1
|
Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, Chua C, Feng Z, Guan YK, Ooi CH, Ivanova T, Zhang S, Lee M, Wu J, Ngo A, Manesh S, Tan E, Teh BT, So JBY, Goh LK, Boussioutas A, Lim TKH, Flotow H, Tan P, Rozen SG. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 2013; 145:554-65. [PMID: 23684942 DOI: 10.1053/j.gastro.2013.05.010] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Almost all gastric cancers are adenocarcinomas, which have considerable heterogeneity among patients. We sought to identify subtypes of gastric adenocarcinomas with particular biological properties and responses to chemotherapy and targeted agents. METHODS We compared gene expression patterns among 248 gastric tumors; using a robust method of unsupervised clustering, consensus hierarchical clustering with iterative feature selection, we identified 3 major subtypes. We developed a classifier for these subtypes and validated it in 70 tumors from a different population. We identified distinct genomic and epigenomic properties of the subtypes. We determined drug sensitivities of the subtypes in primary tumors using clinical survival data, and in cell lines through high-throughput drug screening. RESULTS We identified 3 subtypes of gastric adenocarcinoma: proliferative, metabolic, and mesenchymal. Tumors of the proliferative subtype had high levels of genomic instability, TP53 mutations, and DNA hypomethylation. Cancer cells of the metabolic subtype were more sensitive to 5-fluorouracil than the other subtypes. Furthermore, in 2 independent groups of patients, those with tumors of the metabolic subtype appeared to have greater benefits with 5-fluorouracil treatment. Tumors of the mesenchymal subtype contain cells with features of cancer stem cells, and cell lines of this subtype are particularly sensitive to phosphatidylinositol 3-kinase-AKT-mTOR inhibitors in vitro. CONCLUSIONS Based on gene expression patterns, we classified gastric cancers into 3 subtypes, and validated these in an independent set of tumors. The subgroups have differences in molecular and genetic features and response to therapy; this information might be used to select specific treatment approaches for patients with gastric cancer.
Collapse
|
Evaluation Study |
12 |
329 |
2
|
Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K, Charles N, Michor F, Holland EC. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 2014; 26:288-300. [PMID: 25117714 PMCID: PMC4143139 DOI: 10.1016/j.ccr.2014.06.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/20/2014] [Accepted: 06/11/2014] [Indexed: 01/16/2023]
Abstract
To understand the relationships between the non-GCIMP glioblastoma (GBM) subgroups, we performed mathematical modeling to predict the temporal sequence of driver events during tumorigenesis. The most common order of evolutionary events is 1) chromosome (chr) 7 gain and chr10 loss, followed by 2) CDKN2A loss and/or TP53 mutation, and 3) alterations canonical for specific subtypes. We then developed a computational methodology to identify drivers of broad copy number changes, identifying PDGFA (chr7) and PTEN (chr10) as driving initial nondisjunction events. These predictions were validated using mouse modeling, showing that PDGFA is sufficient to induce proneural-like gliomas and that additional NF1 loss converts proneural to the mesenchymal subtype. Our findings suggest that most non-GCIMP mesenchymal GBMs arise as, and evolve from, a proneural-like precursor.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
299 |
3
|
Hieronymus H, Murali R, Tin A, Yadav K, Abida W, Moller H, Berney D, Scher H, Carver B, Scardino P, Schultz N, Taylor B, Vickers A, Cuzick J, Sawyers CL. Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. eLife 2018; 7:e37294. [PMID: 30178746 PMCID: PMC6145837 DOI: 10.7554/elife.37294] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
The level of copy number alteration (CNA), termed CNA burden, in the tumor genome is associated with recurrence of primary prostate cancer. Whether CNA burden is associated with prostate cancer survival or outcomes in other cancers is unknown. We analyzed the CNA landscape of conservatively treated prostate cancer in a biopsy and transurethral resection cohort, reflecting an increasingly common treatment approach. We find that CNA burden is prognostic for cancer-specific death, independent of standard clinical prognosticators. More broadly, we find CNA burden is significantly associated with disease-free and overall survival in primary breast, endometrial, renal clear cell, thyroid, and colorectal cancer in TCGA cohorts. To assess clinical applicability, we validated these findings in an independent pan-cancer cohort of patients whose tumors were sequenced using a clinically-certified next generation sequencing assay (MSK-IMPACT), where prognostic value varied based on cancer type. This prognostic association was affected by incorporating tumor purity in some cohorts. Overall, CNA burden of primary and metastatic tumors is a prognostic factor, potentially modulated by sample purity and measurable by current clinical sequencing.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
195 |
4
|
Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 2013; 27:2513-30. [PMID: 24298051 PMCID: PMC3861665 DOI: 10.1101/gad.229559.113] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
181 |
5
|
Jung SH, Kim MS, Jung CK, Park HC, Kim SY, Liu J, Bae JS, Lee SH, Kim TM, Lee SH, Chung YJ. Mutational burdens and evolutionary ages of thyroid follicular adenoma are comparable to those of follicular carcinoma. Oncotarget 2018; 7:69638-69648. [PMID: 27626165 PMCID: PMC5342504 DOI: 10.18632/oncotarget.11922] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022] Open
Abstract
Follicular thyroid adenoma (FTA) precedes follicular thyroid carcinoma (FTC) by definition with a favorable prognosis compared to FTC. However, the genetic mechanism of FTA to FTC progression remains unknown. For this, it is required to disclose FTA and FTC genomes in mutational and evolutionary perspectives. We performed whole-exome sequencing and copy number profiling of 14 FTAs and 13 FTCs, which exhibited previously-known gene mutations (NRAS, HRAS, BRAF, TSHR and EIF1AX) and copy number alterations (CNAs) (22q loss and 1q gain) in follicular tumors. In addition, we found eleven potential cancer-related genes with mutations (EZH1, SPOP, NF1, TCF12, IGF2BP3, KMT2C, CNOT1, BRIP1, KDM5C, STAG2 and MAP4K3) that have not been reported in thyroid follicular tumors. Of note, FTA genomes showed comparable levels of mutations to FTC in terms of the number, sequence composition and functional consequences (potential driver mutations) of mutations. Analyses of evolutionary ages using somatic mutations as molecular clocks further identified that FTA genomes were as old as FTC genomes. Whole-transcriptome sequencing did not find any gene fusions with potential significance. Our data indicate that FTA genomes may be as old as FTC genomes, thus suggesting that follicular thyroid tumor genomes during the transition from FTA to FTC may stand stable at genomic levels in contrast to the discernable changes at pathologic and clinical levels. Also, the data suggest a possibility that the mutational profiles obtained from early biopsies may be useful for the molecular diagnosis and therapeutics of follicular tumor patients.
Collapse
|
Journal Article |
7 |
64 |
6
|
Genomic differences between pure ductal carcinoma in situ and synchronous ductal carcinoma in situ with invasive breast cancer. Oncotarget 2016; 6:7597-607. [PMID: 25831047 PMCID: PMC4480702 DOI: 10.18632/oncotarget.3162] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/17/2015] [Indexed: 01/22/2023] Open
Abstract
Although ductal carcinoma in situ (DCIS) precedes invasive ductal carcinoma (IDC), the related genomic alterations remain unknown. To identify the genomic landscape of DCIS and better understand the mechanisms behind progression to IDC, we performed whole-exome sequencing and copy number profiling for six cases of pure DCIS and five pairs of synchronous DCIS and IDC. Pure DCIS harbored well-known mutations (e.g., TP53, PIK3CA and AKT1), copy number alterations (CNAs) and chromothripses, but had significantly fewer driver genes and co-occurrence of mutation/CNAs than synchronous DCIS-IDC. We found neither recurrent nor significantly mutated genes with synchronous DCIS-IDC compared to pure DCIS, indicating that there may not be a single determinant for pure DCIS progression to IDC. Of note, synchronous DCIS genomes were closer to IDC than pure DCIS. Among the clinicopathologic parameters, progesterone receptor (PR)-negative status was associated with increased mutations, CNAs, co-occurrence of mutations/CNAs and driver mutations. Our results indicate that although pure DCIS has already acquired some drivers, more changes are needed to progress to IDC. In addition, IDC-associated DCIS is more aggressive than pure DCIS at genomic level and should really be considered IDC. Finally, the data suggest that PR-negativity could be used to predict aggressive breast cancer genotypes.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
63 |
7
|
Kenawy N, Kalirai H, Sacco JJ, Lake SL, Heegaard S, Larsen AC, Finger PT, Milman T, Chin K, Mosci C, Lanza F, Moulin A, Schmitt CA, Caujolle JP, Maschi C, Marinkovic M, Taktak AF, Heimann H, Damato BE, Coupland SE. Conjunctival melanoma copy number alterations and correlation with mutation status, tumor features, and clinical outcome. Pigment Cell Melanoma Res 2019; 32:564-575. [PMID: 30672666 PMCID: PMC6849808 DOI: 10.1111/pcmr.12767] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 01/03/2023]
Abstract
Relatively little is known about the genetic aberrations of conjunctival melanomas (CoM) and their correlation with clinical and histomorphological features as well as prognosis. The aim of this large collaborative multicenter study was to determine potential key biomarkers for metastatic risk and any druggable targets for high metastatic risk CoM. Using Affymetrix single nucleotide polymorphism genotyping arrays on 59 CoM, we detected frequent amplifications on chromosome (chr) 6p and deletions on 7q, and characterized mutation‐specific copy number alterations. Deletions on chr 10q11.21‐26.2, a region harboring the tumor suppressor genes, PDCD4, SUFU, NEURL1, PTEN, RASSF4, DMBT1, and C10orf90 and C10orf99, significantly correlated with metastasis (Fisher's exact, p ≤ 0.04), lymphatic invasion (Fisher's exact, p ≤ 0.02), increasing tumor thickness (Mann–Whitney, p ≤ 0.02), and BRAF mutation (Fisher's exact, p ≤ 0.05). This enhanced insight into CoM biology is a step toward identifying patients at risk of metastasis and potential therapeutic targets for systemic disease.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
44 |
8
|
Bueno RC, Canevari RA, Villacis RAR, Domingues MAC, Caldeira JRF, Rocha RM, Drigo SA, Rogatto SR. ATM down-regulation is associated with poor prognosis in sporadic breast carcinomas. Ann Oncol 2013; 25:69-75. [PMID: 24285016 DOI: 10.1093/annonc/mdt421] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia-mutated (ATM) gene downexpression has been reported in sporadic breast carcinomas (BC); however, the prognostic value and mechanisms of ATM deregulation remain unclear. PATIENTS AND METHODS ATM and miRNAs (miR-26a, miR-26b, miR-203, miR-421, miR-664, miR-576-5p and miR-18a) expression levels were evaluated by quantitative real-time PCR (RT-qPCR) in 52 BC and 3 normal breast samples. ATM protein expression was assessed by immunohistochemistry in 968 BC and 35 adjacent normal breast tissues. ATM copy number alteration was detected by array comparative genomic hybridization (aCGH) in 42 tumours. RESULTS Low ATM levels were associated with tumour grade. Absence of ATM protein expression was associated with distant metastasis (P < 0.001), reduced disease-free survival (DFS, P < 0.001) and cancer-specific survival (CSS, P < 0.001). Multivariate analysis indicated ATM protein expression as an independent prognostic marker for DFS (P = 0.001, HR = 0.579) and CSS (P = 0.001, HR = 0.554). ATM copy number loss was detected in 12% of tumours and associated with lower mRNA levels. miR-421 over-expression was detected in 36.5% of cases which exhibit lower ATM transcript levels (P = 0.075, r = -0.249). CONCLUSIONS The data suggest that ATM protein expression is an independent prognostic marker in sporadic BC. Gene copy number loss and miR-421 over-expression may be involved in ATM deregulation in BC.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
42 |
9
|
McKerrow W, Wang X, Mendez-Dorantes C, Mita P, Cao S, Grivainis M, Ding L, LaCava J, Burns KH, Boeke JD, Fenyö D. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc Natl Acad Sci U S A 2022; 119:e2115999119. [PMID: 35169076 PMCID: PMC8872788 DOI: 10.1073/pnas.2115999119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Retrotransposons are genomic DNA sequences that copy themselves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expression. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway.
Collapse
|
research-article |
3 |
42 |
10
|
Fadlullah MZH, Chiang IKN, Dionne KR, Yee PS, Gan CP, Sam KK, Tiong KH, Ng AKW, Martin D, Lim KP, Kallarakkal TG, Mustafa WMW, Lau SH, Abraham MT, Zain RB, Rahman ZAA, Molinolo A, Patel V, Gutkind JS, Tan AC, Cheong SC. Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies. Oncotarget 2017; 7:27802-18. [PMID: 27050151 PMCID: PMC5053689 DOI: 10.18632/oncotarget.8533] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/18/2016] [Indexed: 12/13/2022] Open
Abstract
Emerging biological and translational insights from large sequencing efforts underscore the need for genetically-relevant cell lines to study the relationships between genomic alterations of tumors, and therapeutic dependencies. Here, we report a detailed characterization of a novel panel of clinically annotated oral squamous cell carcinoma (OSCC) cell lines, derived from patients with diverse ethnicity and risk habits. Molecular analysis by RNAseq and copy number alterations (CNA) identified that the cell lines harbour CNA that have been previously reported in OSCC, for example focal amplications in 3q, 7p, 8q, 11q, 20q and deletions in 3p, 5q, 8p, 18q. Similarly, our analysis identified the same cohort of frequently mutated genes previously reported in OSCC including TP53, CDKN2A, EPHA2, FAT1, NOTCH1, CASP8 and PIK3CA. Notably, we identified mutations (MLL4, USP9X, ARID2) in cell lines derived from betel quid users that may be associated with this specific risk factor. Gene expression profiles of the ORL lines also aligned with those reported for OSCC. By focusing on those gene expression signatures that are predictive of chemotherapeutic response, we observed that the ORL lines broadly clustered into three groups (cell cycle, xenobiotic metabolism, others). The ORL lines noted to be enriched in cell cycle genes responded preferentially to the CDK1 inhibitor RO3306, by MTT cell viability assay. Overall, our in-depth characterization of clinically annotated ORL lines provides new insight into the molecular alterations synonymous with OSCC, which can facilitate in the identification of biomarkers that can be used to guide diagnosis, prognosis, and treatment of OSCC.
Collapse
|
Journal Article |
8 |
40 |
11
|
Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer. Proc Natl Acad Sci U S A 2015; 112:12492-7. [PMID: 26401016 DOI: 10.1073/pnas.1507491112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Recent high-throughput analyses of genomic alterations revealed several driver genes and altered pathways in GC. However, therapeutic applications from genomic data are limited, largely as a result of the lack of druggable molecular targets and preclinical models for drug selection. To identify new therapeutic targets for GC, we performed array comparative genomic hybridization (aCGH) of DNA from 103 patients with GC for copy number alteration (CNA) analysis, and whole-exome sequencing from 55 GCs from the same patients for mutation profiling. Pathway analysis showed recurrent alterations in the Wnt signaling [APC, CTNNB1, and DLC1 (deleted in liver cancer 1)], ErbB signaling (ERBB2, PIK3CA, and KRAS), and p53 signaling/apoptosis [TP53 and BCL2L1 (BCL2-like 1)] pathways. In 18.4% of GC cases (19/103), amplification of the antiapoptotic gene BCL2L1 was observed, and subsequently a BCL2L1 inhibitor was shown to markedly decrease cell viability in BCL2L1-amplified cell lines and in similarly altered patient-derived GC xenografts, especially when combined with other chemotherapeutic agents. In 10.9% of cases (6/55), mutations in DLC1 were found and were also shown to confer a growth advantage for these cells via activation of Rho-ROCK signaling, rendering these cells more susceptible to a ROCK inhibitor. Taken together, our study implicates BCL2L1 and DLC1 as potential druggable targets for specific subsets of GC cases.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
40 |
12
|
Lühmann JL, Stelter M, Wolter M, Kater J, Lentes J, Bergmann AK, Schieck M, Göhring G, Möricke A, Cario G, Žaliová M, Schrappe M, Schlegelberger B, Stanulla M, Steinemann D. The Clinical Utility of Optical Genome Mapping for the Assessment of Genomic Aberrations in Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13174388. [PMID: 34503197 PMCID: PMC8431583 DOI: 10.3390/cancers13174388] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The stratification of childhood ALL is currently based on various diagnostic assays. This study investigates the feasibility of Optical Genome Mapping (OGM) to determine the genetic risk profile of ALL using fresh and frozen blood cells in an all-in-one approach. Acute lymphoblastic leukemia samples with data available from SNP-array/array-CGH, RNA-Seq, MLPA, karyotyping and FISH were compared to results obtained by OGM. We show that OGM has the potential to simplify the diagnostic workflow and to identify new structural variants helpful for classifying patients into treatment groups. Abstract Acute lymphoblastic leukemia (ALL) is the most prevalent type of cancer occurring in children. ALL is characterized by structural and numeric genomic aberrations that strongly correlate with prognosis and clinical outcome. Usually, a combination of cyto- and molecular genetic methods (karyotyping, array-CGH, FISH, RT-PCR, RNA-Seq) is needed to identify all aberrations relevant for risk stratification. We investigated the feasibility of optical genome mapping (OGM), a DNA-based method, to detect these aberrations in an all-in-one approach. As proof of principle, twelve pediatric ALL samples were analyzed by OGM, and results were validated by comparing OGM data to results obtained from routine diagnostics. All genomic aberrations including translocations (e.g., dic(9;12)), aneuploidies (e.g., high hyperdiploidy) and copy number variations (e.g., IKZF1, PAX5) known from other techniques were also detected by OGM. Moreover, OGM was superior to well-established techniques for resolution of the more complex structure of a translocation t(12;21) and had a higher sensitivity for detection of copy number alterations. Importantly, a new and unknown gene fusion of JAK2 and NPAT due to a translocation t(9;11) was detected. We demonstrate the feasibility of OGM to detect well-established as well as new putative prognostic markers in an all-in-one approach in ALL. We hope that these limited results will be confirmed with testing of more samples in the future.
Collapse
|
|
4 |
39 |
13
|
Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung. Proc Natl Acad Sci U S A 2016; 113:10672-7. [PMID: 27601661 DOI: 10.1073/pnas.1606946113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary sclerosing hemangioma (PSH) is a benign tumor with two cell populations (epithelial and stromal cells), for which genomic profiles remain unknown. We conducted exome sequencing of 44 PSHs and identified recurrent somatic mutations of AKT1 (43.2%) and β-catenin (4.5%). We used a second subset of 24 PSHs to confirm the high frequency of AKT1 mutations (overall 31/68, 45.6%; p.E17K, 33.8%) and recurrent β-catenin mutations (overall 3 of 68, 4.4%). Of the PSHs without AKT1 mutations, two exhibited AKT1 copy gain. AKT1 mutations existed in both epithelial and stromal cells. In two separate PSHs from one patient, we observed two different AKT1 mutations, indicating they were not disseminated but independent arising tumors. Because the AKT1 mutations were not found to co-occur with β-catenin mutations (or any other known driver alterations) in any of the PSHs studied, we speculate that this may be the single-most common driver alteration to develop PSHs. Our study revealed genomic differences between PSHs and lung adenocarcinomas, including a high rate of AKT1 mutation in PSHs. These genomic features of PSH identified in the present study provide clues to understanding the biology of PSH and for differential genomic diagnosis of lung tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
34 |
14
|
Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Lees JA, Hopkins N. Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proc Natl Acad Sci U S A 2010; 107:16940-5. [PMID: 20837522 PMCID: PMC2947874 DOI: 10.1073/pnas.1011548107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aneuploidy is a hallmark of human cancers, but most mouse cancer models lack the extensive aneuploidy seen in many human tumors. The zebrafish is becoming an increasingly popular model for studying cancer. Here we report that malignant peripheral nerve sheath tumors (MPNSTs) that arise in zebrafish as a result of mutations in either ribosomal protein (rp) genes or in p53 are highly aneuploid. Karyotyping reveals that these tumors frequently harbor near-triploid numbers of chromosomes, and they vary in chromosome number from cell to cell within a single tumor. Using array comparative genomic hybridization, we found that, as in human cancers, certain fish chromosomes are preferentially overrepresented, whereas others are underrepresented in many MPNSTs. In addition, we obtained evidence for recurrent subchromosomal amplifications and deletions that may contain genes involved in cancer initiation or progression. These focal amplifications encompassed several genes whose amplification is observed in human tumors, including met, cyclinD2, slc45a3, and cdk6. One focal amplification included fgf6a. Increasing fgf signaling via a mutation that overexpresses fgf8 accelerated the onset of MPNSTs in fish bearing a mutation in p53, suggesting that fgf6a itself may be a driver of MPNSTs. Our results suggest that the zebrafish is a useful model in which to study aneuploidy in human cancer and in which to identify candidate genes that may act as drivers in fish and potentially also in human tumors.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
33 |
15
|
Pal D, Pertot A, Shirole NH, Yao Z, Anaparthy N, Garvin T, Cox H, Chang K, Rollins F, Kendall J, Edwards L, Singh VA, Stone GC, Schatz MC, Hicks J, Hannon GJ, Sordella R. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. eLife 2017; 6:e21615. [PMID: 28092266 PMCID: PMC5345931 DOI: 10.7554/elife.21615] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/14/2017] [Indexed: 12/21/2022] Open
Abstract
Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24- cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
31 |
16
|
Zhang L, Feizi N, Chi C, Hu P. Association Analysis of Somatic Copy Number Alteration Burden With Breast Cancer Survival. Front Genet 2018; 9:421. [PMID: 30337938 PMCID: PMC6178888 DOI: 10.3389/fgene.2018.00421] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
The increasing prevalence of diagnosed breast cancer cases emphasizes the urgent demand for developing new prognostic breast cancer biomarkers. Copy number alteration (CNA) burden measured as the percentage of the genome affected by CNAs has emerged as a potential candidate to this aim. Using somatic CNA data obtained from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium), we implemented Kaplan-Meier estimators and Cox proportional hazards models to examine the association of CNA burden with patient's overall survival (OS) and disease specific survival (DSS). We also evaluated the association by considering patients' age and tumor subtypes using stratified Cox models. We delineated the distribution of CNA burden in sample genomes and highlighted chromosomes 1, 8, and 16 as the carriers of the highest CNA burden. We identified a strong association between CNA burden and age as well as CNA burden and breast cancer PAM50 subtypes. We found that controlling the effects of both age (bound by 45-year) and PAM50 subtypes on patient survival using stratified Cox models, would still result in significant association between CNA burden and patients overall survival in both Discovery and Validation data. The same trend was observed in disease specific survival when only PAM50 subtypes were controlled in the stratified Cox models. Our analysis showed that there is a significant association between CNA burden and breast cancer survival. This result is also validated by using TCGA (The Cancer Genome Atlas) data. CNA burden of breast cancer patients has a considerable potential to be used as a novel prognostic biomarker.
Collapse
|
research-article |
7 |
31 |
17
|
Liu H, Liu L, Holowatyj A, Jiang Y, Yang ZQ. Integrated genomic and functional analyses of histone demethylases identify oncogenic KDM2A isoform in breast cancer. Mol Carcinog 2015. [PMID: 26207617 DOI: 10.1002/mc.22341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone lysine demethylases (KDMs) comprise a large class of enzymes that catalyze site-specific demethylation of lysine residues on histones and other proteins. They play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of KDMs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of 24 KDMs in breast cancer and identified associations among recurrent copy number alterations, gene expression, breast cancer subtypes, and clinical outcome. Two KDMs, KDM2A and KDM5B, had the highest frequency of genetic amplification and overexpression. Furthermore, among the 24 KDM genes, KDM2A had the highest correlation between copy number and mRNA expression, and high mRNA levels of KDM2A were significantly associated with shorter survival of breast cancer patients. KDM2A has two isoforms: the long isoform is comprised of a JmjC domain, CXXC-zinc finger, PHD zinc finger, F-box, and the AMN1 protein domain; whereas the short isoform of KDM2A lacks the N-terminal JmjC domain but contains all other motifs. Detailed characterization of KDM2A in breast cancer revealed that the short isoform of KDM2A is more abundant than the long isoform at DNA, mRNA, and protein levels in a subset of breast cancers. Furthermore, our data indicate that the short isoform of KDM2A has oncogenic potential and functions as an oncogenic isoform in a subset of breast cancers. Taken together, our findings suggest that amplification and overexpression of the KDM2A short isoform is critical in breast cancer progression.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
29 |
18
|
Xie S, Shen C, Tan M, Li M, Song X, Wang C. Systematic analysis of gene expression alterations and clinical outcomes of adenylate cyclase-associated protein in cancer. Oncotarget 2018; 8:27216-27239. [PMID: 28423713 PMCID: PMC5432330 DOI: 10.18632/oncotarget.16111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Adenylate Cyclase-associated protein (CAP) is an evolutionarily conserved protein that regulates actin dynamics. Our previous study indicates that CAP1 is overexpressed in NSCLC tissues and correlated with poor clinical outcomes, but CAP1 in HeLa cells actually inhibited migration and invasion, the role of CAP was discrepancy in different cancer types. The present study aims to determine whether CAP can serve as a prognostic marker in human cancers. The CAP expression was assessed using Oncomine database to determine the gene alteration during carcinogenesis, the copy number alteration, or mutations of CAP using cBioPortal, International Cancer Genome Consortium, and Tumorscape database investigated, and the association between CAP expression and the survival of cancer patient using Kaplan-Meier plotter and PrognoScan database evaluated. Therefore, the functional correlation between CAP expression and cancer phenotypes can be established; wherein CAP might serve as a diagnostic marker or therapeutic target for certain types of cancers.
Collapse
|
Journal Article |
7 |
28 |
19
|
Takahashi Y, Sugai T, Habano W, Ishida K, Eizuka M, Otsuka K, Sasaki A, Takayuki Matsumoto, Morikawa T, Unno M, Suzuki H. Molecular differences in the microsatellite stable phenotype between left-sided and right-sided colorectal cancer. Int J Cancer 2017; 139:2493-501. [PMID: 27509333 PMCID: PMC5096113 DOI: 10.1002/ijc.30377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/08/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Differences in the pathogenesis of microsatellite stable (MSS) sporadic colorectal cancers (CRCs) between left‐sided CRC (LC) and right‐sided CRC (RC) have not been clarified. To identify pathogenesis‐related genomic differences between MSS CRCs within the two locations, we performed a comprehensive molecular analysis using crypt isolation with samples from 92 sporadic CRCs. Microsatellite instability (MSI; high and low/negative) and DNA methylation status (low methylation epigenome; intermediate methylation epigenome [IME] or high methylation epigenome [HME]) were determined using polymerase chain reaction (PCR) microsatellite analysis and PCR‐bisulfite pyrosequencing, respectively. Additionally, mutations in the TP53, KRAS, BRAF and PIK3CA genes were examined using PCR‐bisulfite pyrosequencing (for KRAS and BRAF mutations) or PCR‐single conformation polymorphism (for TP53 and PIK3CA mutations), followed by sequencing of aberrant bands. Finally, a genome‐wide study using a copy number alteration (CNA)‐targeted single nucleotide polymorphism array was performed. Ninety‐two CRCs were classified into 71 MSS and 21 MSI phenotypes. We examined 71 CRCs with the MSS phenotype (LC, 56; RC, 15). Mutations in KRAS were associated with RC with the MSS phenotype, whereas mutations in TP53 were more frequently found in LC with the MSS phenotype. There were significant differences in the frequencies of KRAS and TP53 mutations in the IME between LC and RC with the MSS phenotype. Although CNA gains were associated with LC with the MSS phenotype, CNA losses were not major alterations associated with the MSS phenotype. These findings suggested that the molecular pathogenesis of the MSS phenotype in LC was different from that in RC. What's new? The classification of colorectal cancer (CRC) based on tumor location is simple, comprehensive, and consistent with recent attempts to characterize tumors by pathological and molecular features. Differences in the pathogenesis of microsatellite stable (MSS) sporadic CRCs between left‐sided CRC (LC) and right‐sided CRC (RC) have however not been clarified. Here, the authors found that TP53 mutations are closely associated with the development of LC whereas RC is characterized by KRAS mutations. Using an integrated genome‐wide analysis, they also show significant differences in copy number alterations. The findings suggest a different molecular pathogenesis of the MSS phenotype between LC and RC.
Collapse
|
Journal Article |
8 |
26 |
20
|
Manning M, Jiang Y, Wang R, Liu L, Rode S, Bonahoom M, Kim S, Yang ZQ. Pan-cancer analysis of RNA methyltransferases identifies FTSJ3 as a potential regulator of breast cancer progression. RNA Biol 2020; 17:474-486. [PMID: 31957540 PMCID: PMC7237164 DOI: 10.1080/15476286.2019.1708549] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA methylation, catalysed by a set of RNA methyltransferases (RNMTs), modulates RNA structures, properties, and biological functions. RNMTs are increasingly documented to be dysregulated in various human diseases, particularly developmental disorders and cancer. However, the genomic and transcriptomic alterations of RNMTs, as well as their functional roles in human cancer, are limited. In this study, we utilized an unbiased approach to examine copy number alterations and mutation rates of 58 RNMTs in more than 10,000 clinical samples across 32 human cancer types. We also investigated these alterations and RNMT expression level as they related to clinical features such as tumour subtype, grade, and survival in a large cohort of tumour samples, focusing on breast cancer. Loss-of-function analysis was performed to examine RNMT candidates with important roles in growth and viability of breast cancer cells. We identified a subset of RNMTs, notably TRMT12, NSUN2, TARBP1, and FTSJ3, that were amplified or mutated in a subset of human cancers. Several RNMTs were significantly associated with breast cancer aggressiveness and poor prognosis. Loss-of-function analysis indicated FTSJ3, a 2'-O-Me methyltransferase, as a candidate RNMT with functional roles in promoting cancer growth and survival. A subset of RNMTs, like FTSJ3, represents promising novel targets for anticancer drug discovery. Our findings provide a framework for further study of the functional consequences of RNMT alterations in human cancer and for developing therapies that target cancer-promoting RNMTs in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
26 |
21
|
Zhang L, Baladandayuthapani V, Mallick BK, Manyam GC, Thompson PA, Bondy ML, Do KA. Bayesian hierarchical structured variable selection methods with application to MIP studies in breast cancer. J R Stat Soc Ser C Appl Stat 2014; 63:595-620. [PMID: 25705056 DOI: 10.1111/rssc.12053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The analysis of alterations that may occur in nature when segments of chromosomes are copied (known as copy number alterations) has been a focus of research to identify genetic markers of cancer. One high-throughput technique recently adopted is the use of molecular inversion probes (MIPs) to measure probe copy number changes. The resulting data consist of high-dimensional copy number profiles that can be used to ascertain probe-specific copy number alterations in correlative studies with patient outcomes to guide risk stratification and future treatment. We propose a novel Bayesian variable selection method, the hierarchical structured variable selection (HSVS) method, which accounts for the natural gene and probe-within-gene architecture to identify important genes and probes associated with clinically relevant outcomes. We propose the HSVS model for grouped variable selection, where simultaneous selection of both groups and within-group variables is of interest. The HSVS model utilizes a discrete mixture prior distribution for group selection and group-specific Bayesian lasso hierarchies for variable selection within groups. We provide methods for accounting for serial correlations within groups that incorporate Bayesian fused lasso methods for within-group selection. Through simulations we establish that our method results in lower model errors than other methods when a natural grouping structure exists. We apply our method to an MIP study of breast cancer and show that it identifies genes and probes that are significantly associated with clinically relevant subtypes of breast cancer.
Collapse
|
Journal Article |
11 |
25 |
22
|
Kim YS, Shin S, Jung SH, Park YM, Park GS, Lee SH, Chung YJ. Genomic progression of precancerous actinic keratosis to squamous cell carcinoma. J Invest Dermatol 2021; 142:528-538.e8. [PMID: 34480890 DOI: 10.1016/j.jid.2021.07.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
The mechanism underlying the progression of actinic keratosis (AK) and cutaneous squamous cell carcinoma in situ (SCCIS) to squamous cell carcinoma (SCC) remains unclear. To investigate this, we performed regional microdissection and targeted deep sequencing in SCC (N=10) and paired adjacent SE (sun-damaged epidermis)/AK/SCCIS (N=13) samples to detect mutations and copy number alterations (CNAs). Most (11/13) SE/AK/SCCIS tissues harbored ≥ 1 driver alterations, indicating their precancerous nature. All pairs except one showed genome architectures representing genomic progression of SE/AK/SCCIS to SCC with common trunks and unique branches (7 parallel and 5 linear progression cases). SE/AK/SCCIS tissues tended to harbor lower mutation/CNA burdens than SCC tissues, but most of them had driver mutations, including NOTCH1 and TP53 mutations. SCC-specific genomic alterations included TP53, PIK3CA, FBXW7, and CDKN2A mutations and a MYC copy-number gain, but they were heterogeneous among cases, suggesting that a single gene or pathway does not explain the progression of AK to SCC. In multiregion analyses of AK lesions, only some AK samples were related to SCC. In conclusion, the SE/AK/SCCIS genomes may have previously acquired truncal driver alterations, such as NOTCH1 and TP53 mutations, which promote parallel or linear progression to SCC upon acquisition of additional genomic alterations.
Collapse
|
|
4 |
24 |
23
|
Lu C, Jiang J, Zhang R, Wang Y, Xu M, Qin Y, Lin Y, Guo X, Ni B, Zhao Y, Diao N, Chen F, Shen H, Sha J, Xia Y, Hu Z, Wang X. Gene copy number alterations in the azoospermia-associated AZFc region and their effect on spermatogenic impairment. Mol Hum Reprod 2014; 20:836-43. [PMID: 24935076 DOI: 10.1093/molehr/gau043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The azoospermia factor c (AZFc) region in the long arm of human Y chromosome is characterized by massive palindromes. It harbors eight multi-copy gene families that are expressed exclusively or predominantly in testis. To assess systematically the role of the AZFc region and these eight gene families in spermatogenesis, we conducted a comprehensive molecular analysis (including Y chromosome haplogrouping, AZFc deletion typing and gene copy quantification) in 654 idiopathic infertile men and 781 healthy controls in a Han Chinese population. The b2/b3 partial deletion (including both deletion-only and deletion-duplication) was consistently associated with spermatogenic impairment. In the subjects without partial AZFc deletions, a notable finding was that the frequency of DAZ and/or BPY2 copy number alterations in the infertile group was significantly higher than in the controls. Combined patterns of DAZ and/or BPY2 copy number abnormality were associated with spermatogenic impairment when compared with the pattern of all AZFc genes with common level copies. In addition, in Y chromosome haplogroup O1 (Y-hg O1), the frequency of copy number alterations of all eight gene families was significantly higher in the case group than that in the control group. Our findings indicate that the DAZ, BPY2 genes may be prominent players in spermatogenesis, and genomic rearrangements may be enriched in individuals belonging to Y-hg O1. Our findings emphasize the necessity of routine molecular analysis of AZFc structural variation during the workup of azoospermia and/or oligozoospermia, which may diminish the genetic risk of assisted reproduction.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
24 |
24
|
Chu X, Guo X, Jiang Y, Yu H, Liu L, Shan W, Yang Z. Genotranscriptomic meta-analysis of the CHD family chromatin remodelers in human cancers - initial evidence of an oncogenic role for CHD7. Mol Oncol 2017; 11:1348-1360. [PMID: 28649742 PMCID: PMC5623824 DOI: 10.1002/1878-0261.12104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/27/2017] [Accepted: 06/10/2017] [Indexed: 12/14/2022] Open
Abstract
Chromodomain helicase DNA binding proteins (CHDs) are characterized by N-terminal tandem chromodomains and a central adenosine triphosphate-dependent helicase domain. CHDs govern the cellular machinery's access to DNA, thereby playing critical roles in various cellular processes including transcription, proliferation, and DNA damage repair. Accumulating evidence demonstrates that mutation and dysregulation of CHDs are implicated in the pathogenesis of developmental disorders and cancer. However, we know little about genomic and transcriptomic alterations and the clinical significance of most CHDs in human cancer. We used TCGA and METABRIC datasets to perform integrated genomic and transcriptomic analyses of nine CHD genes in more than 10 000 primary cancer specimens from 32 tumor types, focusing on breast cancers. We identified associations among recurrent copy number alteration, gene expression, clinicopathological features, and patient survival. We found that CHD7 was the most commonly gained/amplified and mutated, whereas CHD3 was the most deleted across the majority of tumor types, including breast cancer. Overexpression of CHD7 was more prevalent in aggressive subtypes of breast cancer and was significantly correlated with high tumor grade and poor prognosis. CHD7 is required to maintain open, accessible chromatin, thus providing fine-tuning of transcriptional regulation of certain classes of genes. We found that CHD7 expression was positively correlated with a small subset of classical oncogenes, notably NRAS, in breast cancer. Knockdown of CHD7 inhibits cell proliferation and decreases gene expression of several CHD7 targets, including NRAS, in breast cancer cell lines. Thus, our results demonstrate the oncogenic potential of CHD7 and its association with poor prognostic parameters in human cancer.
Collapse
|
Meta-Analysis |
8 |
24 |
25
|
Jin DH, Lee J, Kim KM, Kim S, Kim DH, Park J. Overexpression of MAPK15 in gastric cancer is associated with copy number gain and contributes to the stability of c-Jun. Oncotarget 2016; 6:20190-203. [PMID: 26035356 PMCID: PMC4652997 DOI: 10.18632/oncotarget.4171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/02/2015] [Indexed: 12/23/2022] Open
Abstract
This study was aimed at understanding the functional and clinicopathological significance of MAPK15 alteration in gastric cancer. Genome-wide copy number alterations (CNAs) were first investigated in 40 gastric cancers using Agilent aCGH-244K or aCGH-400K, and copy number gains of MAPK15 found in aCGH were validated in another set of 48 gastric cancer tissues. The expression of MAPK15 was analyzed using immunohistochemistry in concurrent lesions of normal, adenoma, and carcinoma from additional 45 gastric cancer patients. The effects of MAPK15 on cell cycle, c-Jun phosphorylation, and mRNA stability were analyzed in gastric cancer cells. Copy number gains of MAPK15 were found in 15 (17%) of 88 tumor tissues. The mRNA levels of MAPK15 were relatively high in the gastric cancer tissues and gastric cancer cells with higher copy number gains than those without. Knockdown of MAPK15 using siRNA in gastric cancer cells significantly suppressed cell proliferation and resulted in cell cycle arrest at G1-S phase. Reduced c-Jun phosphorylation and c-Jun half-life were observed in MAPK15-knockdowned cells. In addition, transient transfection of MAPK15 into AGS gastric cancer cells with low copy number resulted in an increase of c-Jun phosphorylation and stability. The overexpression of MAPK15 occurred at a high frequency in carcinomas (37%) compared to concurrent normal tissues (2%) and adenomas (21%). In conclusion, the present study suggests that MAPK15 overexpression may contribute to the malignant transformation of gastric mucosa by prolonging the stability of c-Jun. And, patients with copy number gain of MAPK15 in normal or premalignant tissues of stomach may have a chance to progress to invasive cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
23 |