse
|
Journal Article |
4 |
12 |
12
|
Jones S, Schwartzbauer G, Jia X. Brain Monitoring in Critically Neurologically Impaired Patients. Int J Mol Sci 2016; 18:E43. [PMID: 28035993 PMCID: PMC5297678 DOI: 10.3390/ijms18010043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Assessment of neurologic injury and the evolution of severe neurologic injury is limited in comatose or critically ill patients that lack a reliable neurologic examination. For common yet severe pathologies such as the comatose state after cardiac arrest, aneurysmal subarachnoid hemorrhage (aSAH), and severe traumatic brain injury (TBI), critical medical decisions are made on the basis of the neurologic injury. Decisions regarding active intensive care management, need for neurosurgical intervention, and withdrawal of care, depend on a reliable, high-quality assessment of the true state of neurologic injury, and have traditionally relied on limited assessments such as intracranial pressure monitoring and electroencephalogram. However, even within TBI there exists a spectrum of disease that is likely not captured by such limited monitoring and thus a more directed effort towards obtaining a more robust biophysical signature of the individual patient must be undertaken. In this review, multimodal monitoring including the most promising serum markers of neuronal injury, cerebral microdialysis, brain tissue oxygenation, and pressure reactivity index to access brain microenvironment will be discussed with their utility among specific pathologies that may help determine a more complete picture of the neurologic injury state for active intensive care management and long-term outcomes. Goal-directed therapy guided by a multi-modality approach appears to be superior to standard intracranial pressure (ICP) guided therapy and should be explored further across multiple pathologies. Future directions including the application of optogenetics to evaluate brain injury and recovery and even as an adjunct monitoring modality will also be discussed.
Collapse
|
Review |
9 |
11 |
13
|
Dubost C, Humbert P, Benizri A, Tourtier JP, Vayatis N, Vidal PP. Selection of the Best Electroencephalogram Channel to Predict the Depth of Anesthesia. Front Comput Neurosci 2019; 13:65. [PMID: 31632257 PMCID: PMC6779712 DOI: 10.3389/fncom.2019.00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Precise cerebral dynamics of action of the anesthetics are a challenge for neuroscientists. This explains why there is no gold standard for monitoring the Depth of Anesthesia (DoA) and why experimental studies may use several electroencephalogram (EEG) channels, ranging from 2 to 128 EEG-channels. Our study aimed at finding the scalp area providing valuable information about brain activity under general anesthesia (GA) to select the more optimal EEG channel to characterized the DoA. We included 30 patients undergoing elective, minor surgery under GA and used a 32-channel EEG to record their electrical brain activity. In addition, we recorded their physiological parameters and the BIS monitor. Each individual EEG channel data were processed to test their ability to differentiate awake from asleep states. Due to strict quality criteria adopted for the EEG data and the difficulties of the real-life setting of the study, only 8 patients recordings were taken into consideration in the final analysis. Using 2 classification algorithms, we identified the optimal channels to discriminate between asleep and awake states: the frontal and temporal F8 and T7 were retrieved as being the two bests channels to monitor DoA. Then, using only data from the F8 channel, we tried to minimize the number of features required to discriminate between the awake and asleep state. The best algorithm turned out to be the Gaussian Naïve Bayes (GNB) requiring only 5 features (Area Under the ROC Curve - AUC- of 0.93 ± 0.04). This finding may pave the way to improve the assessment of DoA by combining one EEG channel recordings with a multimodal physiological monitoring of the brain state under GA. Further work is needed to see if these results may be valid to asses the depth of sedation in ICU.
Collapse
|
research-article |
6 |
7 |
14
|
Manquat E, Ravaux H, Kindermans M, Joachim J, Serrano J, Touchard C, Mateo J, Mebazaa A, Gayat E, Vallée F, Cartailler J. Impact of impaired cerebral blood flow autoregulation on electroencephalogram signals in adults undergoing propofol anaesthesia: a pilot study. BJA OPEN 2022; 1:100004. [PMID: 37588691 PMCID: PMC10430849 DOI: 10.1016/j.bjao.2022.100004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 08/18/2023]
Abstract
Background Cerebral autoregulation actively maintains cerebral blood flow over a range of MAPs. During general anaesthesia, this mechanism may not compensate for reductions in MAP leading to brain hypoperfusion. Cerebral autoregulation can be assessed using the mean flow index derived from Doppler measurements of average blood velocity in the middle cerebral artery, but this is impractical for routine monitoring within the operating room. Here, we investigate the possibility of using the EEG as a proxy measure for a loss of cerebral autoregulation, determined by the mean flow index. Methods Thirty-six patients (57.5 [44.25; 66.5] yr; 38.9% women, non-emergency neuroradiology surgery) anaesthetised using propofol were prospectively studied. Continuous recordings of MAP, average blood velocity in the middle cerebral artery, EEG, and regional cerebral oxygen saturation were made. Poor cerebral autoregulation was defined as a mean flow index greater than 0.3. Results Eighteen patients had preserved cerebral autoregulation, and 18 had altered cerebral autoregulation. The two groups had similar ages, MAPs, and average blood velocities in the middle cerebral artery. Patients with altered cerebral autoregulation exhibited a significantly slower alpha peak frequency (9.4 [9.0, 9.9] Hz vs 10.5 [10.1, 10.9] Hz, P<0.001), which persisted after adjusting for age, norepinephrine infusion rate, and ASA class (odds ratio=0.038 [confidence interval, 0.004, 0.409]; P=0.007). Conclusion In this pilot study, we found that loss of cerebral autoregulation was associated with a slower alpha peak frequency, independent of age. This work suggests that impaired cerebral autoregulation could be monitored in the operating room using the existing EEG setup. Clinical trial registration NCT03769142.
Collapse
|
research-article |
3 |
7 |
15
|
Zhang Q, Zhang N, Kang L, Hu G, Yan X, Ding X, Fu Q, Zhang YT, Zhao N, Gao J, Strangman GE. Technology Development for Simultaneous Wearable Monitoring of Cerebral Hemodynamics and Blood Pressure. IEEE J Biomed Health Inform 2019; 23:1952-1963. [PMID: 30334773 PMCID: PMC8571987 DOI: 10.1109/jbhi.2018.2876087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
For many cerebrovascular diseases both blood pressure (BP) and hemodynamic changes are important clinical variables. In this paper, we describe the development of a novel approach to noninvasively and simultaneously monitor cerebral hemodynamics, BP, and other important parameters at high temporal resolution (250 Hz sampling rate). In this approach, cerebral hemodynamics are acquired using near infrared spectroscopy based sensors and algorithms, whereas continuous BP is acquired by superficial temporal artery tonometry with pulse transit time based drift correction. The sensors, monitoring system, and data analysis algorithms used in the prototype for this approach are reported in detail in this paper. Preliminary performance tests demonstrated that we were able to simultaneously and noninvasively record and reveal cerebral hemodynamics and BP during people's daily activity. As examples, we report dynamic cerebral hemodynamic and BP fluctuations during postural changes and micturition. These preliminary results demonstrate the feasibility of our approach, and its unique power in catching hemodynamics and BP fluctuations during transient symptoms (such as syncope) and revealing the dynamic features of related events.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
7 |
16
|
Monitoring the Impact of Spaceflight on the Human Brain. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071060. [PMID: 35888147 PMCID: PMC9323314 DOI: 10.3390/life12071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Extended exposure to radiation, microgravity, and isolation during space exploration has significant physiological, structural, and psychosocial effects on astronauts, and particularly their central nervous system. To date, the use of brain monitoring techniques adopted on Earth in pre/post-spaceflight experimental protocols has proven to be valuable for investigating the effects of space travel on the brain. However, future (longer) deep space travel would require some brain function monitoring equipment to be also available for evaluating and monitoring brain health during spaceflight. Here, we describe the impact of spaceflight on the brain, the basic principles behind six brain function analysis technologies, their current use associated with spaceflight, and their potential for utilization during deep space exploration. We suggest that, while the use of magnetic resonance imaging (MRI), positron emission tomography (PET), and computerized tomography (CT) is limited to analog and pre/post-spaceflight studies on Earth, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and ultrasound are good candidates to be adapted for utilization in the context of deep space exploration.
Collapse
|
Review |
3 |
5 |
17
|
Di Nardo M, Stoppa F, David P, Lorusso R, Ranieri VM, Mascia L. Reversed differential cyanosis during veno-arterial extracorporeal membrane oxygenation in infants: the reevaluation of an old phenomenon. Eur J Heart Fail 2017; 19 Suppl 2:117-119. [PMID: 28470924 DOI: 10.1002/ejhf.855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
Review |
8 |
3 |
18
|
Roldan M, Bradley GRE, Mejía-Mejía E, Abay TY, Kyriacou PA. Non-invasive monitoring of intracranial pressure changes: healthy volunteers study. Front Physiol 2023; 14:1208010. [PMID: 37614754 PMCID: PMC10443643 DOI: 10.3389/fphys.2023.1208010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: This research aims to evaluate the possible association between pulsatile near infrared spectroscopic waveform features and induced changes in intracranial pressure in healthy volunteers. Methods: An optical intracranial pressure sensor was attached to the forehead of 16 healthy volunteers. Pulsatile near infrared spectroscopic signals were acquired from the forehead during body position changes and Valsalva manoeuvers. Features were extracted from the pulsatile signals and analyses were carried out to investigate the presence of statistical differences in the features when intracranial pressure changes were induced. Classification models were developed utilizing the features extracted from the pulsatile near-infrared spectroscopic signals to classify between different body positions and Valsalva manoeuvre. Results: The presence of significant differences in the majority of the analyzed features (p < 0.05) indicates the technique's ability to distinguish between variations in intracranial pressure. Furthermore, the disparities observed in the optical signal features captured by the proximal and distal photodetectors support the hypothesis that alterations in back-scattered light directly correspond to brain-related changes. Further research is required to subtract distal and proximal signals and construct predictive models employing a gold standard measurement for non-invasive, continuous monitoring of intracranial pressure. Conclusion: The study investigated the use of pulsatile near infrared spectroscopic signals to detect changes in intracranial pressure in healthy volunteers. The results revealed significant differences in the features extracted from these signals, demonstrating a correlation with ICP changes induced by positional changes and Valsalva manoeuvre. Classification models were capable of identifying changes in ICP using features from optical signals from the brain, with a sensitivity ranging from 63.07% to 80% and specificity ranging from 60.23% to 70% respectively. These findings underscored the potential of these features to effectively identify alterations in ICP. Significance: The study's results demonstrate the feasibility of using features extracted from optical signals from the brain to detect changes in ICP induced by positional changes and Valsalva manoeuvre in healthy volunteers. This represents a first step towards the non-invasive monitoring of intracranial pressure.
Collapse
|
research-article |
2 |
3 |
19
|
Abstract
OBJECTIVE The aim of the study is to model amplitude-integrated electroencephalography (aEEG) utility to diagnose seizures in common clinical scenarios. STUDY DESIGN Using reported neonatal seizure prevalence and aEEG sensitivities and specificities, likelihood ratios (LRs) and post-test probabilities were calculated to quantify aEEG utility to diagnose seizures in three typical clinical scenarios. RESULTS Prevalence data supported pretest probabilities for neonatal seizures of 0.4 in neonatal hypoxic ischemic encephalopathy (HIE), 0.27 in bacterial meningitis, and 0.05 in extreme prematurity. Reported sensitivity of 85% and specificity of 90% for seizures with expert aEEG interpretation yielded a positive likelihood ratio (LR+) of 8.7 and a negative likelihood ratio (LR-) of 0.17. Reported sensitivity of 65% and specificity of 70% with intermediate interpretation yielded LR+ 2.17 and LR- 0.5. Reported sensitivity of 40% and sensitivity of 50% with inexperienced interpretation gave LR+ 0.8 and LR- 1.2. These translate the ability to move pretest to post-test probability highly dependent on user expertise. For HIE, a pretest probability of seizure of 0.4 moves to a post-test probability of 0.85 when aEEG is positive for seizures by expert interpretation, and down to 0.1 when aEEG is negative. In contrast, no useful information was gained between pretest and post-test probability by aEEG interpreted as negative or positive for seizure at the inexperienced user level. Similarly, in the models of meningitis or extreme prematurity, incremental information gained from aEEG ranged widely based on interpreter experience. CONCLUSION aEEG is most useful to screen for neonatal seizures when used in conditions with high seizure prevalence, and when interpretation has a sensitivity and specificity as reported for expert users. In contrast, aEEG can become negligible in providing meaningful clinical information when applied in conditions having lower seizure prevalence or when interpretation has low accuracy. Appropriate patient selection and high quality interpretation are essential for aEEG utility in neonatal seizure detection. KEY POINTS · aEEG utility for neonatal seizure screening relies on patient selection and quality interpretation.. · Utility of aEEG is highest with high seizure prevalence and expert interpretation.. · Utility of aEEG can be negligible with lower seizure prevalence or low accuracy interpretation..
Collapse
|
research-article |
5 |
3 |
20
|
Marchi V, Stevenson N, Koolen N, Mazziotti R, Moscuzza F, Salvadori S, Pieri R, Ghirri P, Guzzetta A, Vanhatalo S. Measuring Cot-Side the Effects of Parenteral Nutrition on Preterm Cortical Function. Front Hum Neurosci 2020; 14:69. [PMID: 32256325 PMCID: PMC7090162 DOI: 10.3389/fnhum.2020.00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/14/2020] [Indexed: 01/08/2023] Open
Abstract
Early nutritional compromise after preterm birth is shown to affect long-term neurodevelopment, however, there has been a lack of early functional measures of nutritional effects. Recent progress in computational electroencephalography (EEG) analysis has provided means to measure the early maturation of cortical activity. Our study aimed to explore whether computational metrics of early sequential EEG recordings could reflect early nutritional care measured by energy and macronutrient intake in the first week of life. A higher energy or macronutrient intake was assumed to associate with improved development of the cortical activity. We analyzed multichannel EEG recorded at 32 weeks (32.4 ± 0.7) and 36 weeks (36.6 ± 0.9) of postmenstrual age in a cohort of 28 preterm infants born before 32 weeks of postmenstrual age (range: 24.3–32 weeks). We computed several quantitative EEG measures from epochs of quiet sleep (QS): (i) spectral power; (ii) continuity; (iii) interhemispheric synchrony, as well as (iv) the recently developed estimate of maturational age. Parenteral nutritional intake from day 1 to day 7 was monitored and clinical factors collected. Lower calories and carbohydrates were found to correlate with a higher reduction of spectral amplitude in the delta band. Lower protein amount associated with higher discontinuity. Both higher proteins and lipids intake correlated with a more developmental increase in interhemispheric synchrony as well as with better progress in the estimate of EEG maturational age (EMA). Our study shows that early nutritional balance after preterm birth may influence subsequent maturation of brain activity in a way that can be observed with several intuitively reasoned and transparent computational EEG metrics. Such measures could become early functional biomarkers that hold promise for benchmarking in the future development of therapeutic interventions.
Collapse
|
Journal Article |
5 |
2 |
21
|
Pazuelo J, Juez JY, Moumane H, Pyrzowski J, Mayor L, Segura-Quijano FE, Valderrama M, Le Van Quyen M. Evaluating the Electroencephalographic Signal Quality of an In-Ear Wearable Device. SENSORS (BASEL, SWITZERLAND) 2024; 24:3973. [PMID: 38931756 PMCID: PMC11207223 DOI: 10.3390/s24123973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Wearable in-ear electroencephalographic (EEG) devices hold significant promise for advancing brain monitoring technologies into everyday applications. However, despite the current availability of several in-ear EEG devices in the market, there remains a critical need for robust validation against established clinical-grade systems. In this study, we carried out a detailed examination of the signal performance of a mobile in-ear EEG device from Naox Technologies. Our investigation had two main goals: firstly, evaluating the hardware circuit's reliability through simulated EEG signal experiments and, secondly, conducting a thorough comparison between the in-ear EEG device and gold-standard EEG monitoring equipment. This comparison assesses correlation coefficients with recognized physiological patterns during wakefulness and sleep, including alpha rhythms, eye artifacts, slow waves, spindles, and sleep stages. Our findings support the feasibility of using this in-ear EEG device for brain activity monitoring, particularly in scenarios requiring enhanced comfort and user-friendliness in various clinical and research settings.
Collapse
|
research-article |
1 |
2 |
22
|
Gunn JK, Hunt RW. Amplitude-Integrated Electroencephalography Following Infant Cardiac Surgery: a Window to the Brain or a Crystal Ball? J Pediatr 2016; 178:10-12. [PMID: 27539396 DOI: 10.1016/j.jpeds.2016.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
|
Editorial |
9 |
1 |
23
|
Zhang Y, Zhang N, Hu Y, Pereira C, Fertleman M, Jiang N, Yetisen AK. Fully Automated and AI-Assisted Optical Fiber Sensing System for Multiplexed and Continuous Brain Monitoring. ACS Sens 2024; 9:6605-6620. [PMID: 39629823 PMCID: PMC11686509 DOI: 10.1021/acssensors.4c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 12/28/2024]
Abstract
Continuous and comprehensive brain monitoring is crucial for timely identification of changes or deterioration in brain function, enabling prompt intervention and personalized treatments. However, existing brain monitoring systems struggle to offer continuous and accurate monitoring of multiple brain biomarkers simultaneously. This study introduces a multiplexed optical fiber sensing system for continuous and simultaneous monitoring of six cerebrospinal fluid (CSF) biomarkers using tip-functionalized optical fibers and computational algorithms. Optimized machine learning models are developed and integrated for real-time spectra analysis, allowing for precise and continuous readout of biomarker concentrations. The developed machine learning-assisted fiber optic sensing system exhibits high sensitivity (0.04, 0.38, 0.67, 2.62, 0.0064, 0.33 I/I0 change per units of temperature, dissolved oxygen, glucose, pH, Na+, Ca2+, respectively), reversibility, and selectivity toward target biomarkers with a total diameter less than 2.5 mm. By monitoring brain metabolic and ionic dynamics, this system accurately identified brain physiology deterioration and recovery using ex vivo traumatic brain injury models. Additionally, the system successfully tracked biomarker fluctuations in clinical CSF samples with high accuracy (R2 > 0.93), demonstrating excellent sensitivity and selectivity in reflecting disease progression in real time. These findings underscore the enormous potential of automated and multiplexed optical fiber sensing systems for intraoperative and postoperative monitoring of brain physiologies.
Collapse
|
research-article |
1 |
|
24
|
Intraoperative brain activity monitoring and postanesthesia care unit length of stay: results of a systematic review. J Perianesth Nurs 2014; 29:475-9. [PMID: 25458627 DOI: 10.1016/j.jopan.2014.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Abstract
A systematic review represents the highest level of evidence to inform clinical practice and research. The results of this systematic review report on the impact of intraoperative brain activity monitoring on postanesthesia care unit length of stay. If used to guide anesthesia practice, the intraoperative brain activity monitor will have a statistically insignificant impact on reducing postanesthesia care unit length of stay. Clinicians should be aware, however, that there is a clinically useful reduction in postanesthesia care unit length of stay resulting in potential cost savings.
Collapse
|
Review |
11 |
|
25
|
Morse JD, Anderson BJ. Pharmacokinetic and Physiological Concepts Relevant for Determining Sevoflurane Dose. Paediatr Anaesth 2025. [PMID: 39905620 DOI: 10.1111/pan.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
|
Editorial |
1 |
|