1
|
Klein EA, Richards D, Cohn A, Tummala M, Lapham R, Cosgrove D, Chung G, Clement J, Gao J, Hunkapiller N, Jamshidi A, Kurtzman KN, Seiden MV, Swanton C, Liu MC. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann Oncol 2021; 32:1167-1177. [PMID: 34176681 DOI: 10.1016/j.annonc.2021.05.806] [Citation(s) in RCA: 476] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A multi-cancer early detection (MCED) test used to complement existing screening could increase the number of cancers detected through population screening, potentially improving clinical outcomes. The Circulating Cell-free Genome Atlas study (CCGA; NCT02889978) was a prospective, case-controlled, observational study and demonstrated that a blood-based MCED test utilizing cell-free DNA (cfDNA) sequencing in combination with machine learning could detect cancer signals across multiple cancer types and predict cancer signal origin (CSO) with high accuracy. The objective of this third and final CCGA substudy was to validate an MCED test version further refined for use as a screening tool. PATIENTS AND METHODS This pre-specified substudy included 4077 participants in an independent validation set (cancer: n = 2823; non-cancer: n = 1254, non-cancer status confirmed at year-one follow-up). Specificity, sensitivity, and CSO prediction accuracy were measured. RESULTS Specificity for cancer signal detection was 99.5% [95% confidence interval (CI): 99.0% to 99.8%]. Overall sensitivity for cancer signal detection was 51.5% (49.6% to 53.3%); sensitivity increased with stage [stage I: 16.8% (14.5% to 19.5%), stage II: 40.4% (36.8% to 44.1%), stage III: 77.0% (73.4% to 80.3%), stage IV: 90.1% (87.5% to 92.2%)]. Stage I-III sensitivity was 67.6% (64.4% to 70.6%) in 12 pre-specified cancers that account for approximately two-thirds of annual USA cancer deaths and was 40.7% (38.7% to 42.9%) in all cancers. Cancer signals were detected across >50 cancer types. Overall accuracy of CSO prediction in true positives was 88.7% (87.0% to 90.2%). CONCLUSION In this pre-specified, large-scale, clinical validation substudy, the MCED test demonstrated high specificity and accuracy of CSO prediction and detected cancer signals across a wide diversity of cancers. These results support the feasibility of this blood-based MCED test as a complement to existing single-cancer screening tests. CLINICAL TRIAL NUMBER NCT02889978.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
476 |
2
|
Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc Natl Acad Sci U S A 2014; 111:7361-6. [PMID: 24799715 DOI: 10.1073/pnas.1405528111] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
236 |
3
|
Circulating Cell-Free Nucleic Acids: Main Characteristics and Clinical Application. Int J Mol Sci 2020; 21:ijms21186827. [PMID: 32957662 PMCID: PMC7555669 DOI: 10.3390/ijms21186827] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy recently became a very promising diagnostic method that has several advantages over conventional invasive methods. Liquid biopsy may serve as a source of several important biomarkers including cell-free nucleic acids (cf-NAs). Cf-DNA is widely used in prenatal testing in order to characterize fetal genetic disorders. Analysis of cf-DNA may provide information about the mutation profile of tumor cells, while cell-free non-coding RNAs are promising biomarker candidates in the diagnosis and prognosis of cancer. Many of these markers have the potential to help clinicians in therapy selection and in the follow-up of patients. Thus, cf-NA-based diagnostics represent a new path in personalized medicine. Although several reviews are available in the field, most of them focus on a limited number of cf-NA types. In this review, we give an overview about all known cf-NAs including cf-DNA, cf-mtDNA and cell-free non-coding RNA (miRNA, lncRNA, circRNA, piRNA, YRNA, and vtRNA) by discussing their biogenesis, biological function and potential as biomarker candidates in liquid biopsy. We also outline possible future directions in the field.
Collapse
|
Review |
5 |
122 |
4
|
Neal RD, Johnson P, Clarke CA, Hamilton SA, Zhang N, Kumar H, Swanton C, Sasieni P. Cell-Free DNA-Based Multi-Cancer Early Detection Test in an Asymptomatic Screening Population (NHS-Galleri): Design of a Pragmatic, Prospective Randomised Controlled Trial. Cancers (Basel) 2022; 14:4818. [PMID: 36230741 PMCID: PMC9564213 DOI: 10.3390/cancers14194818] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
We report the design of the NHS-Galleri trial (ISRCTN91431511), aiming to establish whether a multi-cancer early detection (MCED) test that screens asymptomatic individuals for cancer can reduce late-stage cancer incidence. This randomised controlled trial has invited approximately 1.5 million persons and enrolled over 140,000 from the general population of England (50-77 years; ≥3 years without cancer diagnosis or treatment; not undergoing investigation for suspected cancer). Blood is being collected at up to three annual visits. Following baseline blood collection, participants are randomised 1:1 to the intervention (blood tested by MCED test) or control (blood stored) arm. Only participants in the intervention arm with a cancer signal detected have results returned and are referred for urgent investigations and potential treatment. Remaining participants in both arms stay blinded and return for their next visit. Participants are encouraged to continue other NHS cancer screening programmes and seek help for new or unusual symptoms. The primary objective is to demonstrate a statistically significant reduction in the incidence rate of stage III and IV cancers diagnosed in the intervention versus control arm 3-4 years after randomisation. NHS-Galleri will help determine the clinical utility of population screening with an MCED test.
Collapse
|
research-article |
3 |
87 |
5
|
Bagley SJ, Nabavizadeh SA, Mays JJ, Till JE, Ware JB, Levy S, Sarchiapone W, Hussain J, Prior T, Guiry S, Christensen T, Yee SS, Nasrallah MP, Morrissette JJD, Binder ZA, O'Rourke DM, Cucchiara AJ, Brem S, Desai AS, Carpenter EL. Clinical Utility of Plasma Cell-Free DNA in Adult Patients with Newly Diagnosed Glioblastoma: A Pilot Prospective Study. Clin Cancer Res 2020; 26:397-407. [PMID: 31666247 PMCID: PMC6980766 DOI: 10.1158/1078-0432.ccr-19-2533] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/19/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The clinical utility of plasma cell-free DNA (cfDNA) has not been assessed prospectively in patients with glioblastoma (GBM). We aimed to determine the prognostic impact of plasma cfDNA in GBM, as well as its role as a surrogate of tumor burden and substrate for next-generation sequencing (NGS). EXPERIMENTAL DESIGN We conducted a prospective cohort study of 42 patients with newly diagnosed GBM. Plasma cfDNA was quantified at baseline prior to initial tumor resection and longitudinally during chemoradiotherapy. Plasma cfDNA was assessed for its association with progression-free survival (PFS) and overall survival (OS), correlated with radiographic tumor burden, and subjected to a targeted NGS panel. RESULTS Prior to initial surgery, GBM patients had higher plasma cfDNA concentration than age-matched healthy controls (mean 13.4 vs. 6.7 ng/mL, P < 0.001). Plasma cfDNA concentration was correlated with radiographic tumor burden on patients' first post-radiation magnetic resonance imaging scan (ρ = 0.77, P = 0.003) and tended to rise prior to or concurrently with radiographic tumor progression. Preoperative plasma cfDNA concentration above the mean (>13.4 ng/mL) was associated with inferior PFS (median 4.9 vs. 9.5 months, P = 0.038). Detection of ≥1 somatic mutation in plasma cfDNA occurred in 55% of patients and was associated with nonstatistically significant decreases in PFS (median 6.0 vs. 8.7 months, P = 0.093) and OS (median 5.5 vs. 9.2 months, P = 0.053). CONCLUSIONS Plasma cfDNA may be an effective prognostic tool and surrogate of tumor burden in newly diagnosed GBM. Detection of somatic alterations in plasma is feasible when samples are obtained prior to initial surgical resection.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
78 |
6
|
Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R, Zehir A, Weigelt B, Dawson SJ, Arcila ME, Berger MF, Tsui DW. The value of cell-free DNA for molecular pathology. J Pathol 2018; 244:616-627. [PMID: 29380875 DOI: 10.1002/path.5048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
Review |
7 |
72 |
7
|
Cell-Free Nucleic Acids and their Emerging Role in the Pathogenesis and Clinical Management of Inflammatory Bowel Disease. Int J Mol Sci 2019; 20:ijms20153662. [PMID: 31357438 PMCID: PMC6696129 DOI: 10.3390/ijms20153662] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-free nucleic acids (cfNAs) are defined as any nucleic acids that are present outside the cell. They represent valuable biomarkers in various diagnostic protocols such as prenatal diagnostics, the detection of cancer, and cardiovascular or autoimmune diseases. However, in the current literature, little is known about their implication in inflammatory bowel disease (IBD). IBD is a group of multifactorial, autoimmune, and debilitating diseases with increasing incidence worldwide. Despite extensive research, their etiology and exact pathogenesis is still unclear. Since cfNAs were observed in other autoimmune diseases and appear to be relevant in inflammatory processes, their role in the pathogenesis of IBD has also been suggested. This review provides a summary of knowledge from the available literature about cfDNA and cfRNA and the structures involving them such as exosomes and neutrophil extracellular traps and their association with IBD. Current studies showed the promise of cfNAs in the management of IBD not only as biomarkers distinguishing patients from healthy people and differentiating active from inactive disease state, but also as a potential therapeutic target. However, the detailed biological characteristics of cfNAs need to be fully elucidated in future experimental and clinical studies.
Collapse
|
Review |
6 |
31 |
8
|
Tran NH, Kisiel J, Roberts LR. Using cell-free DNA for HCC surveillance and prognosis. JHEP Rep 2021; 3:100304. [PMID: 34136776 PMCID: PMC8182265 DOI: 10.1016/j.jhepr.2021.100304] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. Its incidence is rising faster than any other cancer in the United States and it remains one of the leading causes of cancer-related deaths worldwide. While advances in massive parallel sequencing and integration of 'omics information have transformed the field of oncology, tissue access is often limited in HCC and a single biopsy is poorly representative of the known genetic heterogeneity of tumours. Liquid biopsy has emerged as a promising strategy for analysing circulating tumour components including circulating tumour DNA. Cell-free DNA and tumour DNA are derived from necrotic, apoptotic and living eukaryotic cells. The profiling of genetic and epigenetic alterations in circulating cell-free DNA has potential clinical applications including early disease detection, prediction of treatment response and prognostication in real time. Novel biomarker candidates for disease detection and monitoring are under study. Of these, methylation analyses of circulating tumour DNA have shown promising performance for early HCC detection in at-risk patients. Assessments of assay performance in longitudinal validation cohorts are ongoing. Implementation of liquid biopsy for HCC will likely improve upon the current surveillance strategy. This review summarises the most recent developments on the role and utility of circulating cell-free DNA in the detection and management of HCC.
Collapse
|
Review |
4 |
29 |
9
|
Pös Z, Pös O, Styk J, Mocova A, Strieskova L, Budis J, Kadasi L, Radvanszky J, Szemes T. Technical and Methodological Aspects of Cell-Free Nucleic Acids Analyzes. Int J Mol Sci 2020; 21:ijms21228634. [PMID: 33207777 PMCID: PMC7697251 DOI: 10.3390/ijms21228634] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Analyzes of cell-free nucleic acids (cfNAs) have shown huge potential in many biomedical applications, gradually entering several fields of research and everyday clinical care. Many biological properties of cfNAs can be informative to gain deeper insights into the function of the organism, such as their different types (DNA, RNAs) and subtypes (gDNA, mtDNA, bacterial DNA, miRNAs, etc.), forms (naked or vesicle bound NAs), fragmentation profiles, sequence composition, epigenetic modifications, and many others. On the other hand, the workflows of their analyzes comprise many important steps, from sample collection, storage and transportation, through extraction and laboratory analysis, up to bioinformatic analyzes and statistical evaluations, where each of these steps has the potential to affect the outcome and informational value of the performed analyzes. There are, however, no universal or standard protocols on how to exactly proceed when analyzing different cfNAs for different applications, at least according to our best knowledge. We decided therefore to prepare an overview of the available literature and products commercialized for cfNAs processing, in an attempt to summarize the benefits and limitations of the currently available approaches, devices, consumables, and protocols, together with various factors influencing the workflow, its processes, and outcomes.
Collapse
|
Review |
5 |
28 |
10
|
Mansour H. Cell-free nucleic acids as noninvasive biomarkers for colorectal cancer detection. Front Genet 2014; 5:182. [PMID: 25221563 PMCID: PMC4145725 DOI: 10.3389/fgene.2014.00182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/29/2014] [Indexed: 12/16/2022] Open
Abstract
Cell-free nucleic acids (CFNA) have been reported by several authors in blood, stool, and urine of patients with colorectal cancer (CRC). These genetic biomarkers can be an indication of neoplastic colorectal epithelial cells, and can thus potentially be used as noninvasive tests for the detection of the disease in CRC patients and monitor their staging, without the need to use heavier and invasive tools. In a number of test-trials, these genetic tests have shown the advantage of non-invasiveness, making them well accepted by most of the patients, without major side effects. They have also shown a promising sensitivity and specificity in the detection of malignant and premalignant neoplasms. Moreover, costs for performing such tests are very low. Several studies reported and confirmed the proof of the principle for these genetic tests for screening, diagnosis, and prognosis; the main challenge of translating this approach from research to clinical laboratory is the validation from large and long-term randomized trials to prove sustainable high sensitivity and specificity. In this paper, we present a review on the noninvasive genetics biomarkers for CRC detection described in the literature and the challenges that can be encountered for validation processes.
Collapse
|
Review |
11 |
24 |
11
|
Abstract
There is a clear and unmet need for biomarkers in hepatocellular carcinoma (HCC). Circulating cell free deoxyribonucleic acid (cfDNA) is a fragmented DNA subtype, found in the blood circulation. Circulating tumor DNA (ctDNA) is the fraction of total cfDNA, which originates from the primary tumor or metastases in patients with cancer. Earlier studies reported that quantitative measurement cfDNA has diagnostic and prognostic role for HCC. More recently, improvement in next-generation sequencing technology and better understanding of genetic or epigenetic alteration of HCC have allowed comprehensive analysis of mutational and methylation landscape of ctDNA. Hotspot mutation panels and methylation panels have both shown promising performance. None of these tests have yet been validated in longitudinal cohorts for preclinical detection of HCC. In this article, the authors discuss the currently available ctDNA detection technologies, their diagnostic and prognostic performance in HCC, and future research directions.
Collapse
|
Review |
6 |
21 |
12
|
Mateos RN, Nakagawa H, Hirono S, Takano S, Fukasawa M, Yanagisawa A, Yasukawa S, Maejima K, Oku-Sasaki A, Nakano K, Dutta M, Tanaka H, Miyano S, Enomoto N, Yamaue H, Nakai K, Fujita M. Genomic analysis of pancreatic juice DNA assesses malignant risk of intraductal papillary mucinous neoplasm of pancreas. Cancer Med 2019; 8:4565-4573. [PMID: 31225717 PMCID: PMC6712468 DOI: 10.1002/cam4.2340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Intraductal papillary mucinous neoplasm (IPMN) of pancreas has a high risk to develop into invasive cancer or co‐occur with malignant lesion. Therefore, it is important to assess its malignant risk by less‐invasive approach. Pancreatic juice cell‐free DNA (PJD) would be an ideal material in this purpose, but genetic biomarkers for predicting malignant risk from PJD are not yet established. We here performed deep exome sequencing analysis of PJD from 39 IPMN patients with or without malignant lesion. Somatic alterations and copy number alterations (CNAs) detected in PJD were compared with the histologic grade of IPMN to evaluate their potential as a malignancy marker. Somatic mutations of KRAS, GNAS, TP53, and RNF43 were commonly detected in PJD of IPMNs, but no association with the histologic grades of IPMN was found. Instead, mutation burden was positively correlated with the histologic grade (r = 0.427, P = 0.015). We also observed frequent copy number deletions in 17p13 (TP53) and amplifications in 7q21 and 8q24 (MYC) in PJDs. The amplifications in 7q21 and 8q24 were positively correlated with the histologic grade and most prevalent in the cases of invasive carcinoma (P = 0.002 and 7/11; P = 0.011 and 6/11, respectively). We concluded that mutation burden and CNAs detected in PJD may have potential to assess the malignant progression risk of IPMNs.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
20 |
13
|
Soltész B, Buglyó G, Németh N, Szilágyi M, Pös O, Szemes T, Balogh I, Nagy B. The Role of Exosomes in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010008. [PMID: 35008434 PMCID: PMC8744561 DOI: 10.3390/ijms23010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection, characterization and monitoring of cancer are possible by using extracellular vesicles (EVs) isolated from non-invasively obtained liquid biopsy samples. They play a role in intercellular communication contributing to cell growth, differentiation and survival, thereby affecting the formation of tumor microenvironments and causing metastases. EVs were discovered more than seventy years ago. They have been tested recently as tools of drug delivery to treat cancer. Here we give a brief review on extracellular vesicles, exosomes, microvesicles and apoptotic bodies. Exosomes play an important role by carrying extracellular nucleic acids (DNA, RNA) in cell-to-cell communication causing tumor and metastasis development. We discuss the role of extracellular vesicles in the pathogenesis of cancer and their practical application in the early diagnosis, follow up, and next-generation treatment of cancer patients.
Collapse
|
Review |
4 |
18 |
14
|
Brusca SB, Elinoff JM, Zou Y, Jang MK, Kong H, Demirkale CY, Sun J, Seifuddin F, Pirooznia M, Valantine HA, Tanba C, Chaturvedi A, Graninger GM, Harper B, Chen LY, Cole J, Kanwar M, Benza RL, Preston IR, Agbor-Enoh S, Solomon MA. Plasma Cell-Free DNA Predicts Survival and Maps Specific Sources of Injury in Pulmonary Arterial Hypertension. Circulation 2022; 146:1033-1045. [PMID: 36004627 PMCID: PMC9529801 DOI: 10.1161/circulationaha.121.056719] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a noninvasive marker of cellular injury. Its significance in pulmonary arterial hypertension (PAH) is unknown. METHODS Plasma cfDNA was measured in 2 PAH cohorts (A, n=48; B, n=161) and controls (n=48). Data were collected for REVEAL 2.0 (Registry to Evaluate Early and Long-Term PAH Disease Management) scores and outcome determinations. Patients were divided into the following REVEAL risk groups: low (≤6), medium (7-8), and high (≥9). Total cfDNA concentrations were compared among controls and PAH risk groups by 1-way analysis of variance. Log-rank tests compared survival between cfDNA tertiles and REVEAL risk groups. Areas under the receiver operating characteristic curve were estimated from logistic regression models. A sample subset from cohort B (n=96) and controls (n=16) underwent bisulfite sequencing followed by a deconvolution algorithm to map cell-specific cfDNA methylation patterns, with concentrations compared using t tests. RESULTS In cohort A, median (interquartile range) age was 62 years (47-71), with 75% female, and median (interquartile range) REVEAL 2.0 was 6 (4-9). In cohort B, median (interquartile range) age was 59 years (49-71), with 69% female, and median (interquartile range) REVEAL 2.0 was 7 (6-9). In both cohorts, cfDNA concentrations differed among patients with PAH of varying REVEAL risk and controls (analysis of variance P≤0.002) and were greater in the high-risk compared with the low-risk category (P≤0.002). In cohort B, death or lung transplant occurred in 14 of 54, 23 of 53, and 35 of 54 patients in the lowest, middle, and highest cfDNA tertiles, respectively. cfDNA levels stratified as tertiles (log-rank: P=0.0001) and REVEAL risk groups (log-rank: P<0.0001) each predicted transplant-free survival. The addition of cfDNA to REVEAL improved discrimination (area under the receiver operating characteristic curve, 0.72-0.78; P=0.02). Compared with controls, methylation analysis in patients with PAH revealed increased cfDNA originating from erythrocyte progenitors, neutrophils, monocytes, adipocytes, natural killer cells, vascular endothelium, and cardiac myocytes (Bonferroni adjusted P<0.05). cfDNA concentrations derived from erythrocyte progenitor cells, cardiac myocytes, and vascular endothelium were greater in patients with PAH with high-risk versus low-risk REVEAL scores (P≤0.02). CONCLUSIONS Circulating cfDNA is elevated in patients with PAH, correlates with disease severity, and predicts worse survival. Results from cfDNA methylation analyses in patients with PAH are consistent with prevailing paradigms of disease pathogenesis.
Collapse
|
Research Support, N.I.H., Intramural |
3 |
17 |
15
|
Gou Q, Zhang CZ, Sun ZH, Wu LG, Chen Y, Mo ZQ, Mai QC, He J, Zhou ZX, Shi F, Cui W, Zou W, Lv L, Zhuang WH, Xu RD, Li WK, Zhang J, Du HW, Xiang JX, Wang HZ, Hou T, Li ST, Li Y, Chen XM, Zhou ZJ. Cell-free DNA from bile outperformed plasma as a potential alternative to tissue biopsy in biliary tract cancer. ESMO Open 2021; 6:100275. [PMID: 34653800 PMCID: PMC8517551 DOI: 10.1016/j.esmoop.2021.100275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Biliary tract cancers (BTCs) are rare and highly heterogenous malignant neoplasms. Because obtaining BTC tissues is challenging, the purpose of this study was to explore the potential roles of bile as a liquid biopsy medium in patients with BTC. PATIENTS AND METHODS Sixty-nine consecutive patients with suspected BTC were prospectively enrolled in this study. Capture-based targeted sequencing was performed on tumor tissues, whole blood cells, plasma, and bile samples using a large panel consisting of 520 cancer-related genes. RESULTS Of the 28 patients enrolled in this cohort, tumor tissues were available in eight patients, and plasma and bile were available in 28 patients. Somatic mutations were detected in 100% (8/8), 71.4% (20/28), and 53.6% (15/28) of samples comprising tumor tissue DNA, bile cell-free DNA (cfDNA), and plasma cfDNA, respectively. Bile cfDNA showed a significantly higher maximum allele frequency than plasma cfDNA (P = 0.0032). There were 56.2% of somatic single-nucleotide variant (SNVs)/insertions and deletions (indels) shared between bile and plasma cfDNA. When considering the genetic profiles of tumor tissues as the gold standard, the by-variant sensitivity and positive predictive value for SNVs/indels in bile cfDNA positive for somatic mutations were both 95.5%. The overall concordance for SNVs/indels in bile was significantly higher than that in plasma (99.1% versus 78.3%, P < 0.0001). Moreover, the sensitivity of CA 19-9 combined with bile cfDNA achieved 96.4% in BTC diagnosis. CONCLUSION We demonstrated that bile cfDNA was superior to plasma cfDNA in the detection of tumor-related genomic alterations. Bile cfDNA as a minimally invasive liquid biopsy medium might be a supplemental approach to confirm BTC diagnosis.
Collapse
|
|
4 |
14 |
16
|
Bunnapradist S, Homkrailas P, Ahmed E, Fehringer G, Billings PR, Tabriziani H. Using both the Fraction and Quantity of Donor-Derived Cell-Free DNA to Detect Kidney Allograft Rejection. J Am Soc Nephrol 2021; 32:2439-2441. [PMID: 34162734 PMCID: PMC8722815 DOI: 10.1681/asn.2021050645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
research-article |
4 |
13 |
17
|
The scope of liquid biopsy in the clinical management of oral cancer. Int J Oral Maxillofac Surg 2021; 51:591-601. [PMID: 34462176 DOI: 10.1016/j.ijom.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/18/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent forms of head and neck cancer, and it remains a leading cause of death in developing countries. Failure to detect the disease at an early stage is the main reason for the lack of improvement in the overall survival rate over the decades. Even though tissue biopsy is considered as the gold standard for diagnosis and molecular workup, it is an invasive, expensive and time-consuming procedure. Besides, it may not indicate the genetic status of the entire tumour owing to the heterogeneity of the cancer. In this context, liquid biopsy could be quite useful as it provides a more representative picture of the circulating tumour cells, circulating tumour DNA, circulating RNA, and tumour-derived exosomes obtained from all types of body fluids. This technique provides real-time assessment of variations in the molecular profile of the whole tumour and enables the serial monitoring of the disease status. The method has many advantages, such as easy accessibility, reliability, reproducibility and the possibility for early detection of the disease. However, the concept is still in its infancy, and the research on its application in various tumours including OSCC is rapidly progressing.
Collapse
|
Review |
4 |
11 |
18
|
Soukkhaphone B, Lindsay C, Langlois S, Little J, Rousseau F, Reinharz D. Non-invasive prenatal testing for the prenatal screening of sex chromosome aneuploidies: A systematic review and meta-analysis of diagnostic test accuracy studies. Mol Genet Genomic Med 2021; 9:e1654. [PMID: 33755350 PMCID: PMC8172189 DOI: 10.1002/mgg3.1654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/31/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Background There is little evidence on the performance of non‐invasive prenatal testing (NIPT) for the detection of fetal sex chromosomal imbalances. In this review, we aimed to appraise and synthesize the literature on the performance of NIPT for the prenatal detection of fetal sex chromosome aneuploidies. Methods We performed our literature search in PubMed, Embase, Cochrane Library, Web of Science, and CADTH. Study selection and data extraction were performed by two reviewers independently. There were no restrictions on the study population. Meta‐analyses were performed with “R” software. Pooled sensitivities and specificities with their 95% CI were estimated using a random‐effects model. Heterogeneity between studies was assessed by a Q test. Results Based on 11 studies in high prior risk pregnancies, including 116 affected fetuses in aggregate, Massively Parallel Shotgun Sequencing (MPSS) had a sensitivity of 93.9% (95% CI 84.1%, 97.8%) and a specificity of 99.6% (95% CI 98.7%, 99.9%) for the detection of 45,X. Based on four studies in high‐risk pregnancies, with 83 affected fetuses in aggregate, Targeted Massively Parallel Sequencing (TMPS) had a sensitivity of 83.2% (95% CI 49.6%, 96.2%) and specificity was 99.8% (95% CI 98.3%, 100%) for the detection of 45,X. In mixed‐risk pregnancies, the sensitivity of TMPS for the detection of 45,X was 90.9% (2 studies; 95% CI 70%, 97.7%) and specificity 99.9% (2 studies; 95% CI 99.4%, 100%); MPSS data were not available in such pregnancies. Based on smaller numbers of studies, and small numbers of affected fetuses in either high‐risk or mixed‐risk pregnancies (using either MPSS or TMPS), the sensitivities and specificities were equal to or greater than 76.2% for 47,XXX, 47,XXY and 47, XYY. The test failures for SCAs were 0.2% (95% CI 0%, 13.6%) for MPSS and 5.6% (95% CI 3.7%, 8.4%) for TMPS. Conclusion High‐quality studies are still desirable in order to estimate the performance of NIPT for the detection of sex chromosome imbalances.
Collapse
|
Review |
4 |
10 |
19
|
Dvorská D, Škovierová H, Braný D, Halašová E, Danková Z. Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri. Int J Mol Sci 2019; 20:E3825. [PMID: 31387281 PMCID: PMC6695893 DOI: 10.3390/ijms20153825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
Utilization of liquid biopsy in the management of cancerous diseases is becoming more attractive. This method can overcome typical limitations of tissue biopsies, especially invasiveness, no repeatability, and the inability to monitor responses to medication during treatment as well as condition during follow-up. Liquid biopsy also provides greater possibility of early prediction of cancer presence. Corpus uteri mesenchymal tumors are comprised of benign variants, which are mostly leiomyomas, but also a heterogenous group of malignant sarcomas. Pre-surgical differentiation between these tumors is very difficult and the final description of tumor characteristics usually requires excision and histological examination. The leiomyomas and malignant leiomyosarcomas are especially difficult to distinguish and can, therefore, be easily misdiagnosed. Because of the very aggressive character of sarcomas, liquid biopsy based on early diagnosis and differentiation of these tumors would be extremely helpful. Moreover, after excision of the tumor, liquid biopsy can contribute to an increased knowledge of sarcoma behavior at the molecular level, especially on the formation of metastases which is still not well understood. In this review, we summarize the most important knowledge of mesenchymal uterine tumors, the possibilities and benefits of liquid biopsy utilization, the types of molecules and cells that can be analyzed with this approach, and the possibility of their isolation and capture. Finally, we review the typical abnormalities of leiomyomas and sarcomas that can be searched and analyzed in liquid biopsy samples with the final aim to pre-surgically differentiate between benign and malignant mesenchymal tumors.
Collapse
|
Review |
6 |
9 |
20
|
Enko D, Halwachs-Baumann G, Kriegshäuser G. Plasma free DNA: Evaluation of temperature-associated storage effects observed for Roche Cell-Free DNA collection tubes. Biochem Med (Zagreb) 2019; 29:010904. [PMID: 30799979 PMCID: PMC6366949 DOI: 10.11613/bm.2019.010904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction Standardized pre-analytical blood sample procedures for the analysis of circulating cell-free DNA (ccfDNA) are still not available. Therefore, the present study aimed at evaluating the impact of storage conditions related to different times (24 and 48 h) and temperatures (room temperature (RT) and 4 - 8 °C) on the plasma ccfDNA concentration of blood samples drawn into Cell-Free DNA collection tubes (Roche Diagnostics GmbH, Mannheim, Germany). Materials and methods Venous blood from 30 healthy individuals was collected into five 8.5 mL Cell-Free DNA Collection Tubes (Roche Diagnostics GmbH) each. Plasma samples were processed at time point of blood collection (tube 1), and after storage under the following conditions: 24 h at RT (tube 2) or 4-8 °C (tube 3), and 48 h at RT (tube 4) or 4 - 8 °C (tube 5). Circulating cell-free DNA concentrations were determined by EvaGreen chemistry-based droplet digital PCR (ddPCR). Results No statistically significant differences between median (interquartile range) plasma ccfDNA concentrations (ng/mL) at time point of blood collection (3.17 (2.13 – 3.76)) and after storage for 24 h (RT: 3.02 (2.41 – 3.68); 4-8 °C: 3.21 (2.19 – 3.46)) and 48 h (RT: 3.13 (2.10 – 3.76); 4-8 °C: 3.09 (2.19 – 3.50)) were observed (P values from 0.102 – 0.975). Conclusions No unwanted release of genomic DNA from white blood cells could be detected in plasma samples after tube storage for 24 and 48 h regardless of storage temperature.
Collapse
|
Journal Article |
6 |
8 |
21
|
Xie X, Wang M, Goh ESY, Ungar WJ, Little J, Carroll JC, Okun N, Huang T, Rousseau F, Dougan SD, Tu HA, Higgins C, Holubowich C, Sikich N, Dhalla IA, Ng V. Noninvasive Prenatal Testing for Trisomies 21, 18, and 13, Sex Chromosome Aneuploidies, and Microdeletions in Average-Risk Pregnancies: A Cost-Effectiveness Analysis. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2020; 42:740-749.e12. [PMID: 32008974 DOI: 10.1016/j.jogc.2019.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The cost effectiveness of noninvasive prenatal testing (NIPT) has been established for high-risk pregnancies but remains unclear for pregnancies at other risk levels. The aim was to assess the cost effectiveness of NIPT in average-risk pregnancies from the perspective of a provincial public payer in Canada. METHODS A model was developed to compare traditional prenatal screening (TPS), NIPT as a second-tier test (performed only after a positive TPS result), and NIPT as a first-tier test (performed instead of TPS) for trisomies 21, 18, and 13; sex chromosome aneuploidies; and microdeletions in a hypothetical annual population cohort of average-risk pregnancies (142 000 to 148,000) in Ontario, Canada. A probabilistic analysis was conducted with 5000 repetitions. RESULTS Compared with TPS, NIPT as a second-tier test detected more affected fetuses with trisomies 21, 18, and 13 (188 vs. 158), substantially reduced the number of diagnostic tests (i.e., chorionic villus sampling and amniocentesis) performed (660 vs. 3107), and reduced the cost of prenatal screening ($26.7 million vs. $27.6 million) annually. Compared with second-tier NIPT, first-tier NIPT detected an additional 80 cases of trisomies 21, 18, and 13 at an additional cost of $33 million. The incremental cost per additional affected fetus detected was $412 411. Extending first-tier NIPT to include testing for sex chromosome aneuploidies and 22q11.2 deletion would increase the total screening cost. CONCLUSIONS NIPT as a second-tier test is cost-saving compared with TPS alone. Compared with second-tier NIPT, first-tier NIPT detects more cases of chromosomal anomalies but at a substantially higher cost.
Collapse
|
Journal Article |
5 |
8 |
22
|
Wolf-Doty TK, Mannon RB, Poggio ED, Hinojosa RJ, Hiller D, Bromberg JS, Brennan DC. Dynamic Response of Donor-Derived Cell-Free DNA Following Treatment of Acute Rejection in Kidney Allografts. KIDNEY360 2021; 2:729-736. [PMID: 35373051 PMCID: PMC8791317 DOI: 10.34067/kid.0000042021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 02/04/2023]
Abstract
Background The quantification of rejection treatment efficacy has been insufficient using traditional markers due, in part, to the lagging response of serum creatinine and histologic alterations on biopsy specimens. Donor-derived cell-free DNA (dd-cfDNA) is a molecular marker of injury that may assess allograft injury after rejection. Methods Retrospective review of the DART study identified 70 patients who had a clinically indicated biopsy, simultaneous dd-cfDNA measurement, and at least one follow-up dd-cfDNA within 3 months post-treatment. Thirty-five patients had no biopsy-proven rejection and no rejection treatment (NR), 16 patients had no biopsy-proven rejection but did receive rejection treatment (CR), 9 patients had diagnosis of ABMR/mixed rejection on biopsy and received rejection treatment (ABMR), and 10 patients had diagnosis of TCMR and received rejection treatment (TCMR). The CR, ABMR, and TCMR groups combined to form a rejection (R) group. Results In the R group, median dd-cfDNA values at baseline and 1 month were 0.62% and 0.35% (n=21 pairs, p=0.34), and at baseline and 2-3 months were 0.77% and 0.21% (n=23 pairs, p=0.002). In TCMR, median dd-cfDNA values at baseline and 1 month were 1.13% and 0.37% (n=5 pairs, p=0.63), and at baseline and 2-3 months were 0.25% and 0.12% (n=9 pairs, p=0.004). In ABMR, median dd-cfDNA values at baseline and 1 month were 1.61% and 1.2 % (n=6 pairs, p>0.99), and at baseline and 2-3 months were 3.85% and 1.32% (n=6 pairs, p=0.09). In CR, median dd-cfDNA values at baseline and 1 month were 0.31% and 0.29% (n=10 pairs, p=0.38), and at baseline and 2-3 months were 0.38% and 0.17% (n=8 pairs, p=0.31). Lastly, in NR, median dd-cfDNA values at baseline and 1 month were 0.23% and 0.18% (n=21 pairs, p=0.10), and at baseline and 2-3 months were 0.33% and 0.17% (n=26 pairs, p=0.003). Changes in serum creatinine across 1 month and 2-3 months following rejection were similar. Conclusions dd-cfDNA may be a useful dynamic biomarker to assess the health of the kidney allograft following rejection treatment.
Collapse
|
research-article |
4 |
8 |
23
|
Wang W, Zhang W, Su L, Sang J, Wang S, Yao Y. Plasma cell-free DNA integrity: a potential biomarker to monitor the response of breast cancer to neoadjuvant chemotherapy. Transl Cancer Res 2019; 8:1531-1539. [PMID: 35116896 PMCID: PMC8799030 DOI: 10.21037/tcr.2019.08.05] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/09/2019] [Indexed: 12/26/2022]
Abstract
Background Although the clinical significance of neoadjuvant chemotherapy (NACT) is widely recognized, there is still no effective means to monitor the therapeutic response in real time. The present study aimed to investigate the significance of the cell-free DNA (cfDNA) concentration and integrity (cfDI) to monitor the response of breast cancer to NACT. Methods Twenty-nine patients with breast cancer receiving NACT were included in this study. Patients’ peripheral blood was drawn before, in the mid-term, and at the end of chemotherapy. The cfDNA concentration and cfDI were assessed using absolute quantitative PCR. Results The results showed that the cfDNA concentration and cfDI pre-NACT were not obviously correlated with the patients’ clinical characteristics. The mean cfDI value increased significantly when the patients received NACT (P<0.05), and an increasing cfDI was associated with tumor shrinkage and reduced Ki67 levels (P<0.05). In addition, the cfDI after NACT was inversely correlated with the number of metastatic lymph nodes, and the cfDI value of patients with a pathologically complete response was significantly higher than that of patients with distant metastasis after surgery. Conclusions This study suggested that cfDI could be used as an indicator to monitor the therapeutic response to NACT; however, more research is needed to confirm this conclusion.
Collapse
|
|
6 |
7 |
24
|
Goldberg JF, Truby LK, Agbor-Enoh S, Jackson AM, deFilippi CR, Khush KK, Shah P. Selection and Interpretation of Molecular Diagnostics in Heart Transplantation. Circulation 2023; 148:679-694. [PMID: 37603604 PMCID: PMC10449361 DOI: 10.1161/circulationaha.123.062847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The number of heart transplants performed annually in the United States and worldwide continues to increase, but there has been little change in graft longevity and patient survival over the past 2 decades. The reference standard for diagnosis of acute cellular and antibody-mediated rejection includes histologic and immunofluorescence evaluation of endomyocardial biopsy samples, despite invasiveness and high interrater variability for grading histologic rejection. Circulating biomarkers and molecular diagnostics have shown substantial predictive value in rejection monitoring, and emerging data support their use in diagnosing other posttransplant complications. The use of genomic (cell-free DNA), transcriptomic (mRNA and microRNA profiling), and proteomic (protein expression quantitation) methodologies in diagnosis of these posttransplant outcomes has been evaluated with varying levels of evidence. In parallel, growing knowledge about the genetically mediated immune response leading to rejection (immunogenetics) has enhanced understanding of antibody-mediated rejection, associated graft dysfunction, and death. Antibodies to donor human leukocyte antigens and the technology available to evaluate these antibodies continues to evolve. This review aims to provide an overview of biomarker and immunologic tests used to diagnose posttransplant complications. This includes a discussion of pediatric heart transplantation and the disparate rates of rejection and death experienced by Black patients receiving a heart transplant. This review describes diagnostic modalities that are available and used after transplant and the landscape of future investigations needed to enhance patient outcomes after heart transplantation.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
5 |
25
|
Shoraka S, Mohebbi SR, Hosseini SM, Zali MR. Comparison of plasma mitochondrial DNA copy number in asymptomatic and symptomatic COVID-19 patients. Front Microbiol 2023; 14:1256042. [PMID: 37869674 PMCID: PMC10587688 DOI: 10.3389/fmicb.2023.1256042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Since the beginning of the COVID-19 pandemic, a wide clinical spectrum, from asymptomatic infection to mild or severe disease and death, have been reported in COVID-19 patients. Studies have suggested several possible factors, which may affect the clinical outcome of COVID-19. A pro-inflammatory state and impaired antiviral response have been suggested as major contributing factors in severe COVID-19. Considering that mitochondria have an important role in regulating the immune responses to pathogens, pro-inflammatory signaling, and cell death, it has received much attention in SARS-CoV-2 infection. Recent studies have demonstrated that high levels of cell-free mitochondrial DNA (cf-mtDNA) are associated with an increased risk of COVID-19 intensive care unit (ICU) admission and mortality. However, there have been few studies on cf-mtDNA in SARS-CoV-2 infection, mainly focusing on critically ill COVID-19 cases. In the present study, we investigated cf-mtDNA copy number in COVID-19 patients and compared between asymptomatic and symptomatic cases, and assessed the clinical values. We also determined the cf-nuclear DNA (cf-nDNA) copy number and mitochondrial transcription factor A (TFAM) mRNA level in the studied groups. Materials and methods Plasma and buffy coat samples were collected from 37 COVID-19 patients and 33 controls. Briefly, after total DNA extraction, plasma cf-mtDNA, and cf-nDNA copy numbers were measured by absolute qPCR using a standard curve method. Furthermore, after total RNA extraction from buffy coat and cDNA synthesis, TFAM mRNA levels were evaluated by qPCR. Results The results showed that cf-mtDNA levels in asymptomatic COVID-19 patients were statistically significantly higher than in symptomatic cases (p value = 0.01). However, cf-nDNA levels were higher in symptomatic patients than in asymptomatic cases (p value = 0.00). There was no significant difference between TFAM levels in the buffy coat of these two groups (p value > 0.05). Also, cf-mtDNA levels showed good diagnostic potential in COVID-19 subgroups. Conclusion cf-mtDNA is probably important in the outcome of SARS-CoV-2 infection due to its role in inflammation and immune response. It can also be a promising candidate biomarker for the diagnosis of COVID-19 subgroups. Further investigation will help understanding the COVID-19 pathophysiology and effective diagnostic and therapeutic strategies.
Collapse
|
research-article |
2 |
5 |