Budroni MA, Riolfo LA, Lemaigre L, Rossi F, Rustici M, De Wit A. Chemical Control of Hydrodynamic Instabilities in Partially Miscible Two-Layer Systems.
J Phys Chem Lett 2014;
5:875-81. [PMID:
26274081 DOI:
10.1021/jz5000403]
[Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hydrodynamic instabilities at the interface between two partially miscible liquids impact numerous applications, including CO2 sequestration in saline aquifers. We introduce here a new laboratory-scale model system on which buoyancy- and Marangoni-driven convective instabilities of such partially miscible two-layer systems can easily be studied. This system consists of the stratification of a pure alkyl formate on top of a denser aqueous solution in the gravitational field. A rich spectrum of convective dynamics is obtained upon partial dissolution of the ester into the water followed by its hydrolysis. The properties of the convective patterns are controlled by the miscibility of the ester in water, the feedback of the dissolved species on its own miscibility, as well as the reactivity of given chemicals in the aqueous solution with the solubilized ester.
Collapse