1
|
Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N, Nagata K. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol 2000; 150:1499-506. [PMID: 10995453 PMCID: PMC2150697 DOI: 10.1083/jcb.150.6.1499] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Triple helix formation of procollagen after the assembly of three alpha-chains at the C-propeptide is a prerequisite for refined structures such as fibers and meshworks. Hsp47 is an ER-resident stress inducible glycoprotein that specifically and transiently binds to newly synthesized procollagens. However, the real function of Hsp47 in collagen biosynthesis has not been elucidated in vitro or in vivo. Here, we describe the establishment of Hsp47 knockout mice that are severely deficient in the mature, propeptide-processed form of alpha1(I) collagen and fibril structures in mesenchymal tissues. The molecular form of type IV collagen was also affected, and basement membranes were discontinuously disrupted in the homozygotes. The homozygous mice did not survive beyond 11.5 days postcoitus (dpc), and displayed abnormally orientated epithelial tissues and ruptured blood vessels. When triple helix formation of type I collagen secreted from cultured cells was monitored by protease digestion, the collagens of Hsp47+/+ and Hsp47+/- cells were resistant, but those of Hsp47-/- cells were sensitive. These results indicate for the first time that type I collagen is unable to form a rigid triple-helical structure without the assistance of molecular chaperone Hsp47, and that mice require Hsp47 for normal development.
Collapse
|
research-article |
25 |
247 |
2
|
Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C. FASEB J 2013; 27:2074-9. [PMID: 23401563 PMCID: PMC3633810 DOI: 10.1096/fj.12-225599] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/28/2013] [Indexed: 11/25/2022]
Abstract
Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.
Collapse
|
research-article |
12 |
228 |
3
|
Tang Y, Ballarini R, Buehler MJ, Eppell SJ. Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface 2010; 7:839-50. [PMID: 19897533 PMCID: PMC2874230 DOI: 10.1098/rsif.2009.0390] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/13/2009] [Indexed: 11/12/2022] Open
Abstract
Collagen, an essential building block of connective tissues, possesses useful mechanical properties due to its hierarchical structure. However, little is known about the mechanical properties of collagen fibril, an intermediate structure between the collagen molecule and connective tissue. Here, we report the results of systematic molecular dynamics simulations to probe the mechanical response of initially unflawed finite size collagen fibrils subjected to uniaxial tension. The observed deformation mechanisms, associated with rupture and sliding of tropocollagen molecules, are strongly influenced by fibril length, width and cross-linking density. Fibrils containing more than approximately 10 molecules along their length and across their width behave as representative volume elements and exhibit brittle fracture. Shorter fibrils experience a more graceful ductile-like failure. An analytical model is constructed and the results of the molecular modelling are used to find curve-fitted expressions for yield stress, yield strain and fracture strain as functions of fibril structural parameters. Our results for the first time elucidate the size dependence of mechanical failure properties of collagen fibrils. The associated molecular deformation mechanisms allow the full power of traditional material and structural engineering theory to be applied to our understanding of the normal and pathological mechanical behaviours of collagenous tissues under load.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
68 |
4
|
Abstract
A brief overview of isolated collagen fibril mechanics testing is followed by presentation of the first results testing fibrils isolated from load-bearing mammalian tendons using a microelectromechanical systems platform. The in vitro modulus (326 ± 112 MPa) and fracture stress (71 ± 23 MPa) are shown to be lower than previously measured on fibrils extracted from sea cucumber dermis and tested with the same technique. Scanning electron microscope images show the fibrils can fail with a mechanism that involves circumferential rupture, whereas the core of the fibril stays at least partially intact.
Collapse
|
Journal Article |
9 |
36 |
5
|
Wei H, Gibbs E, Zhao P, Wang N, Cofer GP, Zhang Y, Johnson GA, Liu C. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage. Magn Reson Med 2017; 78:1683-1690. [PMID: 28856712 PMCID: PMC5786159 DOI: 10.1002/mrm.26882] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the B0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. METHODS Multiecho gradient echo datasets (100-μm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. RESULTS STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. CONCLUSION The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
27 |
6
|
Zhang Y, Xu H, Hu X, Zhang C, Chu T, Zhou Y. Histopathological changes in supraspinous ligaments, ligamentum flava and paraspinal muscle tissues of patients with ankylosing spondylitis. Int J Rheum Dis 2014; 19:420-9. [PMID: 24597761 DOI: 10.1111/1756-185x.12305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To examine the histopathological changes in spinal tissues of ankylosing spondylitis (AS) patients. METHODS Tissue samples from 10 AS patients and 10 control subjects were obtained. Hematoxylin and eosin, picrosirius, Masson and van Gieson stainings were utilized to determine the pathological changes in tissues. Ultrastructural alterations were examined by electronic microscopy. Proteoglycan levels were assessed by enzyme-linked immunosorbent assays (ELISA). Matrix metalloproteinase-3 (MMP-3), transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) levels were evaluated by immunohistochemistry. RESULTS Our results demonstrate that the density of collagen fibrils was reduced in the supraspinous ligaments of AS tissue and fibrils were loosely and irregularly organized as compared to a regular distribution of collagen fibrils in controls. In ligamentum flava from AS patients, activated fibroblasts with enlarged nuclei were detected, while the number of elastic fibers was greatly decreased. Paraspinal muscle tissues of AS patients exhibited increased collagen fibril accumulation and atrophy. Significantly decreased proteoglycan and elevated MMP-3 levels were found in supraspinous ligament samples from AS patients (P < 0.01). Additionally, the levels of TGF-β1 in ligamentum flava and paraspinal muscle tissues of AS patients were increased (P < 0.01). The expression of TNF-α was also upregulated in the ligamentum flavum (P < 0.01), with no significant difference in the paraspinal muscle between control and AS patients (P > 0.05). CONCLUSIONS Our findings reveal histopathological changes that occur in certain spinal tissues of AS patients and suggest that increased levels of MMP-3 and TGF-β1 may contribute to the pathogenesis of AS.
Collapse
|
Journal Article |
11 |
24 |
7
|
Wu Z, Wang X, Wang Z, Shao C, Jin X, Zhang L, Pan H, Tang R, Fu B. Self-Etch Adhesive as a Carrier for ACP Nanoprecursors to Deliver Biomimetic Remineralization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17710-17717. [PMID: 28525257 DOI: 10.1021/acsami.7b01719] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lab biomineralization should be carried out in an actual clinical practice. This study evaluated self-etch adhesive as a carrier for amorphous calcium phosphate (ACP) nanoprecursors to continuously deliver biomimetic remineralization of self-assembly type I collagen and demineralized dentin. Si-containing ACP particles (Si-ACP) stabilized with polyaspartic acid (PAsp) were synthesized and characterized by transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray spectroscopy, Fourier transform infrared analysis, X-ray powder diffractometry, and X-ray phototelectron spectroscopy. The biomimetic remineralization of single-layer reconstituted type I collagen fibrils and demineralized dentin was analyzed by using two one-bottle self-etch dentin adhesives (Clearfil S3 Bond (S3), Kurraray-Noritake; Adper Easy One (AEO), 3 M ESPE) as a carrier loaded (or not, in the case of the control) with 25 wt % of Si-ACP particles. In vitro cytotoxicity assessed by the Cell Counting Kit-8 indicated that the Si-ACP particles had no adverse effect on cell viability. The capacity for Ca and P ions release from cured Si-ACP-containing adhesives (S3, AEO) was evaluated by inductively coupled plasma-atomic emission spectrometry, revealing the successively increasing release of Ca and P ions for 28 days. The intra- and extrafibrillar remineralization of type I collagen and demineralized dentin was confirmed by TEM and selected-area electron diffraction when the adhesives were used as a carrier loaded with Si-ACP particles. Therefore, we propose self-etch adhesive as a novel carrier for ACP nanoprecursors to continuously deliver biomimetic remineralization.
Collapse
|
|
8 |
24 |
8
|
Goh KL, Holmes DF. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Int J Mol Sci 2017; 18:ijms18050901. [PMID: 28441344 PMCID: PMC5454814 DOI: 10.3390/ijms18050901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue.
Collapse
|
Review |
8 |
24 |
9
|
Veres SP, Brennan-Pierce EP, Lee JM. Macrophage-like U937 cells recognize collagen fibrils with strain-induced discrete plasticity damage. J Biomed Mater Res A 2014; 103:397-408. [PMID: 24616426 DOI: 10.1002/jbm.a.35156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 11/12/2022]
Abstract
At its essence, biomechanical injury to soft tissues or tissue products means damage to collagen fibrils. To restore function, damaged collagen must be identified, then repaired or replaced. It is unclear at present what the kernel features of fibrillar damage are, how phagocytic or synthetic cells identify that damage, and how they respond. We recently identified a nanostructural motif characteristic of overloaded collagen fibrils that we have termed discrete plasticity. In this study, we have demonstrated that U937 macrophage-like cells respond specifically to overload-damaged collagen fibrils. Tendons from steer tails were bisected, one half undergoing 15 cycles of subrupture mechanical overload and the other serving as an unloaded control. Both halves were decellularized, producing sterile collagen scaffolds that contained either undamaged collagen fibrils, or fibrils with discrete plasticity damage. Matched-pairs were cultured with U937 cells differentiated to a macrophage-like form directly on the substrate. Morphological responses of the U937 cells to the two substrates-and evidence of collagenolysis by the cells-were assessed using scanning electron microscopy. Enzyme release into medium was quantified for prototypic matrix metalloproteinase-1 (MMP-1) collagenase, and MMP-9 gelatinase. When adherent to damaged collagen fibrils, the cells clustered less, showed ruffled membranes, and frequently spread: increasing their contact area with the damaged substrate. There was clear structural evidence of pericellular enzymolysis of damaged collagen-but not of control collagen. Cells on damaged collagen also released significantly less MMP-9. These results show that U937 macrophage-like cells recognize strain-induced discrete plasticity damage in collagen fibrils: an ability that may be important to their removal or repair.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
23 |
10
|
Chambers NC, Herod TW, Veres SP. Ultrastructure of tendon rupture depends on strain rate and tendon type. J Orthop Res 2018; 36:2842-2850. [PMID: 29901228 DOI: 10.1002/jor.24067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/03/2018] [Indexed: 02/04/2023]
Abstract
Previous research has shown that both the mechanics and elongation mechanisms of tendon and ligament vary with strain rate during tensile loading. In this study, we sought to determine if the ultrastructural damage created during tendon rupture also varies with strain rate. A bovine forelimb model was used, allowing two anatomically proximate but physiologically distinct tendons to be studies: the positional common digital extensor tendon, and the energy storing superficial digital flexor tendon. Samples from the two tendon types were ruptured at rates of either 1%/s or 10%/s. Relative to unruptured control samples, changes to collagen fibril structure were assessed using scanning electron microscopy (SEM), and changes to collagen molecule packing were studied using differential scanning calorimetry (DSC). Rupture at 1%/s caused discrete plasticity damage that extended along the length of collagen fibrils in both the extensor and flexor tendons. Consistent with this, DSC showed molecular packing disruption relative to control samples. Both SEM and DSC showed that extensor tendon fibrils sustained more severe damage than the more highly crosslinked flexor tendon fibrils. Increasing strain rate during rupture decreased the level of longitudinal disruption experienced by the collagen fibrils of both tendon types. Disruption to D-banding was no longer seen in the extensor tendon fibrils, and discrete plasticity damage was completely eliminated in the flexor tendon fibrils, indicating a transition to localized point failure. Ultrastructural damage resulting from tendon rupture depends on both strain rate and tendon type. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2842-2850, 2018.
Collapse
|
|
7 |
18 |
11
|
Zheng S, Xia Y, Badar F. Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI. Magn Reson Med 2011; 65:656-63. [PMID: 20939069 PMCID: PMC3021642 DOI: 10.1002/mrm.22648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/16/2010] [Accepted: 08/26/2010] [Indexed: 11/08/2022]
Abstract
To further study the anisotropic distribution of the collagen matrix in articular cartilage, microscopic magnetic resonance imaging experiments were carried out on articular cartilages from the central load-bearing area of three canine humeral heads at 13 μm resolution across the depth of tissue. Quantitative T2 images were acquired when the tissue blocks were rotated, relative to B0, along two orthogonal directions, both perpendicular to the normal axis of the articular surface. The T2 relaxation rate (R2) was modeled, by three fibril structural configurations (solid cone, funnel, and fan), to represent the anisotropy of the collagen fibrils in cartilage from the articular surface to the cartilage/bone interface. A set of complex and depth-dependent characteristics of collagen distribution was found in articular cartilage. In particular, there were two anisotropic components in the superficial zone and an asymmetrical component in the radial zone of cartilage. A complex model of the three-dimensional fibril architecture in articular cartilage is proposed, which has a leaf-like or layer-like structure in the radial zone, arises in a radial manner from the subchondral bone, spreads and arches passing the isotropic transitional zone, and exhibits two distinct anisotropic components (vertical and transverse) in the surface portion of the tissue.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
18 |
12
|
Veres SP, Harrison JM, Lee JM. Cross-link stabilization does not affect the response of collagen molecules, fibrils, or tendons to tensile overload. J Orthop Res 2013; 31:1907-13. [PMID: 24038530 DOI: 10.1002/jor.22460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/15/2013] [Indexed: 02/04/2023]
Abstract
We investigated whether immature allysine-derived cross-links provide mechanically labile linkages by exploring the effects of immature cross-link stabilization at three levels of collagen hierarchy: damaged fibril morphology, whole tendon mechanics, and molecular stability. Tendons from the tails of young adult steers were either treated with sodium borohydride (NaBH₄) to stabilize labile cross-links, exposed only to the buffer used during stabilization treatment, or maintained as untreated controls. One-half of each tendon was then subjected to five cycles of subrupture overload. Morphologic changes to collagen fibrils resulting from overload were investigated using scanning electron microscopy, and changes in the hydrothermal stability of collagen molecules were assessed using hydrothermal isometric tension testing. NaBH4 cross-link stabilization did not affect the response of tendon collagen to tensile overload at any of the three levels of hierarchy studied. Cross-link stabilization did not prevent the characteristic overload-induced mode of fibril damage that we term discrete plasticity. Similarly, stabilization did not alter the mechanical response of whole tendons to overload, and did not prevent an overload-induced thermal destabilization of collagen molecules. Our results indicate that hydrothermally labile cross-links may not be as mechanically labile as was previously thought.
Collapse
|
|
12 |
17 |
13
|
Brown RJ, Mallory C, McDougal OM, Oxford JT. Proteomic analysis of Col11a1-associated protein complexes. Proteomics 2011; 11:4660-76. [PMID: 22038862 PMCID: PMC3463621 DOI: 10.1002/pmic.201100058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/26/2011] [Accepted: 09/28/2011] [Indexed: 11/06/2022]
Abstract
Cartilage plays an essential role during skeletal development within the growth plate and in articular joint function. Interactions between the collagen fibrils and other extracellular matrix molecules maintain structural integrity of cartilage, orchestrate complex dynamic events during embryonic development, and help to regulate fibrillogenesis. To increase our understanding of these events, affinity chromatography and liquid chromatography/tandem mass spectrometry were used to identify proteins that interact with the collagen fibril surface via the amino terminal domain of collagen α1(XI) a protein domain that is displayed at the surface of heterotypic collagen fibrils of cartilage. Proteins extracted from fetal bovine cartilage using homogenization in high ionic strength buffer were selected based on affinity for the amino terminal noncollagenous domain of collagen α1(XI). MS was used to determine the amino acid sequence of tryptic fragments for protein identification. Extracellular matrix molecules and cellular proteins that were identified as interacting with the amino terminal domain of collagen α1(XI) directly or indirectly, included proteoglycans, collagens, and matricellular molecules, some of which also play a role in fibrillogenesis, while others are known to function in the maintenance of tissue integrity. Characterization of these molecular interactions will provide a more thorough understanding of how the extracellular matrix molecules of cartilage interact and what role collagen XI plays in the process of fibrillogenesis and maintenance of tissue integrity. Such information will aid tissue engineering and cartilage regeneration efforts to treat cartilage tissue damage and degeneration.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
16 |
14
|
Suwa Y, Nam K, Ozeki K, Kimura T, Kishida A, Masuzawa T. Thermal denaturation behavior of collagen fibrils in wet and dry environment. J Biomed Mater Res B Appl Biomater 2015; 104:538-45. [PMID: 25952296 DOI: 10.1002/jbm.b.33418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/24/2015] [Accepted: 03/18/2015] [Indexed: 11/10/2022]
Abstract
We have developed a new minimally invasive technique--integrated low-level energy adhesion technique (ILEAT)--which uses heat, pressure, and low-frequency vibrations for binding living tissues. Because the adhesion mechanism of the living tissues is not fully understood, we investigated the effect of thermal energy on the collagen structure in living tissues using ILEAT. To study the effect of thermal energy and heating time on the structure of the collagen fibril, samples were divided in two categories-wet and dry. Further, atomic force microscopy was used to analyze the collagen fibril structure before and after heating. Results showed that collagen fibrils in water denatured after 1 minute at temperatures higher than 80 °C, while partial denaturation was observed at temperatures of 80 °C and a heating time of 1 min. Furthermore, complete denaturation was achieved after 90 min, suggesting that the denaturation rate is temperature and time dependent. Moreover, the collagen fibrils in dry condition maintained their native structure even after being heated to 120 °C for 90 min in the absence of water, which specifically suppressed denaturation. However, partial denaturation of collagen fibrils could not be prevented, because this determines the adhesion between the collagen molecules, and stabilizes tissue bonding.
Collapse
|
Journal Article |
10 |
16 |
15
|
Kwon J, Cho H. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy. ACS Biomater Sci Eng 2020; 6:6680-6689. [PMID: 33320620 DOI: 10.1021/acsbiomaterials.0c01314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Piezoelectricity of Type I collagen can provide the stress-generated potential that is considered to be one of the candidate mechanisms to explain bone's adaptation to loading. However, it is still challenging to quantify piezoelectricity because of its heterogeneity and small magnitude. In this study, resonance-enhanced piezoresponse force microscopy (PFM) was utilized to amplify a weak piezoresponse of a single collagen fibril with a carefully calibrated cantilever. The quantitative PFM, combined with a dual-frequency resonance-tracking method, successfully identified the anisotropic and heterogenous nature of the piezoelectric properties in the collagen fibril. The profile of shear piezoelectric coefficient (d15) was obtained to be periodic along the collagen fibril, with a larger value in the gap zone (0.51 pm/V) compared to the value in the overlap zone (0.29 pm/V). Interestingly, this piezoelectric profile corresponds to the periodic profile of mechanical stiffness in a mineralized collagen fibril having a higher stiffness in the gap zone. Considering that apatite crystals are nucleated at the gap zone and subsequently grown along the collagen fibril, the heterogeneous and anisotropic nature of piezoelectric properties highlights the physiological importance of the collagen piezoelectricity in bone mineralization.
Collapse
|
|
5 |
15 |
16
|
Xie T, Xia Y, Guo S, Hoover P, Chen Z, Peavy GM. Topographical variations in the polarization sensitivity of articular cartilage as determined by polarization-sensitive optical coherence tomography and polarized light microscopy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:054034. [PMID: 19021414 PMCID: PMC2866638 DOI: 10.1117/1.2976422] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To understand the influence of topographical variations in collagen fibril orientation of articular cartilage on optical phase images of polarization-sensitive optical coherence tomography (PS-OCT), we use polarized light microscopy (PLM) to quantify the orientation and phase retardation of the collagen architecture in cartilage at the same locations imaged by PS-OCT. The PS-OCT experiments demonstrate that articular cartilage has normal variations in polarization sensitivity at different locations over an intact bovine tibial plateau. Articular cartilage is not polarization sensitive along the vertical axis on the medial edge and central areas of the joint surface, but becomes polarization sensitive on the lateral edge of the tibia. This difference in optical phase retardation, as demonstrated by PS-OCT, is verified by PLM to be caused by differences in collagen fibril orientation at different locations of the tibial plateau. This study demonstrates that normal topographical variations in the collagen architecture of articular cartilage within a joint have a profound influence on the optical phase retardation detected by PS-OCT imaging, and therefore must be understood and mapped for specific joints before PS-OCT imaging can be used for the evaluation of the health status of individual joint surfaces.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
14 |
17
|
Shinozaki A, Takagi S, Hosaka YZ, Uehara M. The fibrous tapetum of the horse eye. J Anat 2013; 223:509-18. [PMID: 24102505 DOI: 10.1111/joa.12100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 11/30/2022] Open
Abstract
The tapetum lucidum is a light-reflective tissue in the eyes of many animals. Many ungulates have a fibrous tapetum. The horse has one of the largest eyes of any living animal and also has excellent vision in low-light environments. This study aimed to clarify the macroscopic tapetal shape, relationship between the tapetal thickness and the degree of pigmentation of the retinal pigment epithelium (RPE), spatial relationship between the visual streak and the tapetum, and wavelength of the light reflected from the tapetum in the horse. Macroscopically, weak light revealed the tapetum as a horizontal band located dorsal to and away from the optic disc. The tapetum expanded dorsally as the illumination increased. The tapetal tissue consisted of lamellae of collagen fibrils running parallel to the retinal surface; these spread over almost the entire ocular fundus and were thicker in the horizontal band dorsal to the disc. Only the horizontal band of the tapetum was covered by unpigmented RPE, suggesting that this band reflects light and is responsible for mesopic and scotopic vision. The visual streak was located in the ventral part of the horizontal band, ventral to the thickest part of the tapetum. The wavelength of the light reflected from the horizontal band of the tapetum was estimated from the diameter and interfibrous distance of the collagen fibrils to be approximately 468 nm. Therefore, the light reflected from the tapetum should be more effectively absorbed by rods than by cones, and should not interfere with photopic vision.
Collapse
|
Journal Article |
12 |
12 |
18
|
Safa BN, Peloquin JM, Natriello JR, Caplan JL, Elliott DM. Helical fibrillar microstructure of tendon using serial block-face scanning electron microscopy and a mechanical model for interfibrillar load transfer. J R Soc Interface 2019; 16:20190547. [PMID: 31744419 DOI: 10.1098/rsif.2019.0547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tendon's hierarchical structure allows for load transfer between its fibrillar elements at multiple length scales. Tendon microstructure is particularly important, because it includes the cells and their surrounding collagen fibrils, where mechanical interactions can have potentially important physiological and pathological contributions. However, the three-dimensional (3D) microstructure and the mechanisms of load transfer in that length scale are not known. It has been postulated that interfibrillar matrix shear or direct load transfer via the fusion/branching of small fibrils are responsible for load transfer, but the significance of these mechanisms is still unclear. Alternatively, the helical fibrils that occur at the microstructural scale in tendon may also mediate load transfer; however, these structures are not well studied due to the lack of a three-dimensional visualization of tendon microstructure. In this study, we used serial block-face scanning electron microscopy to investigate the 3D microstructure of fibrils in rat tail tendon. We found that tendon fibrils have a complex architecture with many helically wrapped fibrils. We studied the mechanical implications of these helical structures using finite-element modelling and found that frictional contact between helical fibrils can induce load transfer even in the absence of matrix bonding or fibril fusion/branching. This study is significant in that it provides a three-dimensional view of the tendon microstructure and suggests friction between helically wrapped fibrils as a mechanism for load transfer, which is an important aspect of tendon biomechanics.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
11 |
19
|
Peacock C, Lee E, Beral T, Cisek R, Tokarz D, Kreplak L. Buckling and Torsional Instabilities of a Nanoscale Biological Rope Bound to an Elastic Substrate. ACS NANO 2020; 14:12877-12884. [PMID: 32966048 DOI: 10.1021/acsnano.0c03695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rope-like structures are ubiquitous in Nature. They are supermolecular assemblies of macromolecules responsible for the structural and mechanical integrity of plant and animal tissues. Collagen fibrils with diameters between 50 and 500 nm and their helical supermolecular structure are good examples of such nanoscale biological ropes. Like man-made laid ropes, fibrils are typically loaded in tension, and due to their large aspect ratio, they are, in principle, prone to buckling and torsional instabilities. One way to study buckling of a rigid rod is to attach it to a stretched elastic substrate that is then returned to its original length. In the case of single collagen fibrils, the observed behavior depends on the degree of hydration. By going from buckling in ambient conditions to immersed in a buffer, fibrils go from the well-known sine wave response to a localized behavior reminiscent of the bird-caging of laid ropes. In addition, in ambient conditions, the sine wave response coexists with the formation of loops along the length of the fibrils, as observed for the torsional instability of a twisted filament when tension is decreased. This work provides direct evidence that single collagen fibrils are highly susceptible to axial compression because of their helical supermolecular structure. As a result, mammals that use collagen fibrils as their main load-bearing element in many tissues have evolved mitigating strategies that protect single fibrils from axial compression damage.
Collapse
|
|
5 |
10 |
20
|
Zhou HY, Cao Y, Wu J, Zhang WS. Role of corneal collagen fibrils in corneal disorders and related pathological conditions. Int J Ophthalmol 2017; 10:803-811. [PMID: 28546941 DOI: 10.18240/ijo.2017.05.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/23/2017] [Indexed: 01/24/2023] Open
Abstract
The cornea is a soft tissue located at the front of the eye with the principal function of transmitting and refracting light rays to precisely sense visual information. Corneal shape, refraction, and stromal stiffness are to a large part determined by corneal fibrils, the arrangements of which define the corneal cells and their functional behaviour. However, the modality and alignment of native corneal collagen lamellae are altered in various corneal pathological states such as infection, injury, keratoconus, corneal scar formation, and keratoprosthesis. Furthermore, corneal recuperation after corneal pathological change is dependent on the balance of corneal collagen degradation and contraction. A thorough understanding of the characteristics of corneal collagen is thus necessary to develop viable therapies using the outcome of strategies using engineered corneas. In this review, we discuss the composition and distribution of corneal collagens as well as their degradation and contraction, and address the current status of corneal tissue engineering and the progress of corneal cross-linking.
Collapse
|
Review |
8 |
10 |
21
|
Yuan Y, Li M, Chen Q, Me R, Yu Y, Gu Q, Shi G, Ke B. Crosslinking Enzyme Lysyl Oxidase Modulates Scleral Remodeling in Form-Deprivation Myopia. Curr Eye Res 2017; 43:200-207. [PMID: 29135319 DOI: 10.1080/02713683.2017.1390770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Scleral remodeling causes the excessive ocular elongation that underlies myopia. Lysyl oxidase (LOX), a copper-containing amine oxidase, can catalyze collagen and elastin crosslinking. The purpose of this study was to investigate the role of LOX in scleral remodeling in form-deprivation myopia (FDM). METHODS Seventy-five guinea pigs were randomly divided into five groups as follows: a normal control group, an FDM group, an FDM plus β-aminopropionitrile (BAPN) group, an FDM plus TGF-β1 (TGF-β1) group, and an FDM plus vehicle group. A translucent diffuser was used to induce FDM, and intravitreal injection was used to administer BAPN, TGF-β1 or vehicle. The scleral LOX and collagen gene and protein levels and the posterior scleral ultrastructure and biomechanics were measured. RESULTS In the FDM group, both the scleral LOX and collagen gene and protein levels were significantly lower than those in the control eyes. The collagen fibril diameters were significantly decreased in the FDM group compared with the diameters in the control group. A significant decrease in LOX gene and protein expression was observed after BAPN injection, and an increase was observed after TGF-β1 treatment compared with the levels in the FDM group. Additionally, the scleral collagen fibrils were significantly decreased in the BAPN-treated eyes but increased in the TGF-β1-treated eyes compared with the FDM eyes. The ultimate stress and Young's modulus of the sclera were lowest in the BAPN group, followed by the FDM group and the TGF-β1 group. The ultimate strain (%) of the sclera was lowest in the TGF-β1 group, followed by the FDM group and the BAPN group. CONCLUSION LOX expression was significantly lowered in myopic sclera. Modulating LOX expression induced a change in both the scleral collagen fibril diameter and the scleral biomechanics. Therefore, LOX may play a key role in the myopia scleral remodeling procedure.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
7 |
22
|
Akhtar S, Alkhalaf M, Khan AA, Almubrad TM. Ultrastructure Features and Three-Dimensional Transmission Electron Tomography of Dhub Lizard (Uromastyx Aegyptia) Cornea and Its Adaptation to a Desert Environment. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:922-932. [PMID: 27619263 DOI: 10.1017/s1431927616011466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report ultrastructural features and transmission electron tomography of the dhub lizard (Uromastyx aegyptia) cornea and its adaptation to hot and dry environments. Six corneas of dhub lizards were fixed in 2.5% glutaraldehyde and processed for electron microscopy and tomography. The ultrathin sections were observed with a JEOL 1400 transmission electron microscope. The cornea of the dhub lizard is very thin (~28-30 µm). The epithelium constitutes ~14% of the cornea, whereas the stroma constitutes 80% of the cornea. The middle stromal lamellae are significantly thicker than anterior and posterior stromal lamellae. Collagen fibril (CF) diameters in the anterior stroma are variable in size (25-75 nm). Proteoglycans (PGs) are very large in the middle and posterior stroma, whereas they are small in the anterior stroma. Three-dimensional electron tomography was carried out to understand the structure and arrangement of the PG and CFs. The presence of large PGs in the posterior and middle stroma might help the animal retain a large amount of water to protect it from dryness. The dhub corneal structure is equipped to adapt to the dry and hot desert environment.
Collapse
|
|
9 |
6 |
23
|
Yang PF, Nie XT, Wang Z, Al-Qudsy LHH, Ren L, Xu HY, Rittweger J, Shang P. Disuse Impairs the Mechanical Competence of Bone by Regulating the Characterizations of Mineralized Collagen Fibrils in Cortical Bone. Front Physiol 2019; 10:775. [PMID: 31293444 PMCID: PMC6598106 DOI: 10.3389/fphys.2019.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Bones are made of complex material comprising organic components and mineral hydroxyapatite, both of which formulate the unique hierarchical structure of bone and its mechanical properties. Bones are capable of optimizing their structure and mechanical properties according to the mechanical environment. Mineral loss is a well-known consequence of skeleton disuse. By contrast, the response of the non-mineral phase of bone, i.e., the collagen network, during disuse remain largely unknown. In this study, a tail-suspension mice model was used to induce bone loss. Atomic force microscopy-based imaging and indentation approaches were adopted to investigate the influence of disuse on the morphology and in situ mechanical behavior of the collagen fibrils, under both non-loaded and load-bearing conditions, in the cortical tibia of mice. The results indicate that disuse induced by hindlimb unloading did not alter the orientation and D-periodic spacing of the collagen fibril, but results in decreased collagen crosslinking which correlates with decreased elasticity and increased susceptibility to mechanical damage. More concretely, the collagen fibrils in the disused tibia were misaligned under mechanical loading. It therefore indicates that the disordered arrangement of the mineralized collagen fibrils is one of the characteristics of the weakened bone during elastic deformation. These findings reveals the unique adaptation regimes of the collagen fibrils in the cortical bone to disuse, as well as the deformation mechanisms of bone in the relevant pathological process at different scales.
Collapse
|
Journal Article |
6 |
6 |
24
|
Hasegawa T, Miyamoto-Takasaki Y, Abe M, Qiu Z, Yamamoto T, Yoshida T, Yoshino H, Hongo H, Yokoyama A, Sasaki M, Kuroshima S, Hara K, Kobayashi M, Akiyama Y, Maeda T, Luiz de Freitas PH, Li M, Amizuka N. Histochemical examination on principal collagen fibers in periodontal ligaments of ascorbic acid-deficient ODS-od/od rats. Microscopy (Oxf) 2019; 68:349-358. [PMID: 31271212 DOI: 10.1093/jmicro/dfz021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to clarify the role of ascorbic acid in collagen synthesis in periodontal ligaments using osteogenic disorder Shionogi (ODS)/ShiJcl-od/od rats lacking L-gulonolactone oxidase. These rats cannot synthesize ascorbic acid in vivo. Eight-week-old ODS/ShiJcl-od/od male rats were administered ascorbic acid solution at a concentration of 200 mg/dL (control group, n = 6) or ascorbic acid solution at concentration of 0.3 mg/dL (insufficient group, n = 12). Six rats of the insufficient group were then given with ascorbic acid solution at concentration of 200 mg/dL for additional 3 weeks (rescued group, n = 6), and then, their mandibles were histochemically examined. Consequently, the insufficient group specimens were seen to possess fewer collagen fibers, and silver impregnation revealed numerous fine, reticular fiber-like fibrils branching off from collagen in the periodontal ligaments. In control group, faint immunoreactivities for matrix metalloproteinase (MMP)2 and cathepsin H were seen in the periphery of blood vessels and throughout the ligament, respectively. In contrast, in the insufficient group, intense MMP2-immunoreactivity was observed to be associated with collagen fibrils in the periodontal ligaments, and cathepsin H-immunopositivity was seen in ligamentous cells. The rescued group showed abundant collagen fibers filling the periodontal ligament space. Under transmission electron microscopy, ligamentous fibroblasts incorporated collagen fibrils into tubular endosomes/lysosomes while simultaneously synthesizing collagen fibril bundles. Thus, ascorbic acid insufficiency affected the immunolocalization of cathepsin H and MMP2; however, ligamentous fibroblasts appear to possess the potential to synthesize collagen fibers when supplied with ascorbic acid.
Collapse
|
|
6 |
5 |
25
|
Jaffey JA, Bullock G, Guo J, Mhlanga-Mutangadura T, O’Brien DP, Coates JR, Morrissey R, Hutchison R, Donnelly KS, Cohn LA, Katz ML, Johnson GS. Novel Homozygous ADAMTS2 Variants and Associated Disease Phenotypes in Dogs with Dermatosparactic Ehlers-Danlos Syndrome. Genes (Basel) 2022; 13:2158. [PMID: 36421833 PMCID: PMC9690363 DOI: 10.3390/genes13112158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 08/22/2023] Open
Abstract
Tissue fragility, skin hyperextensibility and joint hypermobility are defining characteristics of Ehlers-Danlos syndrome (EDS). Human EDS is subclassified into fourteen types including dermatosparactic EDS, characterized by extreme skin fragility and caused by biallelic ADAMTS2 mutations. We report two novel, ADAMTS2 variants in DNA from EDS-affected dogs. Separate whole-genome sequences from a Pit Bull Terrier and an Alapaha Blue Blood Bulldog each contained a rare, homozygous variant (11:2280117delC, CanFam3.1), predicted to produce a frameshift in the transcript from the first coding ADAMTS2 exon (c.10delC) and a severely truncated protein product, p.(Pro4ArgfsTer175). The clinical features of these dogs and 4 others with the same homozygous deletion included multifocal wounds, atrophic scars, joint hypermobility, narrowed palpebral fissures, skin hyperextensibility, and joint-associated swellings. Due to severe skin fragility, the owners of all 6 dogs elected euthanasia before the dogs reached 13 weeks of age. Cross sections of collagen fibrils in post-mortem dermal tissues from 2 of these dogs showed hieroglyphic-like figures similar to those from cases of severe dermatosparaxis in other species. The whole-genome sequence from an adult Catahoula Leopard Dog contained a homozygous ADAMTS2 missense mutation, [11:2491238G>A; p.(Arg966His)]. This dog exhibited multifocal wounds, atrophic scars, and joint hypermobility, but has survived for at least 9 years. This report expands the spectrum of clinical features of the canine dermatosparactic subtype of EDS and illustrates the potential utility of subclassifying canine EDS by the identity of gene harboring the causal variant.
Collapse
|
research-article |
3 |
5 |