Calejo I, Costa‐Almeida R, Reis RL, Gomes ME. A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendon-to-Bone Interface Gradient Scaffolds.
Adv Healthc Mater 2019;
8:e1900200. [PMID:
31190369 DOI:
10.1002/adhm.201900200]
[Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Tendon-to-bone interfaces exhibit a hierarchical multitissue transition. To replicate the progression from mineralized to nonmineralized tissue, a novel 3D fibrous scaffold is fabricated with spatial control over mineral distribution and cellular alignment. For this purpose, wet-spun continuous microfibers are produced using polycaprolactone (PCL)/ gelatin and PCL/gelatin/hydroxyapatite nano-to-microparticles (HAp). Higher extrusion rates result in aligned PCL/gelatin microfibers while, in the case of PCL/gelatin/HAp, the presence of minerals leads to a less organized structure. Biological performance using human adipose-derived stem cells (hASCs) demonstrates that topography of PCL/gelatin microfibers can induce cytoskeleton elongation, resembling native tenogenic organization. Matrix mineralization on PCL/gelatin/HAp wet-spun composite microfibers suggest the production of an osteogenic-like matrix, without external addition of osteogenic medium supplementation. As proof of concept, a 3D gradient structure is produced by assembling PCL/gelatin and PCL/gelatin/HAp microfibers, resulting in a fibrous scaffold with a continuous topographical and compositional gradient. Overall, the feasibility of wet-spinning for the generation of continuously aligned and textured microfibers is demonsrated, which can be further assembled into more complex 3D gradient structures to mimic characteristic features of tendon-to-bone interfaces.
Collapse