1
|
Fujita K, Hamidian MH, Edkins SD, Kim CK, Kohsaka Y, Azuma M, Takano M, Takagi H, Eisaki H, Uchida SI, Allais A, Lawler MJ, Kim EA, Sachdev S, Davis JCS. Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. Proc Natl Acad Sci U S A 2014; 111:E3026-32. [PMID: 24989503 PMCID: PMC4121838 DOI: 10.1073/pnas.1406297111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identity of the fundamental broken symmetry (if any) in the underdoped cuprates is unresolved. However, evidence has been accumulating that this state may be an unconventional density wave. Here we carry out site-specific measurements within each CuO2 unit cell, segregating the results into three separate electronic structure images containing only the Cu sites [Cu(r)] and only the x/y axis O sites [Ox(r) and O(y)(r)]. Phase-resolved Fourier analysis reveals directly that the modulations in the O(x)(r) and O(y)(r) sublattice images consistently exhibit a relative phase of π. We confirm this discovery on two highly distinct cuprate compounds, ruling out tunnel matrix-element and materials-specific systematics. These observations demonstrate by direct sublattice phase-resolved visualization that the density wave found in underdoped cuprates consists of modulations of the intraunit-cell states that exhibit a predominantly d-symmetry form factor.
Collapse
|
|
11 |
52 |
2
|
Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. Proc Natl Acad Sci U S A 2016; 113:10485-90. [PMID: 27601636 DOI: 10.1073/pnas.1611808113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, we present a joint experimental and molecular dynamics simulations effort to understand and map the crystallization behavior of polyhedral nanoparticles assembled via the interaction of DNA surface ligands. In these systems, we systematically investigated the interplay between the effects of particle core (via the particle symmetry and particle size) and ligands (via the ligand length) on crystallization behavior. This investigation revealed rich phase diagrams, previously unobserved phase transitions in polyhedral crystallization behavior, and an unexpected symmetry breaking in the ligand distribution on a particle surface. To understand these results, we introduce the concept of a zone of anisotropy, or the portion of the phase space where the anisotropy of the particle is preserved in the crystallization behavior. Through comparison of the zone of anisotropy for each particle we develop a foundational roadmap to guide future investigations.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
48 |
3
|
Krewald V, Lassalle-Kaiser B, Boron TT, Pollock CJ, Kern J, Beckwith MA, Yachandra VK, Pecoraro VL, Yano J, Neese F, DeBeer S. The protonation states of oxo-bridged Mn(IV) dimers resolved by experimental and computational Mn K pre-edge X-ray absorption spectroscopy. Inorg Chem 2013; 52:12904-14. [PMID: 24161030 PMCID: PMC3911776 DOI: 10.1021/ic4008203] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In nature, the protonation of oxo bridges is a commonly encountered mechanism for fine-tuning chemical properties and reaction pathways. Often, however, the protonation states are difficult to establish experimentally. This is of particular importance in the oxygen evolving complex of photosystem II, where identification of the bridging oxo protonation states is one of the essential requirements toward unraveling the mechanism. In order to establish a combined experimental and theoretical protocol for the determination of protonation states, we have systematically investigated a series of Mn model complexes by Mn K pre-edge X-ray absorption spectroscopy. An ideal test case for selective bis-μ-oxo-bridge protonation in a Mn dimer is represented by the system [Mn(IV)2(salpn)2(μ-OHn)2](n+). Although the three species [Mn(IV)2(salpn)2(μ-O)2], [Mn(IV)2(salpn)2(μ-O)(μ-OH)](+) and [Mn(IV)2(salpn)2(μ-OH)2](2+) differ only in the protonation of the oxo bridges, they exhibit distinct differences in the pre-edge region while maintaining the same edge energy. The experimental spectra are correlated in detail to theoretically calculated spectra. A time-dependent density functional theory approach for calculating the pre-edge spectra of molecules with multiple metal centers is presented, using both high spin (HS) and broken symmetry (BS) electronic structure solutions. The most intense pre-edge transitions correspond to an excitation of the Mn 1s core electrons into the unoccupied orbitals of local e(g) character (d(z)(2) and d(xy) based in the chosen coordinate system). The lowest energy experimental feature is dominated by excitations of 1s-α electrons, and the second observed feature is primarily attributed to 1s-β electron excitations. The observed energetic separation is due to spin polarization effects in spin-unrestricted density functional theory and models final state multiplet effects. The effects of spin polarization on the calculated Mn K pre-edge spectra, in both the HS and BS solutions, are discussed in terms of the strength of the antiferromagnetic coupling and associated changes in the covalency of Mn-O bonds. The information presented in this paper is complemented with the X-ray emission spectra of the same compounds published in an accompanying paper. Taken together, the two studies provide the foundation for a better understanding of the X-ray spectroscopic data of the oxygen evolving complex (OEC) in photosystem II.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
44 |
4
|
Xu X, Gozem S, Olivucci M, Truhlar DG. Combined Self-Consistent-Field and Spin-Flip Tamm-Dancoff Density Functional Approach to Potential Energy Surfaces for Photochemistry. J Phys Chem Lett 2013; 4:253-258. [PMID: 26283430 DOI: 10.1021/jz301935x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a new approach to calculating potential energy surfaces for photochemical reactions by combining self-consistent-field calculations for single-reference ground and excited states with symmetry-corrected spin-flip Tamm-Dancoff approximation calculations for multireference electronic states. The method is illustrated by an application with the M05-2X exchange-correlation functional to cis-trans isomerization of the penta-2,4-dieniminium cation, which is a model (with three conjugated double bonds) of the protonated Schiff base of retinal. We find good agreement with multireference configuration interaction-plus-quadruples (MRCISD+Q) wave function calculations along three key paths in the strong-interaction region of the ground and first excited singlet states.
Collapse
|
|
12 |
43 |
5
|
Kopp A, Ghosal A, Chakravarty S. Competing ferromagnetism in high-temperature copper oxide superconductors. Proc Natl Acad Sci U S A 2007; 104:6123-7. [PMID: 17404239 PMCID: PMC1851066 DOI: 10.1073/pnas.0701265104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Indexed: 11/18/2022] Open
Abstract
The extreme variability of observables across the phase diagram of the cuprate high-temperature superconductors has remained a profound mystery, with no convincing explanation for the superconducting dome. Although much attention has been paid to the underdoped regime of the hole-doped cuprates because of its proximity to a complex Mott insulating phase, little attention has been paid to the overdoped regime. Experiments are beginning to reveal that the phenomenology of the overdoped regime is just as puzzling. For example, the electrons appear to form a Landau Fermi liquid, but this interpretation is problematic; any trace of Mott phenomena, as signified by incommensurate antiferromagnetic fluctuations, is absent, and the uniform spin susceptibility shows a ferromagnetic upturn. Here, we show and justify that many of these puzzles can be resolved if we assume that competing ferromagnetic fluctuations are simultaneously present with superconductivity, and the termination of the superconducting dome in the overdoped regime marks a quantum critical point beyond which there should be a genuine ferromagnetic phase at zero temperature. We propose experiments and make predictions to test our theory and suggest that an effort must be mounted to elucidate the nature of the overdoped regime, if the problem of high-temperature superconductivity is to be solved. Our approach places competing order as the root of the complexity of the cuprate phase diagram.
Collapse
|
research-article |
18 |
38 |
6
|
Dianat A, Gutierrez R, Alpern H, Mujica V, Ziv A, Yochelis S, Millo O, Paltiel Y, Cuniberti G. Role of Exchange Interactions in the Magnetic Response and Intermolecular Recognition of Chiral Molecules. NANO LETTERS 2020; 20:7077-7086. [PMID: 32786950 DOI: 10.1021/acs.nanolett.0c02216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physical origin of the so-called chirality-induced spin selectivity (CISS) effect has puzzled experimental and theoretical researchers over the past few years. Early experiments were interpreted in terms of unconventional spin-orbit interactions mediated by the helical geometry. However, more recent experimental studies have clearly revealed that electronic exchange interactions also play a key role in the magnetic response of chiral molecules in singlet states. In this investigation, we use spin-polarized closed-shell density functional theory calculations to address the influence of exchange contributions to the interaction between helical molecules as well as of helical molecules with magnetized substrates. We show that exchange effects result in differences in the interaction properties with magnetized surfaces, shedding light into the possible origin of two recent important experimental results: enantiomer separation and magnetic exchange force microscopy with AFM tips functionalized with helical peptides.
Collapse
|
|
5 |
29 |
7
|
Meirzadeh E, Christensen DV, Makagon E, Cohen H, Rosenhek-Goldian I, Morales EH, Bhowmik A, Lastra JMG, Rappe AM, Ehre D, Lahav M, Pryds N, Lubomirsky I. Surface Pyroelectricity in Cubic SrTiO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904733. [PMID: 31532884 DOI: 10.1002/adma.201904733] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Symmetry-imposed restrictions on the number of available pyroelectric and piezoelectric materials remain a major limitation as 22 out of 32 crystallographic material classes exhibit neither pyroelectricity nor piezoelectricity. Yet, by breaking the lattice symmetry it is possible to circumvent this limitation. Here, using a unique technique for measuring transient currents upon rapid heating, direct experimental evidence is provided that despite the fact that bulk SrTiO3 is not pyroelectric, the (100) surface of TiO2 -terminated SrTiO3 is intrinsically pyroelectric at room temperature. The pyroelectric layer is found to be ≈1 nm thick and, surprisingly, its polarization is comparable with that of strongly polar materials such as BaTiO3 . The pyroelectric effect can be tuned ON/OFF by the formation or removal of a nanometric SiO2 layer. Using density functional theory, the pyroelectricity is found to be a result of polar surface relaxation, which can be suppressed by varying the lattice symmetry breaking using a SiO2 capping layer. The observation of pyroelectricity emerging at the SrTiO3 surface also implies that it is intrinsically piezoelectric. These findings may pave the way for observing and tailoring piezo- and pyroelectricity in any material through appropriate breaking of symmetry at surfaces and artificial nanostructures such as heterointerfaces and superlattices.
Collapse
|
|
6 |
25 |
8
|
Gartus A, Leder H. The small step toward asymmetry: Aesthetic judgment of broken symmetries. Iperception 2013; 4:361-4. [PMID: 24349695 PMCID: PMC3859553 DOI: 10.1068/i0588sas] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 07/07/2013] [Indexed: 11/21/2022] Open
Abstract
Symmetry and complexity both affect the aesthetic judgment of abstract patterns. However, although beauty tends to be associated with symmetry, there are indications that small asymmetries can also be beautiful. We investigated the influence of small deviations from symmetry on people's aesthetic liking for abstract patterns. Breaking symmetry not only decreased patterns' symmetry but also increased their complexity. While an increase of complexity normally results in a higher liking, we found that even a small decrease of symmetry has a strong effect, such that patterns with slightly broken symmetries were significantly less liked than fully symmetric ones.
Collapse
|
Journal Article |
12 |
24 |
9
|
Giant magneto-optical Raman effect in a layered transition metal compound. Proc Natl Acad Sci U S A 2016; 113:2349-53. [PMID: 26884198 DOI: 10.1073/pnas.1601010113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique method to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
18 |
10
|
Evidence for a vestigial nematic state in the cuprate pseudogap phase. Proc Natl Acad Sci U S A 2019; 116:13249-13254. [PMID: 31160468 DOI: 10.1073/pnas.1821454116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CuO2 antiferromagnetic insulator is transformed by hole-doping into an exotic quantum fluid usually referred to as the pseudogap (PG) phase. Its defining characteristic is a strong suppression of the electronic density-of-states D(E) for energies |E| < [Formula: see text], where [Formula: see text] is the PG energy. Unanticipated broken-symmetry phases have been detected by a wide variety of techniques in the PG regime, most significantly a finite-Q density-wave (DW) state and a Q = 0 nematic (NE) state. Sublattice-phase-resolved imaging of electronic structure allows the doping and energy dependence of these distinct broken-symmetry states to be visualized simultaneously. Using this approach, we show that even though their reported ordering temperatures T DW and T NE are unrelated to each other, both the DW and NE states always exhibit their maximum spectral intensity at the same energy, and using independent measurements that this is the PG energy [Formula: see text] Moreover, no new energy-gap opening coincides with the appearance of the DW state (which should theoretically open an energy gap on the Fermi surface), while the observed PG opening coincides with the appearance of the NE state (which should theoretically be incapable of opening a Fermi-surface gap). We demonstrate how this perplexing phenomenology of thermal transitions and energy-gap opening at the breaking of two highly distinct symmetries may be understood as the natural consequence of a vestigial nematic state within the pseudogap phase of Bi2Sr2CaCu2O8.
Collapse
|
Journal Article |
6 |
17 |
11
|
Abstract
The chromatin core particle DNA conformation deduced in broad outline by Finch et al. [Finch, J. T., Lutter, L. C., Rhodes, D., Brown, R. S., Rushton, B., Levitt, M. & Klug, A. (1977) Nature 269, 29-36] can be described in detail using other available experimental results. Histone binding sites compatible with the pattern of pancreatic DNase I digestion (Simpson, R. T. & Whitlock, J. P., Jr. (1976) Cell 9, 347-353; Noll, M. (1977) J. Mol. Biol. 116, 49-71; Lutter, L. C. (1977) J. Mol. Biol. 117, 53-69] lend to core particle DNA pseudosymmetry characteristic of molecular point group D(3). DNA symmetry and pseudosymmetry, in turn, imply equivalence and quasi-equivalence properties of the histone packing arrangement that support the following deductions: (i) One and only one alpha(2)beta(2) histone tetramer, presumably (H3)(2)(H4)(2), can serve as a stable subassembly within the histone octamer. (ii) There is a unique, strand-specific way to assign DNA binding domains to the arginine-rich histones (H3 and H4). (iii) Histones H3 and H4 alone should suffice to impose a supercoiled structure on DNA, as is observed experimentally, because only the tetramer can mimic a screw dislocation and thereby complement the screw symmetry of the DNA supercoil. (iv) The two slightly lysine-rich histones H2A and H2B are probably responsible, each in a different way, for dividing the eukaryotic chromatin fiber into discrete subunits. (v) The proposed arrangement of four distinct proteins appears to be a minimum formal requirement for making nucleosomes; that is, for introducing regularly spaced supercoiled DNA folds without also allowing formation of an indefinitely long (and genetically inert) DNA superhelix.
Collapse
|
research-article |
47 |
15 |
12
|
Aleshin DY, Diego R, Barrios LA, Nelyubina YV, Aromí G, Novikov VV. Unravelling of a [High Spin-Low Spin] ↔ [Low Spin-High Spin] Equilibrium in Spin-Crossover Iron(II) Dinuclear Helicates Using Paramagnetic NMR Spectroscopy. Angew Chem Int Ed Engl 2021; 61:e202110310. [PMID: 34757659 DOI: 10.1002/anie.202110310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Spin-crossover between high-spin (HS) and low-spin (LS) states of selected transition metal ions in polynuclear and polymeric compounds is behind their use as multistep switchable materials in breakthrough electronic and spintronic devices. We report the first successful attempt to observe the dynamics of a rarely found broken-symmetry spin state in binuclear complexes, which mixes the states [HS-LS] and [LS-HS] on a millisecond timescale. The slow exchange between these two states, which was identified by paramagnetic NMR spectroscopy in solutions of two spin-crossover iron(II) binuclear helicates that are amenable to molecular design, opens a path to double quantum dot cellular automata for information storage and processing.
Collapse
|
|
4 |
12 |
13
|
Rycroft CH, Bazant MZ. Asymmetric collapse by dissolution or melting in a uniform flow. Proc Math Phys Eng Sci 2016; 472:20150531. [PMID: 26997890 DOI: 10.1098/rspa.2015.0531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape. This result is subsequently derived using residue calculus. The structure of the non-analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton-Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). The model raises fundamental mathematical questions about broken symmetries in finite-time singularities of both continuous and stochastic dynamical systems.
Collapse
|
|
9 |
7 |
14
|
Wu S, Liu S, Sim S, Pedersen LG. Weakly Antiferromagentic Coupling Via Superexchange Interaction Between Mn(II)-Mn(II) Atoms: A QM/MM Study of the Active Site of Human Cytosolic X-Propyl Aminopeptidase P. J Phys Chem Lett 2012; 3:2293-2297. [PMID: 23145216 PMCID: PMC3491985 DOI: 10.1021/jz300768g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigate the dinuclear manganese, Mn(II)-Mn(II), active site of human cytosolic X-propyl aminopeptidase (XPNPEP1) employing the QM/MM method. The optimized structure supports two manganese atoms at the active site and excludes the possibility of a single Mn(II) atom or other combination of divalent metal ions: Ca(II), Fe(II), Mg(II). A broken symmetry solution verifies an antiferromagnetically coupled state between the Mn(II)-Mn(II) pair, which is the ground state. From the energy difference between the high spin state (HS) and the broken symmetry state (BS), we estimate the exchange coupling constant, J, to be 5.15 cm(-1). Also, we observe multiple bridges (p orbitals) from solvent and two carboxylate linking to the Mn(II)-Mn(II), which leads to the weakly antiferromagnetic interaction of d(5)-d(5) electrons through superexchange coupling.
Collapse
|
research-article |
13 |
4 |
15
|
Kedem O, Lau B, Weiss EA. Mechanisms of Symmetry Breaking in a Multidimensional Flashing Particle Ratchet. ACS NANO 2017; 11:7148-7155. [PMID: 28700217 DOI: 10.1021/acsnano.7b02995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ratcheting is a mechanism that produces directional transport of particles by rectifying nondirectional energy using local asymmetries rather than a net bias in the direction of transport. In a flashing ratchet, an oscillating force (here, an AC field) is applied perpendicular to the direction of transport. In an effort to explore the properties of current experimentally realizable ratchet systems, and to design new ones, this paper describes classical simulations of a damped flashing ratchet that transports charged nanoparticles within a transport layer of finite, non-zero thickness. The thickness of the layer, and the decay of the applied field in the z-direction throughout that thickness, provide a mechanism of symmetry breaking in the system that allows the ratchet to produce directional transport using a temporally unbiased oscillation of the AC driving field, a sine wave. Sine waves are conveniently produced experimentally or harvested from natural sources but cannot produce transport in a 1D or pseudo-1D system. The sine wave drive produces transport velocities an order of magnitude higher than those produced by the common on/off drive, but lower than those produced by a temporally biased square wave drive (unequal durations of the positive and negative states). The dependence of the particle velocity on the thickness of the transport layer, and on the homogeneity of the oscillating field within the layer, is presented for all three driving schemes.
Collapse
|
|
8 |
3 |
16
|
Cheong SW, Huang FT, Kim M. Linking emergent phenomena and broken symmetries through one-dimensional objects and their dot/cross products. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:124501. [PMID: 36198263 DOI: 10.1088/1361-6633/ac97aa] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The symmetry of the whole experimental setups, including specific sample environments and measurables, can be compared with that of specimens for observable physical phenomena. We, first, focus on one-dimensional (1D) experimental setups, independent from any spatial rotation around one direction, and show that eight kinds of 1D objects (four; vector-like, the other four; director-like), defined in terms of symmetry, and their dot and cross products are an effective way for the symmetry consideration. The dot products form a Z2× Z2× Z2group with Abelian additive operation, and the cross products form a Z2× Z2group with Abelian additive operation or Q8, a non-Abelian group of order eight, depending on their signs. Those 1D objects are associated with characteristic physical phenomena. When a 3D specimen has symmetry operational similarity (SOS) with (identical or lower, but not higher, symmetries than) an 1D object with a particular phenomenon, the 3D specimen can exhibit the phenomenon. This SOS approach can be a transformative and unconventional avenue for symmetry-guided materials designs and discoveries.
Collapse
|
Review |
3 |
3 |
17
|
Pant D, Aryal S, Mandal S, Pati R. Emergence of Ferromagnetism Due to Spontaneous Symmetry Breaking in a Twisted Bilayer Graphene Nanoflex. NANO LETTERS 2021; 21:7548-7554. [PMID: 34499516 DOI: 10.1021/acs.nanolett.1c01972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Twisted bilayer graphene exhibits many intriguing behaviors ranging from superconductivity to the anomalous Hall effect to ferromagnetism at a magic angle of ∼1°. Here, using a first-principles approach, we reveal ferromagnetism in a twisted bilayer graphene nanoflex. Our results demonstrate that when the energy gap of a twisted nanoflex approaches zero, electronic instability occurs and a ferromagnetic gap state emerges spontaneously to lower the energy. Unlike the observed ferromagnetism at a magic angle in the graphene bilayer, we notice the ferromagnetic phase appearing aperiodically between 0 and 30° in the twisted nanoflex. The origin of electronic instability at various twist angles is ascribed to the several higher-symmetry phases that are broken to lower the energy resulting from an aperiodic modulation of the interlayer interaction in the nanoflex. Besides unraveling a spin-pairing mechanism for the reappearance of the nonmagnetic phase, we have found orbitals at the boundary of nanoflex contributing to ferromagnetism.
Collapse
|
|
4 |
2 |
18
|
Jagger BR, Koval AM, Wheeler RA. Distinguishing Protonation States of Histidine Ligands to the Oxidized Rieske Iron-Sulfur Cluster through (15) N Vibrational Frequency Shifts. Chemphyschem 2016; 17:216-20. [PMID: 26603967 DOI: 10.1002/cphc.201500838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/07/2022]
Abstract
The Rieske [2Fe-2S] cluster is a vital component of many oxidoreductases, including mitochondrial cytochrome bc1; its chloroplast equivalent, cytochrome b6f; one class of dioxygenases; and arsenite oxidase. The Rieske cluster acts as an electron shuttle and its reduction is believed to couple with protonation of one of the cluster's His ligands. In cytochromes bc1 and b6f, for example, the Rieske cluster acts as the first electron acceptor in a modified Q cycle. The protonation states of the cluster's His ligands determine its ability to accept a proton and possibly an electron through a hydrogen bond to the electron carrier, ubiquinol. Experimental determination of the protonation states of a Rieske cluster's two His ligands by NMR spectroscopy is difficult, due to the close proximity of the two paramagnetic iron atoms of the cluster. Therefore, this work reports density functional calculations and proposes that difference vibrational spectroscopy with (15) N isotopic substitution may be used to assign the protonation states of the His ligands of the oxidized Rieske [2Fe-2S] complex.
Collapse
|
|
9 |
1 |
19
|
Grosche FM. Superconductivity. Sci Prog 2004; 87:51-78. [PMID: 15651639 PMCID: PMC10367506 DOI: 10.3184/003685004783238571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrons in metals can self-organise. The complex interplay between lattice dynamics, electrostatic interaction and band structure brings forth numerous types of electronic order. Because of its spectacular phenomenology, superconductivity has enjoyed a central place among these, since its discovery nearly 100 years ago. This short introduction into one of the largest fields of condensed matter research focuses on the most fundamental experimental signatures of superconductivity--perfect conductivity and perfect diamagnetism--and their explanation. A conventional broken symmetry argument is presented, which introduces a superconducting order parameter in analogy to the case of superfluid 4He, and discusses its microscopic origin in the framework of the BCS model of superconductivity. New materials have brought to light novel forms of superconductivity. Many cases are now known which fall outside the orthodox BCS model, ranging from the high temperature superconductors, to various organic and d- and f- metal compounds. The article presents key concepts from this intense area of research and touches on the equally puzzling behaviour of many of these materials above their superconducting transition temperature.
Collapse
|
Review |
21 |
|
20
|
Papamakarios S, Tsilipakos O, Katsantonis I, Koulouklidis AD, Manousidaki M, Zyla G, Daskalaki C, Tzortzakis S, Kafesaki M, Farsari M. Cactus-like Metamaterial Structures for Electromagnetically Induced Transparency at THz frequencies. ACS PHOTONICS 2025; 12:87-97. [PMID: 39839343 PMCID: PMC11748748 DOI: 10.1021/acsphotonics.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 01/23/2025]
Abstract
THz metamaterials present unique opportunities for next-generation technologies and applications as they can fill the "THz gap" originating from the weak response of natural materials in this regime, providing a variety of novel or advanced electromagnetic wave control components and systems. Here, we propose a novel metamaterial design made of three-dimensional, metallic, "cactus-like" meta-atoms, showing electromagnetically induced transparency (EIT) and enhanced refractive index sensing performance at low THz frequencies. Following a detailed theoretical analysis, the structure is realized experimentally using multiphoton polymerization and electroless silver plating. The experimental characterization results obtained through THz time domain spectroscopy validate the corresponding numerical data, verifying the high potential of the proposed structure for slow light and sensing applications.
Collapse
|
research-article |
1 |
|
21
|
Ziółkowska A, Witwicki M. Understanding the Exchange Interaction between Paramagnetic Metal Ions and Radical Ligands: DFT and Ab Initio Study on Semiquinonato Cu(II) Complexes. Int J Mol Sci 2023; 24:ijms24044001. [PMID: 36835412 PMCID: PMC9959031 DOI: 10.3390/ijms24044001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The exchange coupling, represented by the J parameter, is of tremendous importance in understanding the reactivity and magnetic behavior of open-shell molecular systems. In the past, it was the subject of theoretical investigations, but these studies are mostly limited to the interaction between metallic centers. The exchange coupling between paramagnetic metal ions and radical ligands has hitherto received scant attention in theoretical studies, and thus the understanding of the factors governing this interaction is lacking. In this paper, we use DFT, CASSCF, CASSCF/NEVPT2, and DDCI3 methods to provide insight into exchange interaction in semiquinonato copper(II) complexes. Our primary objective is to identify structural features that affect this magnetic interaction. We demonstrate that the magnetic character of Cu(II)-semiquinone complexes are mainly determined by the relative position of the semiquinone ligand to the Cu(II) ion. The results can support the experimental interpretation of magnetic data for similar systems and can be used for the in-silico design of magnetic complexes with radical ligands.
Collapse
|
research-article |
2 |
|
22
|
Barnett SM, Burnett K, Vaccaro JA. Why a Condensate Can Be Thought of as Having a Definite Phase. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 1996; 101:593-600. [PMID: 27805112 PMCID: PMC4907620 DOI: 10.6028/jres.101.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present an argument for assigning a definite phase to an assembly of Bose-Einstein Condensed atoms. This relies on the demonstration that a coherent state of the condensed system is a robust state in the presence of interactions between the condensate and its environment.
Collapse
|
|
29 |
|
23
|
Tsilipakos O, Viskadourakis Z, Tasolamprou AC, Zografopoulos DC, Kafesaki M, Kenanakis G, Economou EN. Meta-Atoms with Toroidal Topology for Strongly Resonant Responses. MICROMACHINES 2023; 14:468. [PMID: 36838168 PMCID: PMC9959404 DOI: 10.3390/mi14020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A conductive meta-atom of toroidal topology is studied both theoretically and experimentally, demonstrating a sharp and highly controllable resonant response. Simulations are performed both for a free-space periodic metasurface and a pair of meta-atoms inserted within a rectangular metallic waveguide. A quasi-dark state with controllable radiative coupling is supported, allowing to tune the linewidth (quality factor) and lineshape of the supported resonance via the appropriate geometric parameters. By conducting a rigorous multipole analysis, we find that despite the strong toroidal dipole moment, it is the residual electric dipole moment that dictates the electromagnetic response. Subsequently, the structure is fabricated with 3D printing and coated with silver paste. Importantly, the structure is planar, consists of a single metallization layer and does not require a substrate when neighboring meta-atoms are touching, resulting in a practical, thin and potentially low-loss system. Measurements are performed in the 5 GHz regime with a vector network analyzer and a good agreement with simulations is demonstrated.
Collapse
|
research-article |
2 |
|
24
|
Gong S, Wang T, Lin J, Wang L. Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1254. [PMID: 36770260 PMCID: PMC9920074 DOI: 10.3390/ma16031254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The polymers can be either dynamically tethered to or permanently grafted to the nanoparticle to produce polymer-functionalized nanoparticles. The surface mobility of polymer ligands with one end anchored to the nanoparticle can affect the surface pattern, but the effect remains unclear. Here, we addressed the influence of lateral polymer mobility on surface patterns by performing self-consistent field theory calculations on a modeled polymer-functionalized nanoparticle consisting of immobile and mobile brushes. The results show that except for the radius of nanoparticles and grafting density, the fraction of mobile brushes substantially influences the surface patterning of polymer-functionalized nanoparticles, including striped patterns and patchy patterns with various patches. The number of patches on a nanoparticle increases as the fraction of mobile brushes decreases, favored by the entropy of immobile brushes. Critically, we found that broken symmetry usually occurs in patchy nanoparticles, associated with the balance of enthalpic and entropic effects. The present work provides a fundamental understanding of the dependence of surface patterning on lateral polymer mobility. The work could also guide the preparation of diversified nanopatterns, especially for the asymmetric patchy nanoparticles, enabling the fundamental investigation of the interaction between polymer-functionalized nanoparticles.
Collapse
|
research-article |
2 |
|
25
|
Krakauer DC. Symmetry-simplicity, broken symmetry-complexity. Interface Focus 2023; 13:20220075. [PMID: 37065260 PMCID: PMC10102721 DOI: 10.1098/rsfs.2022.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/20/2023] [Indexed: 04/18/2023] Open
Abstract
Complex phenomena are made possible when: (i) fundamental physical symmetries are broken and (ii) from the set of broken symmetries historically selected ground states are applied to performing mechanical work and storing adaptive information. Over the course of several decades Philip Anderson enumerated several key principles that can follow from broken symmetry in complex systems. These include emergence, frustrated random functions, autonomy and generalized rigidity. I describe these as the four Anderson Principles all of which are preconditions for the emergence of evolved function. I summarize these ideas and discuss briefly recent extensions that engage with the related concept of functional symmetry breaking, inclusive of information, computation and causality.
Collapse
|
research-article |
2 |
|