Chen L, Li J, Tang Y, Pai YY, Chen Y, Pryds N, Irvin P, Levy J. Extreme Reconfigurable Nanoelectronics at the CaZrO
3 /SrTiO
3 Interface.
ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018;
30:e1801794. [PMID:
29962024 DOI:
10.1002/adma.201801794]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Complex oxide heterostructures have fascinating emergent properties that originate from the properties of the bulk constituents as well as from dimensional confinement. The conductive behavior of the polar/nonpolar LaAlO3 /SrTiO3 interface can be reversibly switched using conductive atomic force microscopy (c-AFM) lithography, enabling a wide range of devices and physics to be explored. Here, extreme nanoscale control over the CaZrO3 /SrTiO3 (CZO/STO) interface, which is formed from two materials that are both nonpolar, is reported. Nanowires with measured widths as narrow as 1.2 nm are realized at the CZO/STO interface at room temperature by c-AFM lithography. These ultrathin nanostructures have spatial dimensions at room temperature that are comparable to single-walled carbon nanotubes, and hold great promise for alternative oxide-based nanoelectronics, as well as offer new opportunities to investigate the electronic structure of the complex oxide interfaces. The cryogenic properties of devices constructed from quasi-1D channels, tunnel barriers, and planar gates exhibit gate-tunable superconductivity, quantum oscillations, electron pairing outside of the superconducting regime, and quasi-ballistic transport. This newly demonstrated ability to control the metal-insulator transition at nonpolar oxide interface greatly expands the class of materials whose behavior can be patterned and reconfigured at extreme nanoscale dimensions.
Collapse