1
|
Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 2010; 67:715-26. [PMID: 19898741 PMCID: PMC11115801 DOI: 10.1007/s00018-009-0186-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/02/2009] [Accepted: 10/15/2009] [Indexed: 01/19/2023]
Abstract
Crossing biological barriers represents a major limitation for clinical applications of biomolecules such as nucleic acids, peptides or proteins. Cell penetrating peptides (CPP), also named protein transduction domains, comprise short and usually basic amino acids-rich peptides originating from proteins able to cross biological barriers, such as the viral Tat protein, or are rationally designed. They have emerged as a new class of non-viral vectors allowing the delivery of various biomolecules across biological barriers from low molecular weight drugs to nanosized particles. Encouraging data with CPP-conjugated oligonucleotides have been obtained both in vitro and in vivo in animal models of diseases such as Duchenne muscular dystrophy. Whether CPP-cargo conjugates enter cells by direct translocation across the plasma membrane or by endocytosis remains controversial. In many instances, however, endosomal escape appears as a major limitation of this new delivery strategy.
Collapse
|
Evaluation Study |
15 |
170 |
2
|
Zhang P, Cheetham AG, Lin YA, Cui H. Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS NANO 2013; 7:5965-77. [PMID: 23758167 PMCID: PMC3799919 DOI: 10.1021/nn401667z] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cell penetrating peptides (CPPs) have been extensively explored as molecular vectors through covalent linkage to anticancer drugs to improve the drug's water solubility and to help overcome multidrug resistance. We report here the use of the Tat CPP as a molecular building unit to construct well-defined supramolecular nanofibers that can be utilized as a nanoscale vector to encapsulate the hydrophobic drug paclitaxel (PTX) (loading efficiency: 89.7 ± 5.0%) with a high loading capacity (6.8 ± 0.4%). Notably, our TEM imaging results reveal that nanofibers containing a higher PTX content tend to be more flexible than those with a lower PTX content. Fluorescence and confocal microscopy imaging show that the Tat nanofibers can effectively transport encapsulated molecules into the cells through an adsorptive-mediated endocytosis pathway. Cytotoxicity experiments and flow cytometry measurements demonstrate that PTX loaded in the nanofibers exerts its cytotoxicity against cancer cells by arresting the cells at the G2/M phase, the same working mechanism as free PTX.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
161 |
3
|
Bernkop-Schnürch A. Strategies to overcome the polycation dilemma in drug delivery. Adv Drug Deliv Rev 2018; 136-137:62-72. [PMID: 30059702 DOI: 10.1016/j.addr.2018.07.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/07/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022]
Abstract
Because of polycationic auxiliary agents such as chitosan, polyethyleneimine and cell penetrating peptides as well as cationic lipids assembling to polycationic systems, drug carriers can tightly interact with cell membranes exhibiting a high-density anionic charge. Because of these interactions the cell membrane is depolarized and becomes vulnerable to various uptake mechanisms. On their way to the target site, however, the polycationic character of all these drug carriers is eliminated by polyanionic macromolecules such as mucus glycoproteins, serum proteins, proteoglycans of the extracellular matrix (ECM) and polyanionic surface substructures of non-target cells such as red blood cells. Strategies to overcome this polycation dilemma are focusing on a pH-, redox- or enzyme-triggered charge conversion at the target site. The pH-triggered systems are making use of a slight acidic environment at the target site such as in case of solid tumors, inflammatory tissue and ischemic tissue. Due to a pH shift from 7.2 to slightly acidic mainly amino substructures of polymeric excipients are protonated or shielding groups such as 2,3 dimethylmaleic acid are cleaved off unleashing the underlying cationic character. Redox-triggered systems are utilizing disulfide linkages to bulky side chains such as PEGs masking the polycationic character. Under mild reducing conditions such as in the tumor microenvironment these disulfide bonds are cleaved. Enzyme-triggered systems are targeting enzymes such as alkaline phosphatase, matrix metalloproteinases or hyaluronidase in order to eliminate anionic moieties via enzymatic cleavage resulting in a charge conversion from negative to positive. Within this review an overview about the pros and cons of these systems is provided.
Collapse
|
Review |
7 |
106 |
4
|
Taylor RE, Zahid M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics 2020; 12:E225. [PMID: 32138146 PMCID: PMC7150854 DOI: 10.3390/pharmaceutics12030225] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Cell penetrating peptides (CPPs), also known as protein transduction domains (PTDs), first identified ~25 years ago, are small, 6-30 amino acid long, synthetic, or naturally occurring peptides, able to carry variety of cargoes across the cellular membranes in an intact, functional form. Since their initial description and characterization, the field of cell penetrating peptides as vectors has exploded. The cargoes they can deliver range from other small peptides, full-length proteins, nucleic acids including RNA and DNA, liposomes, nanoparticles, and viral particles as well as radioisotopes and other fluorescent probes for imaging purposes. In this review, we will focus briefly on their history, classification system, and mechanism of transduction followed by a summary of the existing literature on use of CPPs as gene delivery vectors either in the form of modified viruses, plasmid DNA, small interfering RNA, oligonucleotides, full-length genes, DNA origami or peptide nucleic acids.
Collapse
|
Review |
5 |
106 |
5
|
Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:585-99. [PMID: 23898223 PMCID: PMC3718765 DOI: 10.2147/dddt.s45614] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drug discovery and drug delivery are two main aspects for treatment of a variety of disorders. However, the real bottleneck associated with systemic drug administration is the lack of target-specific affinity toward a pathological site, resulting in systemic toxicity and innumerable other side effects as well as higher dosage requirement for efficacy. An attractive strategy to increase the therapeutic index of a drug is to specifically deliver the therapeutic molecule in its active form, not only into target tissue, nor even to target cells, but more importantly, into the targeted organelle, ie, to its intracellular therapeutic active site. This would ensure improved efficacy and minimize toxicity. Cancer chemotherapy today faces the major challenge of delivering chemotherapeutic drugs exclusively to tumor cells, while sparing normal proliferating cells. Nanoparticles play a crucial role by acting as a vehicle for delivery of drugs to target sites inside tumor cells. In this review, we spotlight active and passive targeting, followed by discussion of the importance of targeting to specific cell organelles and the potential role of cell-penetrating peptides. Finally, the discussion will address the strategies for drug/DNA targeting to lysosomes, mitochondria, nuclei and Golgi/endoplasmic reticulum.
Collapse
|
Review |
12 |
94 |
6
|
Shin MC, Zhang J, Min KA, Lee K, Byun Y, David AE, He H, Yang VC. Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 2013; 102:575-87. [PMID: 23852939 DOI: 10.1002/jbm.a.34859] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 11/12/2022]
Abstract
One of the major hurdles to cure cancer lies in the low potency of currently available drugs, which could eventually be solved by using more potent therapeutic macromolecules, such as proteins or genes. However, although these macromolecules possess greater potency inside the cancer cells, the barely permeable cell membrane remains a formidable barrier to exert their efficacy. A widely used strategy is to use cell penetrating peptides (CPPs) to improve their intracellular uptake. Since the discovery of the first CPP, numerous CPPs have been derived from natural or synthesized products. Both in vitro and in vivo studies have demonstrated that those CPPs are highly efficient in transducing cargoes into almost all cell types. Therefore, to date, CPPs have been widely used for intracellular delivery of various cargoes, including peptides, proteins, genes, and even nanoparticles. In addition, recently, based on the successes of CPPs in cellular studies, their applications in vivo have been actively pursued. This review will focus on the advanced applications of CPP-based in vivo delivery of therapeutics (e.g., small molecule drugs, proteins, and genes). In addition, we will highlight certain updated applications of CPPs for intracellular delivery of nanoparticulate drug carriers, as well as several "smart" strategies for tumor targeted delivery of CPP-cargoes.
Collapse
|
Review |
12 |
90 |
7
|
Yin L, Song Z, Kim KH, Zheng N, Gabrielson NP, Cheng J. Non-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3063-70. [PMID: 23417835 PMCID: PMC3757134 DOI: 10.1002/adma.201205088] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Indexed: 05/12/2023]
Abstract
Supramolecular self-assembled nanocomplexes (SSANs) capable of mannose receptor-mediated endocytosis and permeable to cellular and endosomal membranes are developed via the assembly of multiple rationally designed, function-specific materials. As a unique non-viral gene delivery vector, SSANs outperform commercial transfection reagents, including LPF2000, PEI, and jetPEI, by up to 2 orders of magnitude.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
89 |
8
|
Tripathi PP, Arami H, Banga I, Gupta J, Gandhi S. Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget 2018; 9:37252-37267. [PMID: 30647857 PMCID: PMC6324683 DOI: 10.18632/oncotarget.26442] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
Abstract
Delivery of imaging reagents and drugs to tumors is essential for cancer diagnosis and therapy. In addition to therapeutic and diagnostic functionalities, peptides have potential benefits such as biocompatibility, ease to synthesize, smaller size, by-passing off-target side effects, and achieving the beneficial effects with lower-administered dosages. A particular type of peptide known as cell penetrating peptides (CPP) have been predominantly studied during last twenty years as they are not only capable to translocate themselves across membranes but also allow carrier drugs to translocate across plasma membrane, by different mechanisms depending on the CPP. This is of great potential importance in drug delivery systems, as the ability to pass across membranes is crucial to many drug delivery systems. In spite of significant progress in design and application of CPP, more investigations are required to further improve their delivery to tumors, with reduced side-effect and enhanced therapeutic efficacy. In this review, we emphasis on current advancements in preclinical and clinical trials based on using CPP for more efficient delivery of anti-cancer drugs and imaging reagents to cancer tissues and individual cells associated with them. We discuss the evolution of the CPPs-based strategies for targeted delivery, their current status and strengths, along with summarizing the role of CPPs in targeted drug delivery. We also discuss some recently reported diagnostic applications of engineered protease-responsive substrates and activable imaging complexes. We highlight the recent clinical trial data by providing a road map for better design of the CPPs for future preclinical and clinical applications.
Collapse
|
Review |
7 |
82 |
9
|
Arora S, Layek B, Singh J. Design and Validation of Liposomal ApoE2 Gene Delivery System to Evade Blood-Brain Barrier for Effective Treatment of Alzheimer's Disease. Mol Pharm 2021; 18:714-725. [PMID: 32787268 PMCID: PMC10292003 DOI: 10.1021/acs.molpharmaceut.0c00461] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Targeting gene-based therapeutics to the brain is a strategy actively sought to treat Alzheimer's disease (AD). Recent findings discovered the role of apolipoprotein E (ApoE) isoforms in the clearance of toxic amyloid beta proteins from the brain. ApoE2 isoform is beneficial for preventing AD development, whereas ApoE4 is a major contributing factor to the disease. In this paper, we demonstrated efficient brain-targeted delivery of ApoE2 encoding plasmid DNA (pApoE2) using glucose transporter-1 (glut-1) targeted liposomes. Liposomes were surface-functionalized with a glut-1 targeting ligand mannose (MAN) and a cell-penetrating peptide (CPP) to enhance brain-targeting and cellular internalization, respectively. Among various CPPs, rabies virus glycoprotein peptide (RVG) or penetratin (Pen) was selected as a cell-penetration enhancer. Dual (RVGMAN and PenMAN)-functionalized liposomes were cytocompatible at 100 nM phospholipid concentration and demonstrated significantly higher expression of ApoE2 in bEnd.3 cells, primary neurons, and astrocytes compared to monofunctionalized and unmodified (plain) liposomes. Dual-modified liposomes also showed ∼2 times higher protein expression than other formulation controls in neurons cultured below the in vitro BBB model. These results translated well to in vivo efficacy study with significantly higher transfection of pApoE2 in the C57BL/6 mice brain following single tail vein administration of RVGMAN and PenMAN functionalized liposomes without any noticeable signs of toxicity. These results illustrate the potential of surface-modified liposomes for safe and brain-targeted delivery of the pApoE2 gene for effective AD therapy.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
76 |
10
|
Patlolla RR, Desai P, Belay K, Singh M. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials 2010; 31:5598-607. [PMID: 20413152 PMCID: PMC2875303 DOI: 10.1016/j.biomaterials.2010.03.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/03/2010] [Indexed: 11/28/2022]
Abstract
The objective of the current study was to evaluate the ability of cell penetrating peptides (CPP) to translocate the lipid payload into the skin layers. Fluorescent dye (DID-oil) encapsulated nano lipid crystal nanoparticles (FNLCN) were prepared using Compritol, Miglyol and DOGS-NTA-Ni lipids by hot melt homogenization technique. The FNLCN surface was coated with TAT peptide (FNLCNT) or control YKA peptide (FNLCNY) and in vitro rat skin permeation studies were performed using Franz diffusion cells. Observation of lateral skin sections obtained using cryotome with a confocal microscope demonstrated that skin permeation of FNLCNT was time dependent and after 24h, fluorescence was observed upto a depth of 120 microm which was localized in the hair follicles and epidermis. In case of FNLCN and FNLCNY formulations fluorescence was mainly observed in the hair follicles. This observation was further supported by confocal Raman spectroscopy where higher fluorescence signal intensity was observed at 80 and 120 microm depth with FNLCNT treated skin and intensity of fluorescence peaks was in the ratio of 2:1:1 and 5:3:1 for FNLCNT, FNLCN, and FNLCNY treated skin sections, respectively. Furthermore, replacement of DID-oil with celecoxib (Cxb), a model lipophilic drug showed similar results and after 24h, the CXBNT formulation increased the Cxb concentration in SC by 3 and 6 fold and in epidermis by 2 and 3 fold as compared to CXBN and CXBNY formulations respectively. Our results strongly suggest that CPP can translocate nanoparticles with their payloads into deeper skin layers.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
74 |
11
|
Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH, Han HK. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 2022; 29:1959-1970. [PMID: 35762636 PMCID: PMC9246174 DOI: 10.1080/10717544.2022.2089296] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Conventional chemotherapy lacking target selectivity often leads to severe side effects, limiting the effectiveness of chemotherapy. Therefore, drug delivery systems ensuring both selective drug release and efficient intracellular uptake at the target sites are highly demanded in chemotherapy to improve the quality of life of patients with low toxicity. One of the effective approaches for tumor-selective drug delivery is the adoption of functional ligands that can interact with specific receptors overexpressed in malignant cancer cells. Various functional ligands including folic acid, hyaluronic acid, transferrin, peptides, and antibodies, have been extensively explored to develop tumor-selective drug delivery systems. Furthermore, cell-penetrating peptides or ligands for tight junction opening are also actively pursued to improve the intracellular trafficking of anticancer drugs. Sometimes, multiple ligands with different roles are used in combination to enhance the cellular uptake as well as target selectivity of anticancer drugs. In this review, the current status of various functional ligands applicable to improve the effectiveness of cancer chemotherapy is overviewed with a focus on their roles, characteristics, and preclinical/clinical applications.
Collapse
|
Review |
3 |
73 |
12
|
Rujitanaroj PO, Jao B, Yang J, Wang F, Anderson JM, Wang J, Chew SY. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater 2013; 9:4513-24. [PMID: 23036951 PMCID: PMC3523808 DOI: 10.1016/j.actbio.2012.09.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The foreign body reaction often interferes with the long-term functionality and performance of implanted biomedical devices through fibrous capsule formation. While many implant modification techniques have been adopted in attempts to control fibrous encapsulation, the outcomes remained sub-optimal. Nanofiber scaffold-mediated RNA interference may serve as an alternative approach through the localized and sustained delivery of siRNA at implant sites. In this study, we investigated the efficacy of siRNA-poly(caprolactone-co-ethylethylene phosphate) nanofibers in controlling fibrous capsule formation through the down-regulation of collagen type I (COL1A1) in vitro and in vivo. By encapsulating complexes of COL1A1 siRNA with a transfection reagent (Transit TKO) or the cell penetrating peptides CADY or MPG within the nanofibers (550-650 nm in diameter), a sustained release of siRNA was obtained for at least 28 days (loading efficiency ~60-67%). Scaffold-mediated transfection significantly enhanced cellular uptake of oligonucleotides and prolonged in vitro gene silencing duration by at least 2-3 times as compared to conventional bolus delivery of siRNA (14 days vs. 5-7 days by bolus delivery). In vivo subcutaneous implantation of siRNA scaffolds revealed a significant decrease in fibrous capsule thickness at weeks 2 and 4 as compared to plain nanofibers (p<0.05). Taken together, the results demonstrated the efficacy of scaffold-mediated siRNA gene-silencing in providing effective long-term control of fibrous capsule formation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
68 |
13
|
Marschall ALJ, Zhang C, Frenzel A, Schirrmann T, Hust M, Perez F, Dübel S. Delivery of antibodies to the cytosol: debunking the myths. MAbs 2014; 6:943-56. [PMID: 24848507 DOI: 10.4161/mabs.29268] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The use of antibodies to target their antigens in living cells is a powerful analytical tool for cell biology research. Not only can molecules be localized and visualized in living cells, but interference with cellular processes by antibodies may allow functional analysis down to the level of individual post-translational modifications and splice variants, which is not possible with genetic or RNA-based methods. To utilize the vast resource of available antibodies, an efficient system to deliver them into the cytosol from the outside is needed. Numerous strategies have been proposed, but the most robust and widely applicable procedure still remains to be identified, since a quantitative ranking of the efficiencies has not yet been done. To achieve this, we developed a novel efficiency evaluation method for antibody delivery based on a fusion protein consisting of a human IgG 1 Fc and the recombination enzyme Cre (Fc-Cre). Applied to suitable GFP reporter cells, it allows the important distinction between proteins trapped in endosomes and those delivered to the cytosol. Further, it ensures viability of positive cells and is unsusceptible to fixation artifacts and misinterpretation of cellular localization in microscopy and flow cytometry. Very low cytoplasmic delivery efficiencies were found for various profection reagents and membrane penetrating peptides, leaving electroporation as the only practically useful delivery method for antibodies. This was further verified by the successful application of this method to bind antibodies to cytosolic components in living cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
65 |
14
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
|
Review |
2 |
55 |
15
|
Patel LN, Wang J, Kim KJ, Borok Z, Crandall E, Shen WC. Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin. Mol Pharm 2009; 6:492-503. [PMID: 19228019 PMCID: PMC2798810 DOI: 10.1021/mp800174g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we determined if cell-penetrating peptides (CPPs) can be used to enhance the absorption rate of insulin (INS) across the alveolar epithelial barrier. Using a heterobifunctional cross-linker, INS was conjugated to a series of cationic CPPs, including Tat peptide, oligoarginine (r9) or oligolysine (k9), via disulfide bridge to a D-isoform cysteine (c) present at the N-terminal of the peptide sequence, yielding INS-cTat, INS-cr9, and INS-ck9, respectively. SDS-PAGE and MALDI-TOF mass spectroscopy confirmed homogeneous conjugates with a 1:1 ratio of INS and various CPPs. Transport of INS and INS-CPPs across primary cultured rat alveolar epithelial cell monolayers was in the order INS-cr9 > INS-cTat > INS-ck9 > INS, with 27-, 19- and 4-fold increase compared to native INS, respectively. Transport of INS-cr9 was temperature- and time-dependent. Covalent conjugation between r9 and INS, as opposed to adding unconjugated INS and r9 together into donor fluid, was necessary to enhance transport of INS. Absorption of INS-cr9 across the alveolar epithelial barrier appeared to be in part transcellular, since INS-cr9 transport in the presence of heparin and protamine was decreased by approximately 20%. Adsorptive transcytosis appeared to be in part responsible for INS-cr9 absorption, as INS-cr9 did not compete with free INS in binding assays for INS receptors. Finally, intratracheal instillation of INS-cr9 in diabetic rats resulted in a steady decrease in blood glucose level that was more sustained over time when compared with INS. These results suggest that oligoarginine can be used to increase the alveolar absorption rate of insulin (and potentially other macromolecules as well).
Collapse
|
Research Support, N.I.H., Extramural |
16 |
49 |
16
|
Gan BH, Siriwardena TN, Javor S, Darbre T, Reymond JL. Fluorescence Imaging of Bacterial Killing by Antimicrobial Peptide Dendrimer G3KL. ACS Infect Dis 2019; 5:2164-2173. [PMID: 31618574 DOI: 10.1021/acsinfecdis.9b00299] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We recently discovered that peptide dendrimers such as G3KL ((KL)8(KKL)4(KKL)2KKL, K = branching l-lysine) exert strong activity against Gram-negative bacteria including Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. Herein, we report a detailed mechanistic study using fluorescence labeled analogs bearing fluorescein (G3KL-Fluo) or dansyl (G3KL-Dansyl), which show a similar bioactivity profile as G3KL. Imaging bacterial killing by super-resolution stimulated emission depletion (STED) microscopy, time-lapse imaging, and transmission electron microscopy (TEM) reveals that the dendrimer localizes at the bacterial membrane, induces membrane depolarization and permeabilization, and destroys the outer leaflet and the inner membrane. G3KL accumulates in bacteria against which it is active; however, it only weakly penetrates into eukaryotic cells without inducing significant toxicity. G3KL furthermore binds to lipopolysaccharide (LPS) and inhibits the LPS induced release of TNF-α by macrophages, similarly to polymyxin B. Taken together, these experiments show that G3KL behaves as a potent membrane disruptive antimicrobial peptide.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
47 |
17
|
Afsari HS, Cardoso Dos Santos M, Lindén S, Chen T, Qiu X, van Bergen en Henegouwen PMP, Jennings TL, Susumu K, Medintz IL, Hildebrandt N, Miller LW. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. SCIENCE ADVANCES 2016; 2:e1600265. [PMID: 27386579 PMCID: PMC4928903 DOI: 10.1126/sciadv.1600265] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/19/2016] [Indexed: 05/20/2023]
Abstract
Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide-mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
47 |
18
|
Hyman JM, Geihe EI, Trantow BM, Parvin B, Wender PA. A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters. Proc Natl Acad Sci U S A 2012; 109:13225-30. [PMID: 22847404 PMCID: PMC3421176 DOI: 10.1073/pnas.1202509109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interest in algae has significantly accelerated with the increasing recognition of their potentially unique role in medical, materials, energy, bioremediation, and synthetic biological research. However, the introduction of tools to study, control, or expand the inner-workings of algae has lagged behind. Here we describe a general molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for bringing small and large cargos into algal cells. Significantly, this method is shown to work in wild-type algae that have an intact cell wall. Developed using Chlamydomonas reinhardtii, this method is also successful with less studied algae including Neochloris oleoabundans and Scenedesmus dimorphus thus providing a new and versatile tool for algal research.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
44 |
19
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
|
Review |
4 |
41 |
20
|
Tarvirdipour S, Huang X, Mihali V, Schoenenberger CA, Palivan CG. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules 2020; 25:E3482. [PMID: 32751865 PMCID: PMC7435460 DOI: 10.3390/molecules25153482] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology approaches play an important role in developing novel and efficient carriers for biomedical applications. Peptides are particularly appealing to generate such nanocarriers because they can be rationally designed to serve as building blocks for self-assembling nanoscale structures with great potential as therapeutic or diagnostic delivery vehicles. In this review, we describe peptide-based nanoassemblies and highlight features that make them particularly attractive for the delivery of nucleic acids to host cells or improve the specificity and sensitivity of probes in diagnostic imaging. We outline the current state in the design of peptides and peptide-conjugates and the paradigms of their self-assembly into well-defined nanostructures, as well as the co-assembly of nucleic acids to form less structured nanoparticles. Various recent examples of engineered peptides and peptide-conjugates promoting self-assembly and providing the structures with wanted functionalities are presented. The advantages of peptides are not only their biocompatibility and biodegradability, but the possibility of sheer limitless combinations and modifications of amino acid residues to induce the assembly of modular, multiplexed delivery systems. Moreover, functions that nature encoded in peptides, such as their ability to target molecular recognition sites, can be emulated repeatedly in nanoassemblies. Finally, we present recent examples where self-assembled peptide-based assemblies with "smart" activity are used in vivo. Gene delivery and diagnostic imaging in mouse tumor models exemplify the great potential of peptide nanoassemblies for future clinical applications.
Collapse
|
Review |
5 |
38 |
21
|
Karagiannis ED, Urbanska AM, Sahay G, Pelet JM, Jhunjhunwala S, Langer R, Anderson DG. Rational design of a biomimetic cell penetrating peptide library. ACS NANO 2013; 7:8616-8626. [PMID: 24047542 PMCID: PMC3898733 DOI: 10.1021/nn4027382] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cell penetrating peptides have demonstrated potential to facilitate the cellular delivery of therapeutic molecules. Here we develop a set of 50 cell penetrating peptide based formulations with potential to deliver small interfering RNAs intercellularly. The transfection efficacy of siRNA containing lipid-like nanoparticles decorated with different peptides was evaluated both in vitro and in vivo and correlated with the peptide physical and chemical properties. In vitro, these particles were internalized primarily through macropinocytosis. When the peptides were presented to bone marrow-derived dendritic cells, they induce low immunoactivation relative to control cell penetrating peptides including the antennapedia homeodomain and TAT, as quantified by the expression of activation specific surface proteins like CD80, CD86, and major histocompatibility complex class II. In vivo, peptide decorated nanoparticles primarily accumulated in the lungs and the liver. Three human peptides derived from surfactant protein B (a lung surfactant protein), orexin (a neuropeptide hormone, and lactoferricin (a globular glycoprotein) that exist in many physiological fluids facilitated the in vivo delivery of siRNA and induce significant knock down (90%) of a hepatocyte expressed protein, coagulation Factor VII.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
37 |
22
|
Cardiac Targeting Peptide, a Novel Cardiac Vector: Studies in Bio-Distribution, Imaging Application, and Mechanism of Transduction. Biomolecules 2018; 8:biom8040147. [PMID: 30441852 PMCID: PMC6315548 DOI: 10.3390/biom8040147] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Our previous work identified a 12-amino acid peptide that targets the heart, termed cardiac targeting peptide (CTP). We now quantitatively assess the bio-distribution of CTP, show a clinical application with the imaging of the murine heart, and study its mechanisms of transduction. Bio-distribution studies of cyanine5.5-N-Hydroxysuccinimide (Cy5.5) labeled CTP were undertaken in wild-type mice. Cardiac targeting peptide was labeled with Technetium 99m (99mTc) using the chelator hydrazino-nicotinamide (HYNIC), and imaging performed using micro-single photon emission computerized tomography/computerized tomography (SPECT/CT). Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMCs) were incubated with dual-labeled CTP, and imaged using confocal microscopy. TriCEPs technology was utilized to study the mechanism of transduction. Bio-distribution studies showed peak uptake of CTP at 15 min. 99mTc-HYNIC-CTP showed heart-specific uptake. Robust transduction of beating human iPSC-derived CMCs was seen. TriCEPs experiments revealed five candidate binding partners for CTP, with Kcnh5 being felt to be the most likely candidate as it showed a trend towards being competed out by siRNA knockdown. Transduction efficiency was enhanced by increasing extracellular potassium concentration, and with Quinidine, a Kcnh5 inhibitor, that blocks the channel in an open position. We demonstrate that CTP transduces the normal heart as early as 15 min. 99mTc-HYNIC-CTP targets the normal murine heart with substantially improved targeting compared with 99mTc Sestamibi. Cardiac targeting peptide's transduction ability is not species limited and has human applicability. Cardiac targeting peptide appears to utilize Kcnh5 to gain cell entry, a phenomenon that is affected by pre-treatment with Quinidine and changes in potassium levels.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
37 |
23
|
Keller AA, Mussbach F, Breitling R, Hemmerich P, Schaefer B, Lorkowski S, Reissmann S. Relationships between Cargo, Cell Penetrating Peptides and Cell Type for Uptake of Non-Covalent Complexes into Live Cells. Pharmaceuticals (Basel) 2013; 6:184-203. [PMID: 24275947 PMCID: PMC3816687 DOI: 10.3390/ph6020184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/16/2022] Open
Abstract
Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell. In our studies complexes are formed with labeled or readily detectable cargoes for qualitative and quantitative estimation of their internalization. Properties and behavior of adhesion and suspension vertebrate cells as well as the protozoa Leishmania tarentolae are investigated with respect to proteolytic activity, uptake efficiency, intracellular localization and cytotoxicity. Our results show that peptide stability to membrane-bound, secreted or intracellular proteases varies between different CPPs and that the suitability of individual CPPs for a particular cargo in complex formation by non-covalent interactions requires detailed studies. Cells vary in their sensitivity to increasing concentrations of CPPs. Thus, most cells can be efficiently transduced with peptides, proteins and nucleotides with intracellular concentrations in the low micromole range. For each cargo, cell type and CPP the optimal conditions must be determined separately.
Collapse
|
research-article |
12 |
35 |
24
|
Wang Y, Fu M, Liu J, Yang Y, Yu Y, Li J, Pan W, Fan L, Li G, Li X, Wang X. Inhibition of tumor metastasis by targeted daunorubicin and dioscin codelivery liposomes modified with PFV for the treatment of non-small-cell lung cancer. Int J Nanomedicine 2019; 14:4071-4090. [PMID: 31239668 PMCID: PMC6551515 DOI: 10.2147/ijn.s194304] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Chemotherapy for non-small-cell lung cancer (NSCLC) still leads to unsatisfactory clinical prognosis because of poor active targeting and tumor metastasis. Purpose: The objective of this study was to construct a kind of PFV peptide modified targeted daunorubicin and dioscin codelivery liposomes, which could enhance tumor targeting and inhibit tumor cell metastasis. Methods and results: Targeted daunorubicin and dioscin codelivery liposomes were prepared by film dispersion and the ammonium sulfate gradient method. With the ideal physicochemical properties, targeted daunorubicin and dioscin codelivery liposomes exhibited enhanced cellular uptake and showed strong cytotoxicity to tumor cells. The encapsulation of dioscin increased the inhibitory effects of daunorubicin on A549 cells, vasculogenic mimicry (VM) channels and tumor metastasis. The enhanced antimetastatic mechanism of the targeted liposomes was attributed to the downregulation of matrix metalloproteinase-2 (MMP-2), vascular endothelial cadherin (VE-Cad), transforming growth factor-β1 (TGF-β1) and hypoxia inducible factor-1α (HIF-1α). Meanwhile, the targeted daunorubicin and dioscin codelivery liposomes exhibited significant antitumor effects in tumor-bearing mice. H&E staining, immunohistochemistry with Ki-67 and TUNEL assay also showed the promoted antitumor activity of the targeted liposomes. Conclusion: Targeted daunorubicin and dioscin codelivery liposomes may provide an effective strategy for the treatment of NSCLC.
Collapse
|
research-article |
6 |
35 |
25
|
Gao S, Tian B, Han J, Zhang J, Shi Y, Lv Q, Li K. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema. Int J Nanomedicine 2019; 14:6135-6150. [PMID: 31447556 PMCID: PMC6683961 DOI: 10.2147/ijn.s205295] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/12/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Nanostructured lipid carriers (NLCs) are emerging as attractive drug carriers in transdermal drug delivery. The surface modification of NLCs with cell-penetrating peptides (CPPs) can enhance the skin permeation of drugs. Purpose: The objective of the current study was to evaluate the ability of the cell-penetrating peptide (CPP) polyarginine to translocate NLCs loaded with lornoxicam (LN) into the skin layers and to evaluate its anti-inflammatory effect. Methods: The NLCs were prepared using an emulsion evaporation and low temperature solidification technique using glyceryl monostearates, triglycerides, DOGS-NTA-Ni lipids and surfactants, and then six histidine-tagged polyarginine containing 11 arginine (R11) peptides was modified on the surface of NLCs. Results: The developed NLCs formulated with LN and R11 (LN-NLC-R11) were incorporated into 2% HPMC gels. NLCs were prepared with a particle size of (121.81±3.61)–(145.72±4.78) nm, and the zeta potential decreased from (−30.30±2.07) to (−14.66±0.74) mV after the modification of R11 peptides. The encapsulation efficiency and drug loading were (74.61±1.13) % and (7.92±0.33) %, respectively, regardless of the surface modification. Cellular uptake assays using HaCaT cells suggested that the NLC modified with R11 (0.02%, w/w) significantly enhanced the cell internalization of nanoparticles relative to unmodified NLCs (P<0.05 or P<0.01). An in vitro skin permeation study showed better permeation-enhancing ability of R11 (0.02%, w/w) than that of other content (0.01% or 0.04%). In carrageenan-induced rat paw edema models, LN-NLC-R11 gels inhibited rat paw edema and the production of inflammatory cytokines compared with LN-NLC gels and LN gels (P<0.01). Conclusion: In our investigation, it was strongly demonstrated that the surface modification of NLC with R11 enhanced the translocation of LN across the skin, thereby alleviating inflammation.
Collapse
|
Journal Article |
6 |
34 |