1
|
Montoya JH, Tsai C, Vojvodic A, Nørskov JK. The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. CHEMSUSCHEM 2015; 8:2180-6. [PMID: 26097211 DOI: 10.1002/cssc.201500322] [Citation(s) in RCA: 512] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/09/2015] [Indexed: 05/03/2023]
Abstract
The electrochemical production of NH3 under ambient conditions represents an attractive prospect for sustainable agriculture, but electrocatalysts that selectively reduce N2 to NH3 remain elusive. In this work, we present insights from DFT calculations that describe limitations on the low-temperature electrocatalytic production of NH3 from N2 . In particular, we highlight the linear scaling relations of the adsorption energies of intermediates that can be used to model the overpotential requirements in this process. By using a two-variable description of the theoretical overpotential, we identify fundamental limitations on N2 reduction analogous to those present in processes such as oxygen evolution. Using these trends, we propose new strategies for catalyst design that may help guide the search for an electrocatalyst that can achieve selective N2 reduction.
Collapse
|
|
10 |
512 |
2
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021; 60:20627-20648. [PMID: 33861487 DOI: 10.1002/anie.202101818] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/10/2022]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2 RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2 RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2 . To conclude, the remaining technological challenges and future directions for the industrial application of the CO2 RR to generate CO are highlighted.
Collapse
|
Review |
4 |
232 |
3
|
Greeley J. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design. Annu Rev Chem Biomol Eng 2016; 7:605-35. [PMID: 27088666 DOI: 10.1146/annurev-chembioeng-080615-034413] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Scaling relationships are theoretical constructs that relate the binding energies of a wide variety of catalytic intermediates across a range of catalyst surfaces. Such relationships are ultimately derived from bond order conservation principles that were first introduced several decades ago. Through the growing power of computational surface science and catalysis, these concepts and their applications have recently begun to have a major impact in studies of catalytic reactivity and heterogeneous catalyst design. In this review, the detailed theory behind scaling relationships is discussed, and the existence of these relationships for catalytic materials ranging from pure metal to oxide surfaces, for numerous classes of molecules, and for a variety of catalytic surface structures is described. The use of the relationships to understand and elucidate reactivity trends across wide classes of catalytic surfaces and, in some cases, to predict optimal catalysts for certain chemical reactions, is explored. Finally, the observation that, in spite of the tremendous power of scaling relationships, their very existence places limits on the maximum rates that may be obtained for the catalyst classes in question is discussed, and promising strategies are explored to overcome these limitations to usher in a new era of theory-driven catalyst design.
Collapse
|
Review |
9 |
208 |
4
|
Abstract
The design and use of chiral dirhodium(II) paddlewheel complexes as catalysts for asymmetric metal carbenoid and metal nitrenoid reactions, and as Lewis acids have become areas of considerable interest during the past two decades. The metal carbenoid chemistry is especially versatile, encompassing transformations such as C-H insertions, cyclopropanations and ylide formation. A number of different classes of dirhodium(II) catalysts have been found to be broadly effective in this chemistry. This review will highlight that many of these catalysts have higher symmetry than the individual chiral ligands themselves. An introduction of theoretical aspects concerning the structure and symmetry of chiral dirhodium(II) complexes will be given followed by an overview of the major classes of catalysts developed to date. Some representative examples of the synthetic potential of these catalysts will also be discussed.
Collapse
|
research-article |
17 |
195 |
5
|
Yao D, Tang C, Vasileff A, Zhi X, Jiao Y, Qiao SZ. The Controllable Reconstruction of Bi-MOFs for Electrochemical CO 2 Reduction through Electrolyte and Potential Mediation. Angew Chem Int Ed Engl 2021; 60:18178-18184. [PMID: 34240788 DOI: 10.1002/anie.202104747] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/07/2022]
Abstract
Monitoring and controlling the reconstruction of materials under working conditions is crucial for the precise identification of active sites, elucidation of reaction mechanisms, and rational design of advanced catalysts. Herein, a Bi-based metal-organic framework (Bi-MOF) for electrochemical CO2 reduction is selected as a case study. In situ Raman spectra combined with ex situ electron microscopy reveal that the intricate reconstruction of the Bi-MOF can be controlled using two steps: 1) electrolyte-mediated dissociation and conversion of Bi-MOF to Bi2 O2 CO3 , and 2) potential-mediated reduction of Bi2 O2 CO3 to Bi. The intentionally reconstructed Bi catalyst exhibits excellent activity, selectivity, and durability for formate production, and the unsaturated surface Bi atoms formed during reconstruction become the active sites. This work emphasizes the significant impact of pre-catalyst reconstruction under working conditions and provides insight into the design of highly active and stable electrocatalysts through the regulation of these processes.
Collapse
|
Journal Article |
4 |
101 |
6
|
Xie L, Zhang XP, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel UP, Cao R. Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021; 60:7576-7581. [PMID: 33462971 DOI: 10.1002/anie.202015478] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Indexed: 12/31/2022]
Abstract
Nature uses Fe porphyrin sites for the oxygen reduction reaction (ORR). Synthetic Fe porphyrins have been extensively studied as ORR catalysts, but activity improvement is required. On the other hand, Fe porphyrins have been rarely shown to be efficient for the oxygen evolution reaction (OER). We herein report an enzyme-inspired Fe porphyrin 1 as an efficient catalyst for both ORR and OER. Complex 1, which bears a tethered imidazole for Fe binding, beats imidazole-free analogue 2, with an anodic shift of ORR half-wave potential by 160 mV and a decrease of OER overpotential by 150 mV to get the benchmark current density at 10 mA cm-2 . Theoretical studies suggested that hydroxide attack to a formal FeV =O form the O-O bond. The axial imidazole can prevent the formation of trans HO-FeV =O, which is less effective to form O-O bond with hydroxide. As a practical demonstration, we assembled rechargeable Zn-air battery with 1, which shows equal performance to that with Pt/Ir-based materials.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
95 |
7
|
Büttner H, Steinbauer J, Werner T. Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide by Using Bifunctional One-Component Phosphorus-Based Organocatalysts. CHEMSUSCHEM 2015; 8:2655-2669. [PMID: 26190476 DOI: 10.1002/cssc.201500612] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 06/04/2023]
Abstract
Numerous bifunctional organocatalysts were synthesized and tested for the atom-efficient addition of carbon dioxide and epoxides to produce cyclic carbonates. These catalysts are based on phosphonium salts containing an alcohol moiety in the side chain for substrate activation through hydrogen bonding. In the model reaction, converting 1,2-butylene oxide with CO2 , 19 catalysts were tested to determine structure-activity relationships. In total, 28 epoxides were converted with CO2 to give the respective cyclic carbonates in yields of up to 99%. Even at 45 °C, the most active catalyst was able to produce cyclic carbonates selectively in high yields. The carbonates were generally obtained as analytically pure products after simple filtration over silica gel. This single-component catalyst system works under neat and mild reaction conditions and tolerates several useful moieties.
Collapse
|
|
10 |
89 |
8
|
Harned AM. Asymmetric oxidative dearomatizations promoted by hypervalent iodine(III) reagents: an opportunity for rational catalyst design? Tetrahedron Lett 2014; 55:4681-4689. [PMID: 25147412 DOI: 10.1016/j.tetlet.2014.06.051] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The use of and λ3- and λ5-iodanes in the oxidative dearomatization of phenols is a well-established and general procedure for the construction of cyclohexadienone structures. However, their use in asymmetric dearomatization reactions is quite underdeveloped and, despite work by several research groups over the past several years, a general chiral aryl iodide catalyst has yet to emerge. This article will serve to highlight the significant progress that has been made in this area and will reveal some of deficiencies in the literature that the author believes may be hindering further progress.
Collapse
|
Journal Article |
11 |
86 |
9
|
Liu F, Shi C, Guo X, He Z, Pan L, Huang Z, Zhang X, Zou J. Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200307. [PMID: 35435329 PMCID: PMC9218766 DOI: 10.1002/advs.202200307] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Indexed: 05/05/2023]
Abstract
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
Collapse
|
Review |
3 |
76 |
10
|
Zhang Y, Birman VB. Effects of Methyl Substituents on the Activity and Enantioselectivity of Homobenzotetramisole-Based Catalysts in the Kinetic Resolution of Alcohols. Adv Synth Catal 2009; 351:2525-2529. [PMID: 23807875 DOI: 10.1002/adsc.200900383] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substitution of the tetrahydropyrimidine ring in enantioselective acyl transfer catalyst homobenzotetramisole (HBTM) 6 with methyl groups exerts a dramatic influence on its performance in the kinetic resolution of secondary alcohols. Syn-3-Methyl analogue of HBTM (9a) has proved to be superior to the parent compound in terms of catalytic activity, enantioselectivity, and synthetic accessibility.
Collapse
|
Journal Article |
16 |
64 |
11
|
Zhang J, Zhang H, Cheng MJ, Lu Q. Tailoring the Electrochemical Production of H 2 O 2 : Strategies for the Rational Design of High-Performance Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902845. [PMID: 31539208 DOI: 10.1002/smll.201902845] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The production of H2 O2 via the electrochemical oxygen reduction reaction (ORR) presents an attractive decentralized alternative to the current industry-dominant anthraquinone process. However, in order to achieve viable commercialization of this process, a state-of-the-art electrocatalyst exhibiting high activity, selectivity, and long-term stability is imperative for industrial applications. Herein, an in-depth discussion on the current frontiers in electrocatalyst design is provided, emphasizing the influences of electronic and geometric effects, surface structure, and the effects of heteroatom functionalization on the catalytic performance of commonly studied materials (metals, alloys, carbons). The limitations on the performance of the current catalyst materials are also discussed, together with alternative strategies to overcome the impediments. Finally, directions of future research efforts for the discovery of next-generation ORR electrocatalysts are highlighted.
Collapse
|
Review |
5 |
51 |
12
|
Jiang M, Zhu M, Wang M, He Y, Luo X, Wu C, Zhang L, Jin Z. Review on Electrocatalytic Coreduction of Carbon Dioxide and Nitrogenous Species for Urea Synthesis. ACS NANO 2023; 17:3209-3224. [PMID: 36786415 DOI: 10.1021/acsnano.2c11046] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical coreduction of carbon dioxide (CO2) and nitrogenous species (such as NO3-, NO2-, N2, and NO) for urea synthesis under ambient conditions provides a promising solution to realize carbon/nitrogen neutrality and mitigate environmental pollution. Although an increasing number of studies have made some breakthroughs in electrochemical urea synthesis, the unsatisfactory Faradaic efficiency, low urea yield rate, and ambiguous C-N coupling reaction mechanisms remain the major obstacles to its large-scale applications. In this review, we present the recent progress on electrochemical urea synthesis based on CO2 and nitrogenous species in aqueous solutions under ambient conditions, providing useful guidance and discussion on the rational design of metal nanocatalyst, the understanding of the C-N coupling reaction mechanism, and existing challenges and prospects for electrochemical urea synthesis. We hope that this review can stimulate more insights and inspiration toward the development of electrocatalytic urea synthesis technology.
Collapse
|
Review |
2 |
43 |
13
|
Ding J, Yang H, Zhang S, Liu Q, Cao H, Luo J, Liu X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204524. [PMID: 36287086 DOI: 10.1002/smll.202204524] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Indexed: 05/27/2023]
Abstract
With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.
Collapse
|
Review |
3 |
37 |
14
|
Groso EJ, Schindler CS. Recent advances in the application of ring-closing metathesis for the synthesis of unsaturated nitrogen heterocycles. SYNTHESIS-STUTTGART 2019; 51:1100-1114. [PMID: 31983781 PMCID: PMC6983305 DOI: 10.1055/s-0037-1611651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This short review summarizes recent advances relating to the application of ring-closing olefin-olefin and carbonyl-olefin metathesis reactions towards the synthesis of unsaturated five- and six-membered nitrogen heterocycles. These developments include catalyst modifications and reaction designs that will enable access to more complex nitrogen heterocycles.
Collapse
|
research-article |
6 |
35 |
15
|
Yu B, Huang A, Srinivas K, Zhang X, Ma F, Wang X, Chen D, Wang B, Zhang W, Wang Z, He J, Chen Y. Outstanding Catalytic Effects of 1T'-MoTe 2 Quantum Dots@3D Graphene in Shuttle-Free Li-S Batteries. ACS NANO 2021; 15:13279-13288. [PMID: 34351124 DOI: 10.1021/acsnano.1c03011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is still challenging to develop sulfur electrodes for Li-S batteries with high electrical conductivity and fast kinetics, as well as efficient suppression of the shuttling effect of lithium polysulfides. To address such issues, herein, polar MoTe2 with different phases (2H, 1T, and 1T') were deeply investigated by density functional theory calculations, suggesting that the 1T'-MoTe2 displays concentrated density of states (DOS) near the Fermi level with high conductivity. By optimization of the synthesis, 1T'-MoTe2 quantum dots decorated three-dimensional graphene (MTQ@3DG) was prepared to overcome these issues, and it accomplished exceptional performance in Li-S batteries. Owing to the chemisorption and high catalytic effect of 1T'-MoTe2 quantum dots, MTQ@3DG/S exhibits highly reversible discharge capacity of 1310.1 mAh g-1 at 0.2 C with 0.026% capacity fade rate per cycle over 600 cycles. The adsorption calculation demonstrates that the conversion of Li2S2 to Li2S is the rate-limiting step where the Gibbs free energies are 1.07 eV for graphene and 0.97 eV for 1T'-MoTe2, revealing the importance of 1T'-MoTe2. Furthermore, in situ Raman spectroscopy investigation proved the suppression of the shuttle effect of LiPSs in MTQ@3DG/S cells during the cycle.
Collapse
|
|
4 |
32 |
16
|
Fischer T, Bamberger J, Gómez-Martínez M, Piekarski DG, García Mancheño O. Helical Multi-Coordination Anion-Binding Catalysts for the Highly Enantioselective Dearomatization of Pyrylium Derivatives. Angew Chem Int Ed Engl 2019; 58:3217-3221. [PMID: 30427107 PMCID: PMC6470695 DOI: 10.1002/anie.201812031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/09/2018] [Indexed: 01/26/2023]
Abstract
A general and highly enantioselective synthesis of oxygen heterocycles from readily available in situ generated pyrylium derivatives has been realized by embracing a multi-coordination approach with helical anion-binding tetrakistriazole catalysts. The high activity of the tetrakistriazole (TetraTri) catalysts, with distinct confined anion-binding pockets, allows for remarkably low catalyst loadings (down to 0.05 mol %), while providing a simple access to chiral chromanones and dihydropyrones in high enantioselectivities (up to 98:2 e.r.). Moreover, experimental and theoretical studies provide new insights into the hydrogen-donor ability and key binding interactions of the TetraTri catalysts and its host:guest complexes, suggesting the formation of a 1:3 species.
Collapse
|
|
6 |
31 |
17
|
Jarvis AG, Obrecht L, Deuss PJ, Laan W, Gibson EK, Wells PP, Kamer PCJ. Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes. Angew Chem Int Ed Engl 2017; 56:13596-13600. [PMID: 28841767 PMCID: PMC5659135 DOI: 10.1002/anie.201705753] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 01/14/2023]
Abstract
Artificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition‐metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site‐specific phosphine bioconjugation methods and a lipid‐binding protein (SCP‐2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long‐chain linear aldehydes under benign aqueous conditions. Overall, this study demonstrates that judiciously chosen protein‐binding scaffolds can be adapted to obtain metalloenzymes that provide the reactivity of the introduced metal center combined with specifically intended product selectivity.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
30 |
18
|
Larsen MA, Oeschger RJ, Hartwig JF. Effect of Ligand Structure on the Electron Density and Activity of Iridium Catalysts for the Borylation of Alkanes. ACS Catal 2020; 10:3415-3424. [PMID: 33178481 DOI: 10.1021/acscatal.0c00152] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An in-depth study of iridium catalysts for the borylation of alkyl C-H bonds is reported. Although the borylation of aryl C-H bonds can be catalyzed by iridium complexes containing phen or bpy ligands at mild temperatures and with limiting arene, the borylation of alkyl C-H bonds remains underdeveloped. We prepared a library of phenanthrolines that contain varying substitution patterns. The corresponding phen-Ir trisboryl carbon monoxide complexes were synthesized to determine the electron-donating ability of these ligands, and the initial rates for the borylation of the C-H bonds in THF and diethoxyethane β to oxygen catalyzed by Ir complexes containing these ligands were measured. For some subsets of these ligands, the donor ability correlated positively with the rate of C-H borylation catalyzed by the complexes containing ligands within a given subset. However, across subsets, ligands possessing similar donor properties to one another form catalysts for the borylation of alkyl C-H bonds with widely varying activity. This phenomenon was investigated computationally, and it was discovered that the stabilizing interactions between the phenanthroline ligand and the boryl ligands attached to Ir in the transition state for C-H oxidative addition could account for the differences in the activity of the catalysts that possess similar electron densities at Ir. The effect of these interactions on the borylation of secondary alkyl C-H bonds is larger than it is on the borylation of primary alkyl C-H bonds.
Collapse
|
Journal Article |
5 |
27 |
19
|
Orian L, Wolters LP, Bickelhaupt FM. In silico design of heteroaromatic half-sandwich RhI catalysts for acetylene [2+2+2] cyclotrimerization: evidence of a reverse indenyl effect. Chemistry 2013; 19:13337-47. [PMID: 24038672 DOI: 10.1002/chem.201301990] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Indexed: 11/09/2022]
Abstract
A mechanistic density functional theory study of acetylene [2+2+2] cyclotrimerization to benzene catalyzed by Rh(I) half metallocenes is presented. The catalyst fragment contains a heteroaromatic ligand, that is, the 1,2-azaborolyl (Ab) or the 3a,7a-azaborindenyl (Abi) anions, which are isostructural and isoelectronic to the hydrocarbon cyclopentadienyl (Cp) and indenyl (Ind) anions, respectively, but differ from the last ones on having two adjacent carbon atoms replaced with a boron and a nitrogen atom. The better performance of either the classic hydrocarbon or the heteroaromatic catalysts is found to depend on the different mechanistic paths that can be envisioned for the process. The present analyses uncover and explain general structure-reactivity relationships that may serve as rational design principles. In particular, we provide evidence of a reverse indenyl effect.
Collapse
|
|
12 |
26 |
20
|
Lv C, Liu J, Lee C, Zhu Q, Xu J, Pan H, Xue C, Yan Q. Emerging p-Block-Element-Based Electrocatalysts for Sustainable Nitrogen Conversion. ACS NANO 2022; 16:15512-15527. [PMID: 36240028 DOI: 10.1021/acsnano.2c07260] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial nitrogen conversion reactions, such as the production of ammonia via dinitrogen or nitrate reduction and the synthesis of organonitrogen compounds via C-N coupling, play a pivotal role in the modern life. As alternatives to the traditional industrial processes that are energy- and carbon-emission-intensive, electrocatalytic nitrogen conversion reactions under mild conditions have attracted significant research interests. However, the electrosynthesis process still suffers from low product yield and Faradaic efficiency, which highlight the importance of developing efficient catalysts. In contrast to the transition-metal-based catalysts that have been widely studied, the p-block-element-based catalysts have recently shown promising performance because of their intriguing physiochemical properties and intrinsically poor hydrogen adsorption ability. In this Perspective, we summarize the latest breakthroughs in the development of p-block-element-based electrocatalysts toward nitrogen conversion applications, including ammonia electrosynthesis from N2 reduction and nitrate reduction and urea electrosynthesis using nitrogen-containing feedstocks and carbon dioxide. The catalyst design strategies and the underlying reaction mechanisms are discussed. Finally, major challenges and opportunities in future research directions are also proposed.
Collapse
|
Review |
3 |
23 |
21
|
Cao K, Shi L, Gong M, Cai J, Liu X, Chu S, Lang Y, Shan B, Chen R. Nanofence Stabilized Platinum Nanoparticles Catalyst via Facet-Selective Atomic Layer Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700648. [PMID: 28656628 DOI: 10.1002/smll.201700648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/04/2017] [Indexed: 06/07/2023]
Abstract
A facet-selective atomic layer deposition method is developed to fabricate oxide nanofence structure to stabilize Pt nanoparticles. CeOx is selectively deposited on Pt nanoparticles' (111) facets and naturally exposes Pt (100) facets. The facet selectivity is realized through different binding energies of Ce precursor fragments chemisorbed on Pt (111) and Pt (100), which is supported by in situ mass gain experiment and corroborated by density functional theory simulations. Such nanofence structure not only has exposed Pt active facets for carbon monoxide oxidation but also forms ceria-metal interfaces that are beneficial for activity enhancement. The composite catalysts show excellent sintering resistance up to 700 °C calcination. CeOx anchors Pt nanoparticles with a strong metal oxide interaction, and nanofence structure around Pt nanoparticles provides physical blocking that suppresses particles migration. The study reveals that forming oxide nanofence structure to encapsulate precious metal nanoparticles is an effective way to simultaneously enhance catalytic activity and thermal stability.
Collapse
|
|
8 |
20 |
22
|
Shan C, Wang Y, Li J, Zhao Q, Han R, Liu C, Liu Q. Recent Advances of VOCs Catalytic Oxidation over Spinel Oxides: Catalyst Design and Reaction Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37313598 DOI: 10.1021/acs.est.2c09861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) harm the environment and human health and have been of wide concern and purified efficiently by catalytic oxidation. Spinel oxides, mainly composed of transition metal elements with low price and extensive sources, have been widely investigated as efficient and stable catalysts for VOCs oxidation due to their adjustable element composition, flexible structure, and high thermal/chemical stability. However, it is necessary to dissect the design of the spinel in a targeted way to satisfy the removal of different types of VOCs. This article systematically summarizes the recent advances regarding the application of spinel oxides for VOCs catalytic oxidation. Specifically, the design strategies of spinel oxides were first introduced to clarify their effect on the structure and properties of the catalyst. Then the reaction mechanism and degradation pathway of different kinds of VOCs on the spinel oxides were in detail summarized, and the characteristic requirements of the spinel oxides for various VOCs purification were analyzed. Furthermore, the practice applications were also discussed. Finally, the prospects were proposed to guide the rational design of spinel-based catalysts for VOCs purification and intensify the understanding of reaction mechanisms.
Collapse
|
Review |
2 |
18 |
23
|
Gao J, Huang X, Cai W, Wang Q, Jia C, Liu B. Rational Design of an Iridium-Tungsten Composite with an Iridium-Rich Surface for Acidic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25991-26001. [PMID: 32428393 DOI: 10.1021/acsami.0c05906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing highly active and stable water oxidation catalysts with reduced cost in acidic media plays a critical role in clean energy technologies such as fuel cells and electrolyzers. Precious iridium-based oxides are still the only oxygen evolution reaction (OER) catalysts with reasonable activity and stability in acid. Herein, we design iridium-tungsten composites with a metallic tungsten-rich core and an iridium-rich surface by the sol-gel method followed by hydrogen reduction. The thus obtained iridium-tungsten catalyst shows much higher intrinsic water oxidation activity (100 mA/mgIr at an overpotential of 290 mV) and stability (100 h at 10 mA/cm2geom) together with reduced iridium content (33 wt % only) as compared with pure iridium oxide. An operando method using H2O2 as a probe molecule is developed to determine the relative adsorption strength of the reaction intermediates (*OH and *OOH) in the OER process. Detailed characterization shows that the tungsten-incorporated surface not only modulates the adsorption energy of oxygen intermediates on iridium but also enhances the stability of iridium species in acid, while the metallic tungsten core exhibits high electrical conductivity, all of which collectively give rise to the much enhanced catalytic performance of iridium-tungsten composite in acidic water oxidation. A single-membrane electrode assembly is further prepared to demonstrate the advantages and potential application of iridium-tungsten composite in practical proton exchange membrane electrolyzers.
Collapse
|
|
5 |
17 |
24
|
Lu T, Xu T, Zhu S, Li J, Wang J, Jin H, Wang X, Lv JJ, Wang ZJ, Wang S. Electrocatalytic CO 2 Reduction to Ethylene: From Advanced Catalyst Design to Industrial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2310433. [PMID: 37931017 DOI: 10.1002/adma.202310433] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The value-added chemicals, monoxide, methane, ethylene, ethanol, ethane, and so on, can be efficiently generated through the electrochemical CO2 reduction reaction (eCO2 RR) when equipped with suitable catalysts. Among them, ethylene is particularly important as a chemical feedstock for petrochemical manufacture. However, despite its high Faradaic efficiency achievable at relatively low current densities, the substantial enhancement of ethylene selectivity and stability at industrial current densities poses a formidable challenge. To facilitate the industrial implementation of eCO2 RR for ethylene production, it is imperative to identify key strategies and potential solutions through comprehending the recent advancements, remaining challenges, and future directions. Herein, the latest and innovative catalyst design strategies of eCO2 RR to ethylene are summarized and discussed, starting with the properties of catalysts such as morphology, crystalline, oxidation state, defect, composition, and surface engineering. The review subsequently outlines the related important state-of-the-art technologies that are essential in driving forward eCO2 RR to ethylene into practical applications, such as CO2 capture, product separation, and downstream reactions. Finally, a greenhouse model that integrates CO2 capture, conversion, storage, and utilization is proposed to present an ideal perspective direction of eCO2 RR to ethylene.
Collapse
|
Review |
2 |
16 |
25
|
Wolters LP, Bickelhaupt FM. Selective C-H and C-C Bond Activation: Electronic Regimes as a Tool for Designing d(10) MLn Catalysts. Chem Asian J 2015. [PMID: 26218844 DOI: 10.1002/asia.201500368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We wish to understand how a transition-metal catalyst can be rationally designed so as to selectively activate one particular bond in a substrate, herein, C-H and C-C bonds in ethane. To this end, we quantum chemically analyzed the activity and selectivity of a large series of model catalysts towards ethane and, for comparison, methane, by using the activation strain model and quantitative molecular orbital theory. The model catalysts comprise d(10) MLn complexes with coordination numbers n=0, 1, and 2; metal centers M=Co(-), Rh(-), Ir(-), Ni, Pd, Pt, Cu(+), Ag(+), and Au(+); and ligands L=NH3, PH3, and CO. Our analyses reveal that rather subtle electronic differences between bonds can be exploited to induce a lower barrier for activating one or the other, depending, among other factors, on the catalysts electronic regime (i.e., s-regime versus d-regime catalysts). Interestingly, the concepts and design principles emerging from this work can also be applied to the more challenging problem of differentiating between activation of the C-H bonds in ethane versus those in methane.
Collapse
|
Journal Article |
10 |
13 |