1
|
Abstract
Schizophrenia is a complex genetic disorder manifesting combined environmental and genetic causation. Recently, genome-wide association experiments yielded remarkable new experimental evidence that is leading to a better understanding of the genetic models and the biological risk factors involved in schizophrenia. These studies have discovered uncommon copy number variations (mainly deletions) and common single nucleotide polymorphisms with alleles associated with schizophrenia. The aggregate data provide support for polygenic inheritance and for genetic overlap of schizophrenia with autism and with bipolar disorder. It is anticipated that the application of a myriad of tools from systems biology, in combination with biological functional experiments, will lead to a delineation of biological pathways involved in the pathophysiology of schizophrenia, and eventually to new therapies.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
167 |
2
|
Nagy C, Turecki G. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes. Epigenomics 2012; 4:445-57. [PMID: 22920183 PMCID: PMC5293543 DOI: 10.2217/epi.12.37] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.
Collapse
|
Review |
13 |
51 |
3
|
Vona B, Nanda I, Shehata-Dieler W, Haaf T. Genetics of Tinnitus: Still in its Infancy. Front Neurosci 2017; 11:236. [PMID: 28533738 PMCID: PMC5421307 DOI: 10.3389/fnins.2017.00236] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
Tinnitus is the perception of a phantom sound that affects between 10 and 15% of the general population. Despite this considerable prevalence, treatments for tinnitus are presently lacking. Tinnitus exhibits a diverse array of recognized risk factors and extreme clinical heterogeneity. Furthermore, it can involve an unknown number of auditory and non-auditory networks and molecular pathways. This complex combination has hampered advancements in the field. The identification of specific genetic factors has been at the forefront of several research investigations in the past decade. Nine studies have examined genes in a case-control association approach. Recently, a genome-wide association study has highlighted several potentially significant pathways that are implicated in tinnitus. Two twin studies have calculated a moderate heritability for tinnitus and disclosed a greater concordance rate in monozygotic twins compared to dizygotic twins. Despite the more recent data alluding to genetic factors in tinnitus, a strong association with any specific genetic locus is lacking and a genetic study with sufficient statistical power has yet to be designed. Future research endeavors must overcome the many inherent limitations in previous study designs. This review summarizes the previously embarked upon tinnitus genetic investigations and summarizes the hurdles that have been encountered. The identification of candidate genes responsible for tinnitus may afford gene based diagnostic approaches, effective therapy development, and personalized therapeutic intervention.
Collapse
|
Review |
8 |
39 |
4
|
Ferrari R, Lovering RC, Hardy J, Lewis PA, Manzoni C. Weighted Protein Interaction Network Analysis of Frontotemporal Dementia. J Proteome Res 2017; 16:999-1013. [PMID: 28004582 PMCID: PMC6152613 DOI: 10.1021/acs.jproteome.6b00934] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The genetic analysis
of complex disorders has undoubtedly led to
the identification of a wealth of associations between genes and specific
traits. However, moving from genetics to biochemistry one gene at
a time has, to date, rather proved inefficient and under-powered to
comprehensively explain the molecular basis of phenotypes. Here we
present a novel approach, weighted protein–protein interaction
network analysis (W-PPI-NA), to highlight key functional players within
relevant biological processes associated with a given trait. This
is exemplified in the current study by applying W-PPI-NA to frontotemporal
dementia (FTD): We first built the state of the art FTD protein network
(FTD-PN) and then analyzed both its topological and functional features.
The FTD-PN resulted from the sum of the individual interactomes built
around FTD-spectrum genes, leading to a total of 4198 nodes. Twenty
nine of 4198 nodes, called inter-interactome hubs (IIHs), represented
those interactors able to bridge over 60% of the individual interactomes.
Functional annotation analysis not only reiterated and reinforced
previous findings from single genes and gene-coexpression analyses
but also indicated a number of novel potential disease related mechanisms,
including DNA damage response, gene expression
regulation, and cell waste disposal and
potential biomarkers or therapeutic targets including EP300. These
processes and targets likely represent the functional core impacted
in FTD, reflecting the underlying genetic architecture contributing
to disease. The approach presented in this study can be applied to
other complex traits for which risk-causative genes are known as it
provides a promising tool for setting the foundations for collating
genomics and wet laboratory data in a bidirectional manner. This is
and will be critical to accelerate molecular target prioritization
and drug discovery.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
34 |
5
|
Wineinger NE, Kennedy RE, Erickson SW, Wojczynski MK, Bruder CE, Tiwari HK. Statistical issues in the analysis of DNA Copy Number Variations. INTERNATIONAL JOURNAL OF COMPUTATIONAL BIOLOGY AND DRUG DESIGN 2008; 1:368-95. [PMID: 19774103 PMCID: PMC2747762 DOI: 10.1504/ijcbdd.2008.022208] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Approaches to assess copy number variation have advanced rapidly and are being incorporated into genetic studies. While the technology exists for CNV genotyping, a further understanding and discussion of how to use the CNV data for association analyses is warranted. We present the options available for processing and analysing CNV data. We break these steps down into choice of genotyping platform, normalisation of the array data, calling algorithm, and statistical analysis.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
20 |
6
|
Austin J. The effect of genetic test-based risk information on behavioral outcomes: A critical examination of failed trials and a call to action. Am J Med Genet A 2015; 167A:2913-5. [PMID: 26284465 DOI: 10.1002/ajmg.a.37289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/26/2015] [Indexed: 11/10/2022]
Abstract
Encouraging individuals at risk for common complex disease like heart disease, cancer, and diabetes to adopt lifestyle changes (e.g., smoking cessation, exercise, proper nutrition, increased screening) could be powerful public health tools to decrease the enormous personal and economic burden of these conditions. Theoretically, genetic risk information appears to be a compelling tool that could be used to provoke at-risk individuals to adopt these lifestyle changes. Unfortunately, however, numerous studies now have shown that providing individuals with genetic test-based risk information has little to no impact on their behavior. In this article (a commentary not a systematic review), the failed trials in which genetic information has been used as a tool to induce behavior change will be critically examined in order to identify new and potentially more effective ways forward.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
7
|
Wood KA, Goriely A. The impact of paternal age on new mutations and disease in the next generation. Fertil Steril 2022; 118:1001-1012. [PMID: 36351856 PMCID: PMC10909733 DOI: 10.1016/j.fertnstert.2022.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Advanced paternal age is associated with an increased risk of fathering children with genetic disorders and other adverse reproductive consequences. However, the mechanisms underlying this phenomenon remain largely unexplored. In this review, we focus on the impact of paternal age on de novo mutations that are an important contributor to genetic disease and can be studied both indirectly through large-scale sequencing studies and directly in the tissue in which they predominantly arise-the aging testis. We discuss the recent data that have helped establish the origins and frequency of de novo mutations, and highlight experimental evidence about the close link between new mutations, parental age, and genetic disease. We then focus on a small group of rare genetic conditions, the so-called "paternal age effect" disorders that show a strong association between paternal age and disease prevalence, and discuss the underlying mechanism ("selfish selection") and implications of this process in more detail. More broadly, understanding the causes and consequences of paternal age on genetic risk has important implications both for individual couples and for public health advice given that the average age of fatherhood is steadily increasing in many developed nations.
Collapse
|
Review |
3 |
14 |
8
|
Matveeva N, Titov B, Bazyleva E, Pevzner A, Favorova O. Towards Understanding the Genetic Nature of Vasovagal Syncope. Int J Mol Sci 2021; 22:10316. [PMID: 34638656 PMCID: PMC8508958 DOI: 10.3390/ijms221910316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Syncope, defined as a transient loss of consciousness caused by transient global cerebral hypoperfusion, affects 30-40% of humans during their lifetime. Vasovagal syncope (VVS) is the most common cause of syncope, the etiology of which is still unclear. This review summarizes data on the genetics of VVS, describing the inheritance pattern of the disorder, candidate gene association studies and genome-wide studies. According to this evidence, VVS is a complex disorder, which can be caused by the interplay between genetic factors, whose contribution varies from monogenic Mendelian inheritance to polygenic inherited predisposition, and external factors affecting the monogenic (resulting in incomplete penetrance) and polygenic syncope types.
Collapse
|
Review |
4 |
8 |
9
|
Krieger MS, Moreau JM, Zhang H, Chien M, Zehnder JL, Craig M. A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics. PATTERNS (NEW YORK, N.Y.) 2020; 1:100138. [PMID: 33336196 PMCID: PMC7733879 DOI: 10.1016/j.patter.2020.100138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
A central challenge in medicine is translating from observational understanding to mechanistic understanding, where some observations are recognized as causes for the others. This can lead not only to new treatments and understanding, but also to recognition of novel phenotypes. Here, we apply a collection of mathematical techniques (empirical dynamics), which infer mechanistic networks in a model-free manner from longitudinal data, to hematopoiesis. Our study consists of three subjects with markers for cyclic thrombocytopenia, in which multiple cells and proteins undergo abnormal oscillations. One subject has atypical markers and may represent a rare phenotype. Our analyses support this contention, and also lend new evidence to a theory for the cause of this disorder. Simulations of an intervention yield encouraging results, even when applied to patient data outside our three subjects. These successes suggest that this blueprint has broader applicability in understanding and treating complex disorders.
Collapse
|
research-article |
5 |
6 |
10
|
Szoke A, Pignon B, Boster S, Jamain S, Schürhoff F. Schizophrenia: Developmental Variability Interacts with Risk Factors to Cause the Disorder: Nonspecific Variability-Enhancing Factors Combine with Specific Risk Factors to Cause Schizophrenia. Bioessays 2020; 42:e2000038. [PMID: 32864753 DOI: 10.1002/bies.202000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/10/2020] [Indexed: 12/31/2022]
Abstract
A new etiological model is proposed for schizophrenia that combines variability-enhancing nonspecific factors acting during development with more specific risk factors. This model is better suited than the current etiological models of schizophrenia, based on the risk factors paradigm, for predicting and/or explaining several important findings about schizophrenia: high co-morbidity rates, low specificity of many risk factors, and persistence in the population of the associated genetic polymorphisms. Compared with similar models, e.g., de-canalization, common psychopathology factor, sexual-selection, or differential sensitivity to the environment, this proposal is more general and integrative. Recently developed research methods have proven the existence of genetic and environmental factors that enhance developmental variability. Applying such methods to newly collected or already available data can allow for testing the hypotheses upon which this model is built. If validated, this model may change the understanding of the etiology of schizophrenia, the research models, and preventionbrk paradigms.
Collapse
|
|
5 |
3 |
11
|
Nazarian A, Kulminski AM. Evaluation of the Genetic Variance of Alzheimer's Disease Explained by the Disease-Associated Chromosomal Regions. J Alzheimers Dis 2019; 70:907-915. [PMID: 31282417 PMCID: PMC7243481 DOI: 10.3233/jad-190168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heritability analysis of complex traits/diseases is commonly performed to obtain illustrative information about the potential contribution of the genetic factors to their phenotypic variances. In this study, we investigated the narrow-sense heritability (h2) of Alzheimer's disease (AD) using genome-wide single-nucleotide polymorphisms (SNPs) data from three independent studies in the linear mixed models framework. Our meta-analyses demonstrated that the estimated h2 values (and their standard errors) of AD in liability scale were 0.280 (0.091), 0.348 (0.113), and 0.389 (0.126) assuming AD prevalence rates of 10%, 20%, or 30% at ages of 65+, 75+, and 85+ years, respectively. We also found that chromosomal regions containing two or more AD-associated SNPs at p < 5E-08 could collectively explain 37% of the additive genetic variance of AD in our samples. AD-associated regions in which at least one SNP had attained p < 5E-08 explained 56% of the additive genetic variance of AD. These regions harbored 3% and 11% of SNPs in our analyses. Also, the chromosomal regions containing two or more and one or more AD-associated SNPs at p < 5E-06 accounted for 72% and 94% of the additive genetic variance of AD, respectively. These regions harbored 27% and 44% of SNPs in our analyses. Our findings showed that the overall contribution of the additive genetic effects to the AD liability was moderate and age-dependent. Also, they supported the importance of focusing on known AD-associated chromosomal regions to investigate the genetic basis of AD, e.g., through haplotype analysis, analysis of heterogeneity, and functional studies.
Collapse
|
Meta-Analysis |
6 |
2 |
12
|
Smyth NJ, Blitshteyn S. Language Matters: What Not to Say to Patients with Long COVID, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, and Other Complex Chronic Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:275. [PMID: 40003500 PMCID: PMC11855516 DOI: 10.3390/ijerph22020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
People with Long COVID, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and other complex chronic disorders consistently report having difficulty obtaining effective and compassionate medical care and being disbelieved, judged, gaslighted, and even dismissed by healthcare professionals. We believe that these adversarial interactions and language are more likely to arise when healthcare professionals are confronting complex chronic illnesses without proper training, diagnostic biomarkers, or FDA-approved therapies. These problematic conversations between practitioners and patients often involve specific words and phrases-termed the "never-words"-can leave patients in significant emotional distress and negatively impact the clinician-patient relationship and recovery. Seeking to prevent these destructive interactions, we review key literature on best practices for difficult clinical conversations and discuss the application of these practices for people with Long COVID, ME/CFS, dysautonomia, and other complex chronic disorders. We provide recommendations for alternative, preferred phrasing to the never-words, which can enhance therapeutic relationship and chronic illness patient care via compassionate, encouraging, and non-judgmental language.
Collapse
|
Review |
1 |
|
13
|
Rónai Z, Lippai Z, Elek Z, Somogyi A. [Investigation of the genetic background of complex diseases]. Orv Hetil 2018; 159:1254-1261. [PMID: 30060678 DOI: 10.1556/650.2018.31123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the Human Genome Project discovered the sequence of the human genetic information 15 years ago, genetic background of the diseases - primarily that of complex disorders - is still not known. The sum of the not yet discovered inherited risk factors is termed the missing heritability; the identification of these genetic components is, however, essential, as it is the base of the understanding of the molecular pathomechanism of diseases. It is not only of theoretical importance: this knowledge can be used in the clinical practice, as it offers the possibility of improvement of diagnostics, prevention as well as targeted and individualized therapy. Application of novel and more efficient molecular biological tools contribute to the discovery of unknown genetic factors, the complete goal can only be achieved, however, by re-conceptualization of several clinical and genetic points. Our knowledge was established by genome-wide studies, however, further knowledge must be acquired according to the following points: (1) genotype and association analysis of repeat variations (VNTRs and CNVs) besides SNPs, (2) investigation of gene-gene and gene-environment interactions, (3) epigenetic studies, (4) assessing the biological function of polymorphisms, (5) application of biologically relevant diagnostic categories and endophenotypes. Although it is only 1.2% of the whole genome that codes for proteins, however, as much as 90% is transcribed to RNA, consequently it can be hypothesized that gene expression analyses might offer promising starting points for further studies, as they can shed light on the molecular processes that contribute to the development of diseases. Orv Hetil. 2018; 159(31): 1254-1261.
Collapse
|
Review |
7 |
|
14
|
Li Q, Meng Y, Wang J, Xie Y, Li T, Sun W. A Systematic Screening of ADHD-Susceptible Variants From 25 Chinese Parents-Offspring Trios. Front Genet 2022; 13:878036. [PMID: 35559026 PMCID: PMC9087589 DOI: 10.3389/fgene.2022.878036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent and heritable childhood behavioral disorders. Although a number of ADHD-susceptible regions had been identified, details about the variations of genes and their related patterns involved in ADHD are still lacking. In this study, we collected 25 Chinese parents-offspring trios, each of which consisted of a child diagnosed with ADHD and his/her unaffected parents, and analyzed the variations from whole-genome sequencing data. SNVs in reported ADHD-susceptible regions and on the genes whose functions were related to dopamine were screened, and we identified a set of variants with functional annotations which were specifically detected in ADHD children, including most SNVs in the gene coding region that might impair protein functions and a few SNVs in promoter or 3' untranslated region (3'-UTR) that might affect the regulation of relative gene expression in a transcriptional or posttranscriptional level. All the information may further contribute to the understanding, prediction, prevention, and treatment of ADHD in clinical.
Collapse
|
|
3 |
|
15
|
Joober R, Sengupta S, Boksa P. Genetics of developmental psychiatric disorders: pathways to discovery. J Psychiatry Neurosci 2005; 30:349-54. [PMID: 16151540 PMCID: PMC1197280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Genetics has captured the imagination of the public, the interest of the media and a large place in the sciences. Since the discovery of the structure of DNA by Watson and Crick, the double helix has epitomized the main dogma of genetics: everything from the tiniest details of the human body to the most complex of behaviours is encoded in the genes. This belief has been strengthened by the tremendous success that has been achieved in cloning more than 1000 genes that cause simple Mendelian disorders. However, for complex disorders, particularly psychiatric conditions, the search for genes has been frustrating and has not yielded definitive results, although claims of gene discoveries are made regularly. In this article, we discuss the possible causes for these difficulties, along with some directions that may help in reducing these problems. We also consider the implications of psychiatric genetic research for individual and public health.
Collapse
|
research-article |
20 |
|
16
|
Agam G, Atawna B, Damri O, Azab AN. The Role of FKBPs in Complex Disorders: Neuropsychiatric Diseases, Cancer, and Type 2 Diabetes Mellitus. Cells 2024; 13:801. [PMID: 38786025 PMCID: PMC11119362 DOI: 10.3390/cells13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.
Collapse
|
Review |
1 |
|