1
|
Abstract
HIV employs multiple means to evade the humoral immune response, particularly the elicitation of and recognition by broadly neutralizing antibodies (bnAbs). Such antibodies can act antivirally against a wide spectrum of viruses by targeting relatively conserved regions on the surface HIV envelope trimer spike. Elicitation of and recognition by bnAbs are hindered by the arrangement of spikes on virions and the relatively difficult access to bnAb epitopes on spikes, including the proximity of variable regions and a high density of glycans. Yet, in a small proportion of HIV-infected individuals, potent bnAb responses do develop, and isolation of the corresponding monoclonal antibodies has been facilitated by identification of favorable donors with potent bnAb sera and by development of improved methods for human antibody generation. Molecular studies of recombinant Env trimers, alone and in interaction with bnAbs, are providing new insights that are fueling the development and testing of promising immunogens aimed at the elicitation of bnAbs.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
448 |
2
|
Development of Influenza B Universal Vaccine Candidates Using the "Mosaic" Hemagglutinin Approach. J Virol 2019; 93:JVI.00333-19. [PMID: 30944178 DOI: 10.1128/jvi.00333-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Influenza B viruses cause seasonal epidemics and are a considerable burden to public health. However, protection by current seasonal vaccines is suboptimal due to the antigenic changes of the circulating strains. In this study, we report a novel universal influenza B virus vaccination strategy based on "mosaic" hemagglutinins. We generated mosaic B hemagglutinins by replacing the major antigenic sites of the type B hemagglutinin with corresponding sequences from exotic influenza A hemagglutinins and expressed them as soluble trimeric proteins. Sequential vaccination with recombinant mosaic B hemagglutinin proteins conferred cross-protection against both homologous and heterologous influenza B virus strains in the mouse model. Of note, we rescued recombinant influenza B viruses expressing mosaic B hemagglutinins, which could serve as the basis for a universal influenza B virus vaccine.IMPORTANCE This work reports a universal influenza B virus vaccination strategy based on focusing antibody responses to conserved head and stalk epitopes of the hemagglutinin. Recombinant mosaic influenza B hemagglutinin proteins and recombinant viruses have been generated as novel vaccine candidates. This vaccine strategy provided broad cross-protection in the mouse model. Our findings will inform and drive development toward a more effective influenza B virus vaccine.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
54 |
3
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
|
Journal Article |
4 |
19 |
4
|
Patel S, Hanajiri R, Grant M, Saunders D, Van Pelt S, Keller M, Hanley PJ, Simon G, Nixon DF, Hardy D, Jones RB, Bollard CM. HIV-Specific T Cells Can Be Generated against Non-escaped T Cell Epitopes with a GMP-Compliant Manufacturing Platform. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:11-20. [PMID: 31720305 PMCID: PMC6838524 DOI: 10.1016/j.omtm.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/03/2019] [Indexed: 11/01/2022]
Abstract
Although anti-retroviral therapy (ART) is successful in suppressing HIV-1 replication, HIV latently infected reservoirs are not eliminated, representing a major hurdle in efforts to eradicate the virus. Current strategies to eradicate HIV involve two steps: (1) the reactivation of latently infected cells with latency reversing agents (LRAs) to expose persisting HIV, and (2) the elimination of these cells with immune effectors while continuing ART to prevent reinfection. HIV-specific T cells (HSTs) can kill reactivated HIV-infected cells and are currently being evaluated in early-stage immunotherapy trials. HIV can mutate sequences in T cell epitopes and evade T cell-mediated killing of HIV-infected cells. However, by directing T cells to target multiple conserved, non-escaped HIV epitopes, the opportunity for viral escape can be reduced. Using a good manufacturing practice (GMP)-compliant platform, we manufactured HSTs against non-escape epitope targets (HST-NEETs) from HIV+ and HIV-seronegative donors. HST-NEETs expanded to clinically relevant numbers, lysed autologous antigen-pulsed targets, and showed a polyfunctional pro-inflammatory cytokine response. Notably, HST-NEETs recognized multiple conserved, non-escaped HIV epitopes and their common variants. We propose that HST-NEETs could be used to eliminate reactivated virus from latently infected cells in HIV+ individuals following LRA treatment. Additionally, HST-NEETs derived from HIV-negative individuals could be used post-transplant for HIV+ individuals with hematologic malignancies to augment anti-viral immunity and destroy residual infected cells.
Collapse
|
Journal Article |
6 |
17 |
5
|
Hu X, Valentin A, Rosati M, Manocheewa S, Alicea C, Chowdhury B, Bear J, Broderick KE, Sardesai NY, Gall SL, Mullins JI, Pavlakis GN, Felber BK. HIV Env conserved element DNA vaccine alters immunodominance in macaques. Hum Vaccin Immunother 2017; 13:2859-2871. [PMID: 28678607 PMCID: PMC5718827 DOI: 10.1080/21645515.2017.1339852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sequence diversity and immunodominance are major obstacles in the design of an effective vaccine against HIV. HIV Env is a highly-glycosylated protein composed of ‘conserved’ and ‘variable’ regions. The latter contains immunodominant epitopes that are frequently targeted by the immune system resulting in the generation of immune escape variants. This work describes 12 regions in HIV Env that are highly conserved throughout the known HIV M Group sequences (Env CE), and are poorly immunogenic in macaques vaccinated with full-length Env expressing DNA vaccines. Two versions of plasmids encoding the 12 Env CE were generated, differing by 0–5 AA per CE to maximize the inclusion of commonly detected variants. In contrast to the full-length env DNA vaccine, vaccination of macaques with a combination of these 2 Env CE DNA induced robust, durable cellular immune responses with a significant fraction of CD8+ T cells with cytotoxic phenotype (Granzyme B+ and CD107a+). Although inefficient in generating primary responses to the CE, boosting of the Env CE DNA primed macaques with the intact env DNA vaccine potently augmented pre-existing immunity, increasing magnitude, breadth and cytotoxicity of the cellular responses. Fine mapping showed that 7 of the 12 CE elicited T cell responses. Env CE DNA also induced humoral responses able to recognize the full-length Env. Env CE plasmids are therefore capable of inducing durable responses to highly conserved regions of Env that are frequently absent after Env vaccination or immunologically subdominant. These modified antigens are candidates for use as prophylactic and therapeutic HIV vaccines.
Collapse
|
Research Support, N.I.H., Intramural |
8 |
12 |
6
|
Isakova-Sivak I, Matyushenko V, Stepanova E, Matushkina A, Kotomina T, Mezhenskaya D, Prokopenko P, Kudryavtsev I, Kopeykin P, Sivak K, Rudenko L. Recombinant Live Attenuated Influenza Vaccine Viruses Carrying Conserved T-cell Epitopes of Human Adenoviruses Induce Functional Cytotoxic T-Cell Responses and Protect Mice against Both Infections. Vaccines (Basel) 2020; 8:E196. [PMID: 32344618 PMCID: PMC7349758 DOI: 10.3390/vaccines8020196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Human adenoviruses (AdVs) are one of the most common causes of acute respiratory viral infections worldwide. Multiple AdV serotypes with low cross-reactivity circulate in the human population, making the development of an effective vaccine very challenging. In the current study, we designed a cross-reactive AdV vaccine based on the T-cell epitopes conserved among various AdV serotypes, which were inserted into the genome of a licensed cold-adapted live attenuated influenza vaccine (LAIV) backbone. We rescued two recombinant LAIV-AdV vaccines by inserting the selected AdV T-cell epitopes into the open reading frame of full-length NA and truncated the NS1 proteins of the H7N9 LAIV virus. We then tested the bivalent vaccines for their efficacy against influenza and human AdV5 in a mouse model. The vaccine viruses were attenuated in C57BL/6J mice and induced a strong influenza-specific antibody and cell-mediated immunity, fully protecting the mice against virulent influenza virus infection. The CD8 T-cell responses induced by both LAIV-AdV candidates were functional and efficiently killed the target cells loaded either with influenza NP366 or AdV DBP418 peptides. In addition, high levels of recall memory T cells targeted to an immunodominant H2b-restricted CD8 T-cell epitope were detected in the immunized mice after the AdV5 challenge, and the magnitude of these responses correlated with the level of protection against pulmonary pathology caused by the AdV5 infection. Our findings suggest that the developed recombinant vaccines can be used for combined protection against influenza and human adenoviruses and warrant further evaluation on humanized animal models and subsequent human trials.
Collapse
|
research-article |
5 |
10 |
7
|
Sun W, Zheng A, Miller R, Krammer F, Palese P. An Inactivated Influenza Virus Vaccine Approach to Targeting the Conserved Hemagglutinin Stalk and M2e Domains. Vaccines (Basel) 2019; 7:vaccines7030117. [PMID: 31540436 PMCID: PMC6789539 DOI: 10.3390/vaccines7030117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Universal influenza virus vaccine candidates that focus on the conserved hemagglutinin (HA) stalk domain and the extracellular domain of the matrix protein 2 (M2e) have been developed to increase the breadth of protection against multiple strains. In this study, we report a novel inactivated influenza virus vaccine approach that combines these two strategies. We inserted a human consensus M2e epitope into the immunodominant antigenic site (Ca2 site) of three different chimeric HAs (cHAs). Sequential immunization with inactivated viruses containing these modified cHAs substantially enhanced M2e antibody responses while simultaneously boosting stalk antibody responses. The combination of additional M2e antibodies with HA stalk antibodies resulted in superior antibody-mediated protection in mice against challenge viruses expressing homologous or heterosubtypic hemagglutinin and neuraminidase compared to vaccination strategies that targeted the HA stalk or M2e epitopes in isolation.
Collapse
|
Journal Article |
6 |
10 |
8
|
Rational Design of a Pan-Coronavirus Vaccine Based on Conserved CTL Epitopes. Viruses 2021; 13:v13020333. [PMID: 33670023 PMCID: PMC7926959 DOI: 10.3390/v13020333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
With the rapid global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, a safe and effective vaccine against human coronaviruses (HCoVs) is believed to be a top priority in the field of public health. Due to the frequent outbreaks of different HCoVs, the development of a pan-HCoVs vaccine is of great value to biomedical science. The antigen design is a key prerequisite for vaccine efficacy, and we therefore developed a novel antigen with broad coverage based on the genetic algorithm of mosaic strategy. The designed antigen has a potentially broad coverage of conserved cytotoxic T lymphocyte (CTL) epitopes to the greatest extent, including the existing epitopes from all reported HCoV sequences (HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2). This novel antigen is expected to induce strong CTL responses with broad coverage by targeting conserved epitopes against multiple coronaviruses.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
8 |
9
|
Liu Z, Zhou J, Wang W, Zhang G, Xing L, Zhang K, Wang Y, Xu W, Wang Q, Man Q, Wang Q, Ying T, Zhu Y, Jiang S, Lu L. Neutralization of SARS-CoV-2 BA.2.86 and JN.1 by CF501 adjuvant-enhanced immune responses targeting the conserved epitopes in ancestral RBD. Cell Rep Med 2024; 5:101445. [PMID: 38428429 PMCID: PMC10983032 DOI: 10.1016/j.xcrm.2024.101445] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
The emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2.86 and JN.1 raise concerns regarding their potential to evade immune surveillance and spread globally. Here, we test sera from rhesus macaques immunized with 3 doses of wild-type SARS-CoV-2 receptor-binding domain (RBD)-Fc adjuvanted with the STING agonist CF501. We find that the sera can potently neutralize pseudotyped XBB.1.5, XBB.1.16, CH.1.1, EG.5, BA.2.86, and JN.1, with 50% neutralization titers ranging from 3,494 to 7,424. We also demonstrate that CF501, but not Alum, can enhance immunogenicity of the RBD from wild-type SARS-CoV-2 to improve induction of broadly neutralizing antibodies (bnAbs) with binding specificity and activity similar to those of SA55, BN03, and S309, thus exhibiting extraordinary broad-spectrum neutralizing activity. Overall, the RBD from wild-type SARS-CoV-2 also contains conservative epitopes. The RBD-Fc adjuvanted by CF501 can elicit potent bnAbs against JN.1, BA.2.86, and other XBB subvariants. This strategy can be adopted to develop broad-spectrum vaccines to combat future emerging and reemerging viral infectious diseases.
Collapse
|
brief-report |
1 |
7 |
10
|
Broadly Protective CD8 + T Cell Immunity to Highly Conserved Epitopes Elicited by Heat Shock Protein gp96-Adjuvanted Influenza Monovalent Split Vaccine. J Virol 2021; 95:JVI.00507-21. [PMID: 33827939 DOI: 10.1128/jvi.00507-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, immunization with inactivated influenza virus vaccines is the most prevalent method to prevent infections. However, licensed influenza vaccines provide only strain-specific protection and need to be updated and administered yearly; thus, new vaccines that provide broad protection against multiple influenza virus subtypes are required. In this study, we demonstrated that intradermal immunization with gp96-adjuvanted seasonal influenza monovalent H1N1 split vaccine could induce cross-protection against both group 1 and group 2 influenza A viruses in BALB/c mouse models. Vaccination in the presence of gp96 induced an apparently stronger antigen-specific T cell response than split vaccine alone. Immunization with the gp96-adjuvanted vaccine also elicited an apparent cross-reactive CD8+ T cell response that targeted the conserved epitopes across different influenza virus strains. These cross-reactive CD8+ T cells might be recalled from a pool of memory cells established after vaccination and recruited from extrapulmonary sites to facilitate viral clearance. Of note, six highly conserved CD8+ T epitopes from the viral structural proteins hemagglutinin (HA), M1, nucleoprotein (NP), and PB1 were identified to play a synergistic role in gp96-mediated cross-protection. Comparative analysis showed that most of conservative epitope-specific cytotoxic T lymphocytes (CTLs) apparently induced by heterologous virus infection were also activated by gp96-adjuvanted vaccine, thus resulting in broader protective CD8+ T cell responses. Our results demonstrated the advantage of adding gp96 to an existing seasonal influenza vaccine to improve its ability to provide better cross-protection.IMPORTANCE Owing to continuous mutations in hemagglutinin (HA) or neuraminidase (NA) or recombination of the gene segments between different strains, influenza viruses can escape the immune responses developed by vaccination. Thus, new strategies aimed to efficiently activate immune response that targets to conserved regions among different influenza viruses are urgently needed in designing broad-spectrum influenza vaccine. Heat shock protein gp96 is currently the only natural T cell adjuvant with special ability to cross-present coupled antigen to major histocompatibility complex class I (MHC-I) molecule and activate the downstream antigen-specific CTL response. In this study, we demonstrated the advantages of adding gp96 to monovalent split influenza virus vaccine to improve its ability to provide cross-protection in the BALB/c mouse model and proved that a gp96-activated cross-reactive CTL response is indispensable in our vaccine strategy. Due to its unique adjuvant properties, gp96 might be a promising adjuvant for designing new broad-spectrum influenza vaccines.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
2 |
11
|
Cheng CW, Wu CY, Wang SW, Chen JY, Kung CC, Liao KS, Wong CH. Low-sugar universal mRNA vaccine against coronavirus variants with deletion of glycosites in the S2 or stem of SARS-CoV-2 spike messenger RNA (mRNA). Proc Natl Acad Sci U S A 2023; 120:e2314392120. [PMID: 38011546 DOI: 10.1073/pnas.2314392120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Since the outbreak of Severe Acute Respiratory Syndrome Virus-2 (SARS-CoV-2) in 2019, more than 15 million spike protein sequences have been identified, raising a new challenge for the development of a broadly protective vaccine against the various emerging variants. We found that the virus, like most other human viruses, depends on host-made glycans to shield the conserved epitopes on spike protein from immune response and demonstrated that deletion of the glycan shields exposed highly conserved epitopes and elicited broadly protective immune responses. In this study, we identified 17 conserved epitopes from 14 million spike protein sequences and 11 of the conserved epitopes are in the S2 domain, including the six most conserved epitopes in the stem region. We also demonstrated that deletion of the glycosites in the spike messenger RNA (mRNA) S2 domain or the stem region exposed the highly conserved epitopes and elicited broadly protective immune responses, particularly CD-8+ T cell response against various SARS-CoV-2 variants, and other human coronaviruses including MERS, SARS viruses, and those causing common cold.
Collapse
|
|
2 |
1 |
12
|
Lanfermeijer J, van de Ven K, Hendriks M, van Dijken H, Lenz S, Vos M, Borghans JAM, van Baarle D, de Jonge J. The Memory-CD8+-T-Cell Response to Conserved Influenza Virus Epitopes in Mice Is Not Influenced by Time Since Previous Infection. Vaccines (Basel) 2024; 12:419. [PMID: 38675801 PMCID: PMC11054904 DOI: 10.3390/vaccines12040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
To protect older adults against influenza A virus (IAV) infection, innovative strategies are imperative to overcome the decrease in protective immune response with age. One approach involves the boosting of CD8+ T cells at middle age that were previously induced by natural infection. At this stage, the immune system is still fit. Given the high conservation of T-cell epitopes within internal viral proteins, such a response may confer lasting protection against evolving influenza strains at older age, also reducing the high number of influenza immunizations currently required. However, at the time of vaccination, some individuals may have been more recently exposed to IAV than others, which could affect the T-cell response. We therefore investigated the fundamental principle of how the interval between the last infection and booster immunization during middle age influences the CD8+ T-cell response. To model this, female mice were infected at either 6 or 9 months of age and subsequently received a heterosubtypic infection booster at middle age (12 months). Before the booster infection, 6-month-primed mice displayed lower IAV-specific CD8+ T-cell responses in the spleen and lung than 9-month-primed mice. Both groups were better protected against the subsequent heterosubtypic booster infection compared to naïve mice. Notably, despite the different CD8+ T-cell levels between the 6-month- and 9-month-primed mice, we observed comparable responses after booster infection, based on IFNγ responses, and IAV-specific T-cell frequencies and repertoire diversity. Lung-derived CD8+ T cells of 6- and 9-month-primed mice expressed similar levels of tissue-resident memory-T-cell markers 30 days post booster infection. These data suggest that the IAV-specific CD8+ T-cell response after boosting is not influenced by the time post priming.
Collapse
|
research-article |
1 |
|
13
|
Wu X, Li W, Rong H, Pan J, Zhang X, Hu Q, Shi ZL, Zhang XE, Cui Z. A Nanoparticle Vaccine Displaying Conserved Epitopes of the Preexisting Neutralizing Antibody Confers Broad Protection against SARS-CoV-2 Variants. ACS NANO 2024; 18:17749-17763. [PMID: 38935412 DOI: 10.1021/acsnano.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The rapid development of the SARS-CoV-2 vaccine has been used to prevent the spread of coronavirus 2019 (COVID-19). However, the ongoing and future pandemics caused by SARS-CoV-2 variants and mutations underscore the need for effective vaccines that provide broad-spectrum protection. Here, we developed a nanoparticle vaccine with broad protection against divergent SARS-CoV-2 variants. The corresponding conserved epitopes of the preexisting neutralizing (CePn) antibody were presented on a self-assembling Helicobacter pylori ferritin to generate the CePnF nanoparticle. Intranasal immunization of mice with CePnF nanoparticles induced robust humoral, cellular, and mucosal immune responses and a long-lasting immunity. The CePnF-induced antibodies exhibited cross-reactivity and neutralizing activity against different coronaviruses (CoVs). CePnF vaccination significantly inhibited the replication and pathology of SARS-CoV-2 Delta, WIV04, and Omicron strains in hACE2 transgenic mice and, thus, conferred broad protection against these SARS-CoV-2 variants. Our constructed nanovaccine targeting the conserved epitopes of the preexisting neutralizing antibodies can serve as a promising candidate for a universal SARS-CoV-2 vaccine.
Collapse
|
|
1 |
|
14
|
Yao D, Patel RS, Lam A, Glover Q, Srinivasan C, Herchen A, Ritchie B, Agrawal B. Antibody Responses in SARS-CoV-2-Exposed and/or Vaccinated Individuals Target Conserved Epitopes from Multiple CoV-2 Antigens. Int J Mol Sci 2024; 25:9814. [PMID: 39337303 PMCID: PMC11432605 DOI: 10.3390/ijms25189814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
There is a need to investigate novel strategies in order to create an effective, broadly protective vaccine for current and future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks. The currently available vaccines demonstrate compromised efficacy against emerging SARS-CoV-2 variants of concern (VOCs), short-lived immunity, and susceptibility to immune imprinting due to frequent boosting practices. In this study, we examined the specificity of cross-reactive IgG antibody responses in mRNA-vaccinated, AstraZeneca-vaccinated, and unvaccinated donors to identify potentially conserved, cross-reactive epitopes to target in order to create a broadly protective SARS-CoV-2 vaccine. Our study provides evidence for cross-reactive IgG antibodies specific to eight different spike (S) variants. Furthermore, the specificities of these cross-variant IgG antibody titers were associated to some extent with spike S1- and S2-subunit-derived epitopes P1 and P2, respectively. In addition, nucleocapsid (N)- and membrane (M)-specific IgG antibody titers correlated with N- and M-derived epitopes conserved across beta-CoVs, P3-7. This study reveals conserved epitopes of viral antigens, targeted by natural and/or vaccine-induced human immunity, for future designs of next-generation COVID-19 vaccines.
Collapse
|
research-article |
1 |
|
15
|
Patel RS, Duque D, Bavananthasivam J, Hewitt M, Sandhu JK, Kumar R, Tran A, Agrawal B. Mixed lipopeptide-based mucosal vaccine candidate induces cross-variant immunity and protects against SARS-CoV-2 infection in hamsters. Immunohorizons 2025; 9:vlae011. [PMID: 39849995 PMCID: PMC11841972 DOI: 10.1093/immhor/vlae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 01/25/2025] Open
Abstract
The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent. However, the current vaccines are suboptimal; they elicit incomplete and short-lived protection and are ineffective against evolving virus variants. Updating the spike antigen according to the prevailing variant and repeated boosters is not the long-term solution. We have designed a lipopeptide-based, mucosal, pan-coronavirus vaccine candidate, derived from highly conserved and/or functional regions of the SARS-CoV-2 spike, nucleocapsid, and membrane proteins. Our studies demonstrate that the designed lipopeptides (LPMix) induced both cellular and humoral (mucosal and systemic) immune responses upon intranasal immunization in mice. Furthermore, the antibodies bound to the wild-type and mutated S proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Delta and Omicron, and also led to efficient neutralization in a surrogate viral neutralization assay. Our sequence alignment and 3-dimensional molecular modeling studies demonstrated that spike-derived epitopes, P1 and P2, are sequentially and/or structurally conserved among the SARS-CoV-2 variants. The addition of a novel mucosal adjuvant, heat-killed Caulobacter crescentus, to the lipopeptide vaccine significantly bolstered mucosal antibody responses. Finally, the lipopeptide-based intranasal vaccine demonstrated significant improvement in lung pathologies in a hamster model of SARS-CoV-2 infection. These studies are fundamentally important and open new avenues in the investigation of an innovative, broadly protective intranasal vaccine platform for SARS-CoV-2 and its variants.
Collapse
|
research-article |
1 |
|
16
|
Banik SSR, Kushnir N, Doranz BJ, Chambers R. Breaking barriers in antibody discovery: harnessing divergent species for accessing difficult and conserved drug targets. MAbs 2023; 15:2273018. [PMID: 38050985 DOI: 10.1080/19420862.2023.2273018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023] Open
Abstract
To exploit highly conserved and difficult drug targets, including multipass membrane proteins, monoclonal antibody discovery efforts increasingly rely on the advantages offered by divergent species such as rabbits, camelids, and chickens. Here, we provide an overview of antibody discovery technologies, analyze gaps in therapeutic antibodies that stem from the historic use of mice, and examine opportunities to exploit previously inaccessible targets through discovery now possible in alternate species. We summarize the clinical development of antibodies raised from divergent species, discussing how these animals enable robust immune responses against highly conserved binding sites and yield antibodies capable of penetrating functional pockets via long HCDR3 regions. We also discuss the value of pan-reactive molecules often produced by these hosts, and how these antibodies can be tested in accessible animal models, offering a faster path to clinical development.
Collapse
|
Review |
2 |
|