Atif M, Dilawaiz, Akhtar H, Imran M, Ullah MZ, Andaleeb H, Hussain MA. In Vitro Hydroxyapatite Nucleation in Cationically Cured Epoxy Composites with Pulverized Date Seed.
Polymers (Basel) 2024;
16:3463. [PMID:
39771316 PMCID:
PMC11728756 DOI:
10.3390/polym16243463]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
Recently, driven by a growing focus on environmental sustainability and cost-effectiveness, researchers have shown a keen interest in creating useful materials from bio-wastes, particularly for their potential applications in the biomedical field. Current research has been conducted on the impact of date seed powder (DSP) on hydroxyapatite (HA) formation, specifically in relation to the promotion of bone health and regeneration. HA is an essential component of bone tissue and plays a crucial role in maintaining bone strength and structure. Date seed (DS) was used in two forms i.e., grains and powder, with unmodified and modified surface chemistries. Prepared composites were tested in vitro by soaking them in simulated body fluid (SBF). X-ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) confirmed HA formation in all soaked samples. Thermogravimetric analysis (TGA) results indicated an improvement in thermal stability after soaking, suggesting a higher concentration of HA. Unsoaked samples were observed to have higher heat flow than soaked samples. The high gel content (GCs) over 90% and low hydrophilicity (less than 5%) of DSP-based composites were proven to be beneficial in HA nucleation. Antibacterial activity showed that the addition of DS filler yielded superior results compared to the pristine sample. Additionally, the modified samples demonstrated better antibacterial results than the unmodified ones.
Collapse