1
|
Moura A, Tourdjman M, Leclercq A, Hamelin E, Laurent E, Fredriksen N, Van Cauteren D, Bracq-Dieye H, Thouvenot P, Vales G, Tessaud-Rita N, Maury MM, Alexandru A, Criscuolo A, Quevillon E, Donguy MP, Enouf V, de Valk H, Brisse S, Lecuit M. Real-Time Whole-Genome Sequencing for Surveillance of Listeria monocytogenes, France. Emerg Infect Dis 2017. [PMID: 28643628 PMCID: PMC5572858 DOI: 10.3201/eid2309.170336] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During 2015–2016, we evaluated the performance of whole-genome sequencing (WGS) as a routine typing tool. Its added value for microbiological and epidemiologic surveillance of listeriosis was compared with that for pulsed-field gel electrophoresis (PFGE), the current standard method. A total of 2,743 Listeria monocytogenes isolates collected as part of routine surveillance were characterized in parallel by PFGE and core genome multilocus sequence typing (cgMLST) extracted from WGS. We investigated PFGE and cgMLST clusters containing human isolates. Discrimination of isolates was significantly higher by cgMLST than by PFGE (p<0.001). cgMLST discriminated unrelated isolates that shared identical PFGE profiles and phylogenetically closely related isolates with distinct PFGE profiles. This procedure also refined epidemiologic investigations to include only phylogenetically closely related isolates, improved source identification, and facilitated epidemiologic investigations, enabling identification of more outbreaks at earlier stages. WGS-based typing should replace PFGE as the primary typing method for L. monocytogenes.
Collapse
|
Journal Article |
8 |
124 |
2
|
Whole Genome and Core Genome Multilocus Sequence Typing and Single Nucleotide Polymorphism Analyses of Listeria monocytogenes Isolates Associated with an Outbreak Linked to Cheese, United States, 2013. Appl Environ Microbiol 2017; 83:AEM.00633-17. [PMID: 28550058 PMCID: PMC5514676 DOI: 10.1128/aem.00633-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
Epidemiological findings of a listeriosis outbreak in 2013 implicated Hispanic-style cheese produced by company A, and pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed on clinical isolates and representative isolates collected from company A cheese and environmental samples during the investigation. The results strengthened the evidence for cheese as the vehicle. Surveillance sampling and WGS 3 months later revealed that the equipment purchased by company B from company A yielded an environmental isolate highly similar to all outbreak isolates. The whole genome and core genome multilocus sequence typing and single nucleotide polymorphism (SNP) analyses results were compared to demonstrate the maximum discriminatory power obtained by using multiple analyses, which were needed to differentiate outbreak-associated isolates from a PFGE-indistinguishable isolate collected in a nonimplicated food source in 2012. This unrelated isolate differed from the outbreak isolates by only 7 to 14 SNPs, and as a result, the minimum spanning tree from the whole genome analyses and certain variant calling approach and phylogenetic algorithm for core genome-based analyses could not provide differentiation between unrelated isolates. Our data also suggest that SNP/allele counts should always be combined with WGS clustering analysis generated by phylogenetically meaningful algorithms on a sufficient number of isolates, and the SNP/allele threshold alone does not provide sufficient evidence to delineate an outbreak. The putative prophages were conserved across all the outbreak isolates. All outbreak isolates belonged to clonal complex 5 and serotype 1/2b and had an identical inlA sequence which did not have premature stop codons. IMPORTANCE In this outbreak, multiple analytical approaches were used for maximum discriminatory power. A PFGE-matched, epidemiologically unrelated isolate had high genetic similarity to the outbreak-associated isolates, with as few as 7 SNP differences. Therefore, the SNP/allele threshold should not be used as the only evidence to define the scope of an outbreak. It is critical that the SNP/allele counts be complemented by WGS clustering analysis generated by phylogenetically meaningful algorithms to distinguish outbreak-associated isolates from epidemiologically unrelated isolates. Careful selection of a variant calling approach and phylogenetic algorithm is critical for core-genome-based analyses. The whole-genome-based analyses were able to construct the highly resolved phylogeny needed to support the findings of the outbreak investigation. Ultimately, epidemiologic evidence and multiple WGS analyses should be combined to increase confidence levels during outbreak investigations.
Collapse
|
Journal Article |
8 |
58 |
3
|
Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian P, Potnis N, Kolaczkowski B, Vallad GE, Goss EM, Jones JB. Multiple Recombination Events Drive the Current Genetic Structure of Xanthomonas perforans in Florida. Front Microbiol 2019; 10:448. [PMID: 30930868 PMCID: PMC6425879 DOI: 10.3389/fmicb.2019.00448] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/20/2019] [Indexed: 11/23/2022] Open
Abstract
Prior to the identification of Xanthomonas perforans associated with bacterial spot of tomato in 1991, X. euvesicatoria was the only known species in Florida. Currently, X. perforans is the Xanthomonas sp. associated with tomato in Florida. Changes in pathogenic race and sequence alleles over time signify shifts in the dominant X. perforans genotype in Florida. We previously reported recombination of X. perforans strains with closely related Xanthomonas species as a potential driving factor for X. perforans evolution. However, the extent of recombination across the X. perforans genomes was unknown. We used a core genome multilocus sequence analysis approach to identify conserved genes and evaluated recombination-associated evolution of these genes in X. perforans. A total of 1,356 genes were determined to be "core" genes conserved among the 58 X. perforans genomes used in the study. Our approach identified three genetic groups of X. perforans in Florida based on the principal component analysis (PCA) using core genes. Nucleotide variation in 241 genes defined these groups, that are referred as Phylogenetic-group Defining (PgD) genes. Furthermore, alleles of many of these PgD genes showed 100% sequence identity with X. euvesicatoria, suggesting that variation likely has been introduced by recombination at multiple locations throughout the bacterial chromosome. Site-specific recombinase genes along with plasmid mobilization and phage associated genes were observed at different frequencies in the three phylogenetic groups and were associated with clusters of recombinant genes. Our analysis of core genes revealed the extent, source, and mechanisms of recombination events that shaped the current population and genomic structure of X. perforans in Florida.
Collapse
|
research-article |
6 |
44 |
4
|
Defining a Core Genome Multilocus Sequence Typing Scheme for the Global Epidemiology of Vibrio parahaemolyticus. J Clin Microbiol 2017; 55:1682-1697. [PMID: 28330888 PMCID: PMC5442524 DOI: 10.1128/jcm.00227-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/11/2017] [Indexed: 01/27/2023] Open
Abstract
Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non-outbreak-related strains within the same ST. The sequences obtained from this work were deposited and are available in the public database (http://pubmlst.org/vparahaemolyticus). The application of this cgMLST scheme to the characterization of V. parahaemolyticus strains provided by different laboratories from around the world will reveal the global picture of the epidemiology, spread, and evolution of this pathogen and will become a powerful tool for outbreak investigations, allowing for the unambiguous comparison of strains with global coverage.
Collapse
|
Journal Article |
8 |
42 |
5
|
Zhou H, Liu W, Qin T, Liu C, Ren H. Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Whole-Genome Sequence-Based Typing of Klebsiella pneumoniae. Front Microbiol 2017; 8:371. [PMID: 28337187 PMCID: PMC5340756 DOI: 10.3389/fmicb.2017.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/22/2017] [Indexed: 11/13/2022] Open
Abstract
At present, the most used methods for Klebsiella pneumoniae subtyping are multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). However, the discriminatory power of MLST could not meet the need for distinguishing outbreak and non-outbreak isolates and the PFGE is time-consuming and labor-intensive. A core genome multilocus sequence typing (cgMLST) scheme for whole-genome sequence-based typing of K. pneumoniae was developed for solving the disadvantages of these traditional molecular subtyping methods. Firstly, we used the complete genome of K. pneumoniae strain HKUOPLC as the reference genome and 907 genomes of K. pneumoniae download from NCBI database as original genome dataset to determine cgMLST target genes. A total of 1,143 genes were retained as cgMLST target genes. Secondly, we used 26 K. pneumoniae strains from a nosocomial infection outbreak to evaluate the cgMLST scheme. cgMLST enabled clustering of outbreak strains with <10 alleles difference and unambiguous separation from unrelated outgroup strains. Moreover, cgMLST revealed that there may be several sub-clones of epidemic ST11 clone. In conclusion, the novel cgMLST scheme not only showed higher discriminatory power compared with PFGE and MLST in outbreak investigations but also showed ability to reveal more population structure characteristics than MLST.
Collapse
|
Journal Article |
8 |
25 |
6
|
de Sales RO, Migliorini LB, Puga R, Kocsis B, Severino P. A Core Genome Multilocus Sequence Typing Scheme for Pseudomonas aeruginosa. Front Microbiol 2020; 11:1049. [PMID: 32528447 PMCID: PMC7264379 DOI: 10.3389/fmicb.2020.01049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous microorganism and an important opportunistic pathogen responsible for a broad spectrum of infections mainly in immunosuppressed and critically ill patients. Molecular investigations traditionally rely on pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). In this work we propose a core genome multilocus sequence typing (cgMLST) scheme for P. aeruginosa, a methodology that combines traditional MLST principles with whole genome sequencing data. All publicly available complete P. aeruginosa genomes, representing the diversity of this species, were used to establish a cgMLST scheme targeting 2,653 genes. The scheme was then tested using genomes available at contig, chromosome and scaffold levels. The proposed cgMLST scheme for P. aeruginosa typed over 99% (2,314/2,325) of the genomes available for this study considering at least 95% of the cgMLST target genes present. The absence of a certain number gene targets at the threshold considered for both the creation and validation steps due to low genome sequence quality is possibly the main reason for this result. The cgMLST scheme was compared with previously published whole genome single nucleotide polymorphism analysis for the characterization of the population structure of the epidemic clone ST235 and results were highly similar. In order to evaluate the typing resolution of the proposed scheme, collections of isolates belonging to two important STs associated with cystic fibrosis, ST146 and ST274, were typed using this scheme, and ST235 isolates associated with an outbreak were evaluated. Besides confirming the relatedness of all the isolates, earlier determined by MLST, the higher resolution of cgMLST denotes that it may be suitable for surveillance programs, overcoming possible shortcomings of classical MLST. The proposed scheme is publicly available at: https://github.com/BioinformaticsHIAEMolecularMicrobiology/cgMLST-Pseudomonas-aeruginosa.
Collapse
|
Journal Article |
5 |
14 |
7
|
Development and Validation of a Burkholderia pseudomallei Core Genome Multilocus Sequence Typing Scheme To Facilitate Molecular Surveillance. J Clin Microbiol 2021; 59:e0009321. [PMID: 33980649 PMCID: PMC8373231 DOI: 10.1128/jcm.00093-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei causes the severe disease melioidosis. Whole-genome sequencing (WGS)-based typing methods currently offer the highest resolution for molecular investigations of this genetically diverse pathogen. Still, its routine application in diagnostic laboratories is limited by the need for high computing power, bioinformatic skills, and variable bioinformatic approaches, with the latter affecting the results. We therefore aimed to establish and validate a WGS-based core genome multilocus sequence typing (cgMLST) scheme, applicable in routine diagnostic settings. A soft defined core genome was obtained by challenging the B. pseudomallei reference genome K96243 with 469 environmental and clinical genomes, resulting in 4,221 core and 1,351 accessory targets. The scheme was validated with 320 WGS data sets. We compared our novel typing scheme with single nucleotide polymorphism-based approaches investigating closely and distantly related strains. Finally, we applied our scheme for tracking the environmental source of a recent infection. The validation of the scheme detected >95% good cgMLST target genes in 98.4% of the genomes. Comparison with existing typing methods revealed very good concordance. Our scheme proved to be applicable to investigating not only closely related strains but also the global B. pseudomallei population structure. We successfully utilized our scheme to identify a sugarcane field as the presumable source of a recent melioidosis case. In summary, we developed a robust cgMLST scheme that integrates high resolution, maximized standardization, and fast analysis for the nonbioinformatician. Our typing scheme has the potential to serve as a routinely applicable classification system in B. pseudomallei molecular epidemiology.
Collapse
|
Journal Article |
4 |
13 |
8
|
Effective Surveillance Using Multilocus Variable-Number Tandem-Repeat Analysis and Whole-Genome Sequencing for Enterohemorrhagic Escherichia coli O157. Appl Environ Microbiol 2019; 85:AEM.00728-19. [PMID: 31227555 DOI: 10.1128/aem.00728-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
Due to the potential of enterohemorrhagic Escherichia coli (EHEC) serogroup O157 to cause large food borne outbreaks, national and international surveillance is necessary. For developing an effective method of molecular surveillance, a conventional method, multilocus variable-number tandem-repeat analysis (MLVA), and whole-genome sequencing (WGS) analysis were compared. WGS of 369 isolates of EHEC O157 belonging to 7 major MLVA types and their relatives were subjected to comprehensive in silico typing, core genome single nucleotide polymorphism (cgSNP), and core genome multilocus sequence typing (cgMLST) analyses. The typing resolution was the highest in cgSNP analysis. However, determination of the sequence of the mismatch repair protein gene mutS is necessary because spontaneous deletion of the gene could lead to a hypermutator phenotype. MLVA had sufficient typing resolution for a short-term outbreak investigation and had advantages in rapidity and high throughput. cgMLST showed less typing resolution than cgSNP, but it is less time-consuming and does not require as much computer power. Therefore, cgMLST is suitable for comparisons using large data sets (e.g., international comparison using public databases). In conclusion, screening using MLVA followed by cgMLST and cgSNP analyses would provide the highest typing resolution and improve the accuracy and cost-effectiveness of EHEC O157 surveillance.IMPORTANCE Intensive surveillance for enterohemorrhagic Escherichia coli (EHEC) serogroup O157 is important to detect outbreaks and to prevent the spread of the bacterium. Recent advances in sequencing technology made molecular surveillance using whole-genome sequence (WGS) realistic. To develop rapid, high-throughput, and cost-effective typing methods for real-time surveillance, typing resolution of WGS and a conventional typing method, multilocus variable-number tandem-repeat analysis (MLVA), was evaluated. Nation-level systematic comparison of MLVA, core genome single nucleotide polymorphism (cgSNP), and core genome multilocus sequence typing (cgMLST) indicated that a combination of WGS and MLVA is a realistic approach to improve EHEC O157 surveillance.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
11 |
9
|
Genomic Insights into the Increased Occurrence of Campylobacteriosis Caused by Antimicrobial-Resistant Campylobacter coli. mBio 2022; 13:e0283522. [PMID: 36472434 PMCID: PMC9765411 DOI: 10.1128/mbio.02835-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Campylobacter is the leading bacterial cause of diarrheal illnesses worldwide. Campylobacter jejuni and C. coli are the most common species accounting for campylobacteriosis. Although the proportion of campylobacteriosis caused by C. coli is increasing rapidly in China, the underlying mechanisms of this emergence remain unclear. In this study, we analyzed the whole-genome sequences and associated environments of 1,195 C. coli isolates with human, poultry, or porcine origins from 1980 to 2021. C. coli isolates of human origin were closely related to those from poultry, suggesting that poultry was the main source of C. coli infection in humans. Analysis of antimicrobial resistance determinants indicated that the prevalence of multidrug-resistant C. coli has increased dramatically since the 2010s, coinciding with the shift in abundance from C. jejuni to C. coli in Chinese poultry. Compared with C. jejuni, drug-resistant C. coli strains were better adapted and showed increased proliferation in the poultry production environment, where multiple antimicrobial agents were frequently used. This study provides an empirical basis for the molecular mechanisms that have enabled C. coli to become the dominant Campylobacter species in poultry; we also emphasize the importance of poultry products as sources of campylobacteriosis caused by C. coli in human patients. IMPORTANCE The proportion of campylobacteriosis caused by C. coli is increasing rapidly in China. Coincidentally, the dominant species of Campylobacter occurring in poultry products has shifted from C. jejuni to C. coli. Here, we analyzed the whole-genome sequences of 1,195 C. coli isolates from different origins. The phylogenetic relationship among C. coli isolates suggests that poultry was the main source of C. coli infection in humans. Further analysis indicated that antimicrobial resistance in C. coli strains has increased dramatically since the 2010s, which could facilitate their adaptation in the poultry production environment, where multiple antimicrobial agents are frequently used. Thus, our findings suggest that the judicious use of antimicrobial agents could mitigate the emergence of multidrug-resistant C. coli strains and enhance clinical outcomes by restoring drug sensitivity in Campylobacter.
Collapse
|
research-article |
3 |
8 |
10
|
Tsai YH, Moura A, Gu ZQ, Chang JH, Liao YS, Teng RH, Tseng KY, Chang DL, Liu WR, Huang YT, Leclercq A, Lo HJ, Lecuit M, Chiou CS. Genomic Surveillance of Listeria monocytogenes in Taiwan, 2014 to 2019. Microbiol Spectr 2022; 10:e0182522. [PMID: 36222695 PMCID: PMC9769603 DOI: 10.1128/spectrum.01825-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
Listeria monocytogenes is a life-threatening foodborne pathogen. Here, we report the genomic characterization of a nationwide dataset of 411 clinical and 82 food isolates collected in Taiwan between 2014 and 2019. The observed incidence of listeriosis increased from 0.83 to 7 cases per million population upon implementation of mandatory notification in 2018. Pregnancy-associated cases accounted for 2.8% of human listeriosis and all-cause 7-day mortality was of 11.9% in nonmaternal-neonatal listeriosis. L. monocytogenes was isolated from 90% of raw pork and 34% of chicken products collected in supermarkets. Sublineages SL87, SL5, and SL378 accounted for the majority (65%) of clinical cases. SL87 and SL378 were also predominant (57%) in food products. Five cgMLST clusters accounted for 57% clinical cases, suggesting unnoticed outbreaks spanning up to 6 years. Mandatory notification allowed identifying the magnitude of listeriosis in Taiwan. Continuous real-time genomic surveillance will allow reducing contaminating sources and disease burden. IMPORTANCE Understanding the phylogenetic relationship between clinical and food isolates is important to identify the transmission routes of foodborne diseases. Here, we performed a nationwide study between 2014 and 2019 of both clinical and food Listeria monocytogenes isolates and sequenced their genomes. We show a 9-fold increase in listeriosis reporting upon implementation of mandatory notification. We found that sublineages SL87 and SL378 predominated among both clinical (50%) and food (57%) isolates, and identified five cgMLST clusters accounting for 57% of clinical cases, suggestive of potential protracted sources of contamination over up to 6 years in Taiwan. These findings highlight that mandatory declaration is critical in identifying the burden of listeriosis, and the importance of genome sequencing for a detailed characterization of the pathogenic L. monocytogenes genotypes circulating in Asia.
Collapse
|
research-article |
3 |
7 |
11
|
Blanchard AM, Jolley KA, Maiden MCJ, Coffey TJ, Maboni G, Staley CE, Bollard NJ, Warry A, Emes RD, Davies PL, Tötemeyer S. The Applied Development of a Tiered Multilocus Sequence Typing (MLST) Scheme for Dichelobacter nodosus. Front Microbiol 2018; 9:551. [PMID: 29628922 PMCID: PMC5876313 DOI: 10.3389/fmicb.2018.00551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 11/17/2022] Open
Abstract
Dichelobacter nodosus (D. nodosus) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.
Collapse
|
Journal Article |
7 |
7 |
12
|
Ndahetuye JB, Leijon M, Båge R, Artursson K, Persson Y. Genetic Characterization of Staphylococcus aureus From Subclinical Mastitis Cases in Dairy Cows in Rwanda. Front Vet Sci 2021; 8:751229. [PMID: 34869725 PMCID: PMC8637448 DOI: 10.3389/fvets.2021.751229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/04/2022] Open
Abstract
Whole-genome sequencing was carried out on 30 Staphylococcus (S.) aureus isolates from dairy cows with subclinical mastitis from all five provinces of Rwanda. Twenty-five of the isolates produced enough sequence to be analyzed using core genome multilocus sequence typing (cg-MLST). The isolates group into three main clusters. The largest cluster contain isolates of sequence type (ST) 152 (n = 6) and the closely related ST1633 (n = 2). These sequence types have previously mainly been encountered in humans. The isolates of the second-largest cluster belong to ST5477 (n = 5),so far exclusively isolated from cows in Rwanda. The third cluster consists of isolates of ST97 (n = 4), which is a well-known bovine-adapted sequence type. These three clusters were all widespread over the country. Isolates of the usually human-adapted sequence types 1 (n = 2) and 5 (n= 1) were found and a single isolate of ST2430, previously found among humans in Africa. Finally, four isolates of novel sequence types were found: ST7108 (n = 2), ST7109 (n = 1), and ST7110 (n = 1). The blaZ penicillin resistance gene was found in 84% of the isolates and was in all cases corroborated by phenotypic resistance determination. Five (20%) of the isolates carried a tetracycline resistance gene, tet(K) or tetM, and three of these five also displayed phenotypic resistance while two isolates carried a tetM-gene but were yet tetracycline susceptible. Seven (28%) isolates carried the dfrG gene conferring resistance to trimethoprim. Four of these isolates indeed were resistant to trimethoprim while three isolates were sensitive. The str gene conferring resistance to aminoglycosides was found in three isolates; however, none of these displayed resistance to gentamycin. Our data revealed a high diversity of the sequence types of S. aureus isolates from cows with subclinical mastitis in Rwanda. Two major clusters of ST97 and ST5477 are likely to be bovine adapted and cause mastitis while the third cluster of ST152 usually have been found in humans and may signify a recent transmission of these types from human to cows, for example from hand milking. The high prevalence of this sequence type among dairy cows may pose zoonotic threat. The sequence types were widely distributed without any geographic correlation. Penicillin resistance, the most common type of resistance with a prevalence over 80%, but also tetracycline and trimethoprim resistance were displayed by several isolates.
Collapse
|
|
4 |
6 |
13
|
Kang Y, Chen S, Zheng B, Du X, Li Z, Tan Z, Zhou H, Huang J, Tian L, Zhong J, Ma X, Li F, Yao J, Wang Y, Zheng M, Li Z. Epidemiological Investigation of Hospital Transmission of Corynebacterium striatum Infection by Core Genome Multilocus Sequence Typing Approach. Microbiol Spectr 2023; 11:e0149022. [PMID: 36537812 PMCID: PMC9927548 DOI: 10.1128/spectrum.01490-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Corynebacterium striatum has recently received increasing attention due to its multiple antimicrobial resistances and its role as an invasive infection/outbreak agent. Recently, whole-genome sequencing (WGS)-based core genome multilocus sequence typing (cgMLST) has been used in epidemiological studies of specific human pathogens. However, this method has not been reported in studies of C. striatum. In this work, we aim to propose a cgMLST scheme for C. striatum. All publicly available C. striatum genomes, 30 C. striatum strains isolated from the same hospital, and 1 epidemiologically unrelated outgroup C. striatum strain were used to establish a cgMLST scheme targeting 1,795 genes (hereinafter referred to as 1,795-cgMLST). The genotyping results of cgMLST showed good congruence with core genome-based single-nucleotide polymorphism typing in terms of tree topology. In addition, the cgMLST provided a greater discrimination than the MLST method based on 6 housekeeping genes (gyrA, gyrB, hsp65, rpoB, secA1, and sodA). We established a clonal group (CG) threshold based on 104 allelic differences; a total of 56 CGs were identified from among 263 C. striatum strains. We also defined an outbreak threshold based on seven allelic differences that is capable of identifying closely related isolates that could give clues on hospital transmission. According to the results of analysis of drug-resistant genes and virulence genes, we identified CG4, CG5, CG26, CG28, and CG55 as potentially hypervirulent and multidrug-resistant CGs of C. striatum. This study provides valuable genomic epidemiological data on the diversity, resistance, and virulence profiles of this potentially pathogenic microorganism. IMPORTANCE Recently, WGS of many human and animal pathogens has been successfully used to investigate microbial outbreaks. The cgMLST schema are powerful genotyping tools that can be used to investigate potential epidemics and provide classification of the strains precise and reliable. In this study, we proposed the development of a cgMLST typing scheme for C. striatum, and then we evaluated this scheme for its applicability to hospital transmission investigations. This report describes the first cgMLST schema for C. striatum. The analysis of hospital transmission of C. striatum based on cgMLST methods has important clinical epidemiological significance for improving nosocomial infection monitoring of C. striatum and in-depth understanding of its nosocomial transmission routes.
Collapse
|
research-article |
2 |
5 |
14
|
Schaeffer J, Revilla-Fernández S, Hofer E, Posch R, Stoeger A, Leth C, Schmoll F, Djordjevic V, Lakicevic B, Matovic K, Hufnagl P, Indra A, Allerberger F, Ruppitsch W. Tracking the Origin of Austrian Human Brucellosis Cases Using Whole Genome Sequencing. Front Med (Lausanne) 2021; 8:635547. [PMID: 33718408 PMCID: PMC7943447 DOI: 10.3389/fmed.2021.635547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Brucellosis is a zoonotic disease caused by Brucella spp. and a major concern for livestock. Most human cases are caused by B. melitensis and clinical presentation is usually a mild febrile illness. However, treatment failure is frequent and more severe complications can occur. In Austria, every human brucellosis is investigated to determine whether it was imported from endemic areas or is the sign of an undetected autochthonous transmission. For this study, 21 B. melitensis strains isolated in Austria between 2005 and 2019 were collected, 17 strains from 15 different patients and four strains from cattle. Whole genome sequencing combined with core-genome MLST analysis was used to characterize these strains. A cluster of seven isolates from 2018 (three human and four cattle isolates) was identified, with fewer than two allelic differences. They corresponded to the only Austrian B. melitensis outbreak that happened over the past 15 years. The other 12 Austrian brucellosis cases were single cases, and geographical origins were available for 8/12. Genomic data was used to locate probable geographical origins and compared with the results of the epidemiological investigations. Austrian strains were compared with 67 published B. melitensis sequences available on NCBI. The result of genomic analysis matched for 7/8 cases with documented conclusion of the epidemiological investigation. Genome analysis also pointed to the geographical origin for three of the four cases with missing epidemiological data. Strains from six cases were grouped together (<40 allelic differences) with 4/6 cases imported from the Balkans. Additional B. melitensis isolates from Serbian animals were analyzed and grouped with this branch, suggesting frequent importation from Balkan countries to Austria. Overall, this study highlights the specificities of human brucellosis in Austria. It also underlines the value of whole genome sequencing as a tool to investigate brucellosis cases, allowing to identify and investigate outbreaks but also to support epidemiological investigation of imported cases. However, the reliability of such methods depends on the number of strains for comparison, which can be challenging in low incidence countries. Increasing the availability of published sequences with documented geographical origins would help establishing genomic-based methods for investigating brucellosis cases.
Collapse
|
Journal Article |
4 |
4 |
15
|
Moreno-Manjón J, Castillo-Ramírez S, Jolley KA, Maiden MCJ, Gayosso-Vázquez C, Fernández-Vázquez JL, Mateo-Estrada V, Giono-Cerezo S, Alcántar-Curiel MD. Acinetobacter baumannii IC2 and IC5 Isolates with Co-Existing blaOXA-143-like and blaOXA-72 and Exhibiting Strong Biofilm Formation in a Mexican Hospital. Microorganisms 2023; 11:2316. [PMID: 37764160 PMCID: PMC10536109 DOI: 10.3390/microorganisms11092316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen responsible for healthcare-associated infections (HAIs) and outbreaks. Antimicrobial resistance mechanisms and virulence factors allow it to survive and spread in the hospital environment. However, the molecular mechanisms of these traits and their association with international clones are frequently unknown in low- and middle-income countries. Here, we analyze the phenotype and genotype of seventy-six HAIs and outbreak-causing A. baumannii isolates from a Mexican hospital over ten years, with special attention to the carbapenem resistome and biofilm formation. The isolates belonged to the global international clone (IC) 2 and the Latin America endemic IC5 and were predominantly extensively drug-resistant (XDR). Oxacillinases were identified as a common source of carbapenem resistance. We noted the presence of the blaOXA-143-like family (not previously described in Mexico), the blaOXA-72 and the blaOXA-398 found in both ICs. A low prevalence of efflux pump overexpression activity associated with carbapenem resistance was observed. Finally, strong biofilm formation was found, and significant biofilm-related genes were identified, including bfmRS, csuA/BABCDE, pgaABCD and ompA. This study provides a comprehensive profile of the carbapenem resistome of A. baumannii isolates belonging to the same pulse type, along with their significant biofilm formation capacity. Furthermore, it contributes to a better understanding of their role in the recurrence of infection and the endemicity of these isolates in a Mexican hospital.
Collapse
|
research-article |
2 |
4 |
16
|
Iiyama K, Tani S, Yagi H, Hashimoto S, Suga Y, Tsuchiya K, Furuya N. d-Tartrate utilization correlates with phylogenetic subclade in Pseudomonas cichorii. FEMS Microbiol Lett 2021; 368:6058748. [PMID: 33386401 DOI: 10.1093/femsle/fnaa223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas cichorii is divided into two subclades based on the 16S ribosomal RNA gene sequence and core genome multilocus sequence typing. It was shown that subclade 2 strains utilize d-tartrate as a sole carbon source, whereas subclade 1 strains do not. Draft genome sequencing was performed with P. cichorii strains to identify d-tartrate utilization genes. By genome comparative and homology search studies, an ∼7.1-kb region was identified to be involved in d-tartrate utilization. The region is subclade 2 specific, and contains tarD and dctA genes, which encode a putative enzyme and transporter of d-tartrate, respectively. When the region was introduced into subclade 1 strains, the transformants were able to utilize d-tartrate. Partial fragments of tarD and dctA were amplified from all subclade 2 strains tested in this study by PCR using gene-specific primers, but not from subclade 1 strains. This is the first report on the genetic analysis of biochemical characteristics corresponding to a specific phylogenetic group in P. cichorii.
Collapse
|
Journal Article |
4 |
2 |
17
|
Valenza G, Eisenberger D, Voigtländer S, Alsalameh R, Gerlach R, Koch S, Kunz B, Held J, Bogdan C. Emergence of novel ST1299 vanA lineages as possible cause for the striking rise of vancomycin resistance among invasive strains of Enterococcus faecium at a German university hospital. Microbiol Spectr 2023; 11:e0296223. [PMID: 37905844 PMCID: PMC10848474 DOI: 10.1128/spectrum.02962-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The proportion of VREfm among all Enterococcus faecium isolated from blood cultures in German hospitals has increased in the period 2015-2020 from 11.9% to 22.3% with a country-wide spread of the clonal lineage ST117/CT71 vanB. In this study, we provided useful information about the genetic diversity of invasive strains of E. faecium. Moreover, our findings confirm the nosocomial spread of novel ST1299 vanA lineages, which recently had a rapid expansion in Austria and the south-eastern part of Germany.
Collapse
|
brief-report |
2 |
|
18
|
Valenza G, Eisenberger D, Esse J, Held J, Lehner-Reindl V, Plaumann PL, Ziegler T, Knauer M, Bogdan C, Dudler P. High prevalence of the recently identified clonal lineage ST1299/CT3109 vanA among vancomycin-resistant Enterococcus faecium strains isolated from municipal wastewater. mSphere 2024; 9:e0039624. [PMID: 39189779 PMCID: PMC11423563 DOI: 10.1128/msphere.00396-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Previously, we demonstrated that the majority of vancomycin-resistant Enterococcus faecium (VREfm) strains from in-patients of the University Hospital Erlangen, Germany, belonged to only three clonal lineages, namely ST117/CT71 vanB and two novel ST1299 vanA lineages classified as CT3109 and CT1903. The goal of the current study was (i) to investigate whether VREfm is also detectable in wastewater of the city of Erlangen, (ii) to identify their molecular features, and (iii) to clarify whether VREfm could arise from the community of the city of Erlangen or can be (directly) connected to nosocomial infections in the hospital setting. From April to May 2023, a total of 244 VREfm strains from raw wastewater of the city of Erlangen were analyzed by core genome multilocus sequence typing (cgMLST). Moreover, 20 of them were further investigated for single nucleotide polymorphisms (SNPs). The molecular characterization of the wastewater VREfm strains revealed a high prevalence (27.9%) of the recently identified clonal lineage ST1299/CT3109 vanA, which is mainly characterized by the presence of the tetracycline-resistance determinant tet(M) and the virulence genes pilA and prpA. The SNPs analysis revealed the presence of two major clusters, namely cluster I (≤65 SNPs), which included well-known hospital-adapted vanB clonal lineages such as ST117/CT71 and ST80/CT1065 and cluster II (≤70 SNPs), which were mainly characterized by the lineage ST1299/CT3109 vanA. Based on the concomitant resistance to vancomycin and tetracycline, we propose that ST1299/CT3109 vanA primarily originated and spread outside of hospital settings.IMPORTANCEThis study provides a detailed genomic analysis of vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from municipal wastewater with a particular focus on clonal lineages, antimicrobial resistance, and the presence of virulence genes. The high wastewater prevalence of the recently identified clonal lineage ST1299/CT3109 vanA, which has been previously detected in hospitals, suggests an enormous potential for future spread in Germany.
Collapse
|
brief-report |
1 |
|
19
|
Füszl A, Pietzka A, Hyden P, Mösenbacher T, Stöger A, Blaschitz M, Stadlbauer S, Hasenberger P, Schindler S, Heger F, Pleininger S, Indra A. Assessing mutation accumulation in DNA repair-deficient Listeria monocytogenes: implications for cgMLST cluster thresholds in outbreak analysis. Front Cell Infect Microbiol 2025; 15:1530851. [PMID: 40034390 PMCID: PMC11872914 DOI: 10.3389/fcimb.2025.1530851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Background Listeria (L.) monocytogenes is primarily transmitted via contaminated food and can cause listeriosis, an infection often associated with sepsis and meningitis in at-risk individuals. Accurate outbreak detection relies on whole genome sequencing (WGS) and core genome multilocus sequence typing (cgMLST), which use allele thresholds to identify related strains. Methods This study investigated mutation rates in L. monocytogenes, focusing on isolates with DNA repair deficiencies. Serial subcultivations were performed, comparing a repair-deficient isolate with a wild-type control. Genetic variability was assessed using WGS and cgMLST. Results Mutation rates were significantly higher in repair-deficient isolates, exceeding typical cgMLST thresholds currently used in Listeria outbreak investigations, leading to a misclassification of related isolates as unrelated. An additional analysis of the Austrian Listeria database revealed that such deficiencies are rare among isolates. Conclusions The standard 7-allele cgMLST threshold effectively identifies related strains in most cases, but may require adjustments for hypermutator strains. Incorporating DNA repair data could improve the accuracy of outbreak investigations, ensuring reliable public health responses.
Collapse
|
brief-report |
1 |
|
20
|
Siddall RL, Starkey JC, Patel R. Automated whole genome sequencing platform for bacterial strain typing in clinical microbiology laboratories. J Clin Microbiol 2025; 63:e0017825. [PMID: 40261051 PMCID: PMC12077132 DOI: 10.1128/jcm.00178-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Nosocomial outbreaks impact patient safety and place an economic burden on healthcare facilities. Laboratory testing plays a crucial role in outbreak investigation and guides containment efforts. In recent years, whole genome sequencing (WGS) methods have replaced traditional typing methods due to higher resolution and simplified workflows. Though an improvement from previous methods, bacterial WGS is time-consuming with manual DNA extraction and library preparation and long sequencing times for paired-end sequence data. Here, a fully automated library preparation and sequencing solution, the Clear DxTM WGS platform (Clear Labs, San Carlos, CA), was compared to a more manual library preparation and sequencing approach using 226 isolates representing 18 bacterial species. Sequence data were analyzed using SeqSphere+ (Ridom, Münster, Germany), and the results of the two methods were compared. Of the 224 isolate sequences analyzed, 222 (99%) showed concordant isolate groupings, and, overall, the results of the two approaches were statistically similar by comparison of distance matrices. The automated workflow reduced turnaround time by 16-19 h and eliminated 3 h of manual labor while decreasing costs by an estimated 34%-57% depending on the number of isolates run. This study demonstrates the advantages of integrating automation into bacterial WGS workflows.IMPORTANCEAn automated platform for bacterial nucleic acid extraction and whole genome sequencing was compared to a manual method for bacterial strain typing. The two approaches yielded nearly equivalent results, with the automated approach providing improvement in turnaround time and cost, with less manual pipetting.
Collapse
|
research-article |
1 |
|
21
|
Cunningham SA, Eberly AR, Beisken S, Posch AE, Schuetz AN, Patel R. Core Genome Multilocus Sequence Typing and Antibiotic Susceptibility Prediction from Whole-Genome Sequence Data of Multidrug-Resistant Pseudomonas aeruginosa Isolates. Microbiol Spectr 2022; 10:e0392022. [PMID: 36350158 PMCID: PMC9769729 DOI: 10.1128/spectrum.03920-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Over the past decade, whole-genome sequencing (WGS) has overtaken traditional bacterial typing methods for studies of genetic relatedness. Further, WGS data generated during epidemiologic studies can be used in other clinically relevant bioinformatic applications, such as antibiotic resistance prediction. Using commercially available software tools, the relatedness of 38 clinical isolates of multidrug-resistant Pseudomonas aeruginosa was defined by two core genome multilocus sequence typing (cgMLST) methods, and the WGS data of each isolate was analyzed to predict antibiotic susceptibility to nine antibacterial agents. The WGS typing and resistance prediction data were compared with pulsed-field gel electrophoresis (PFGE) and phenotypic antibiotic susceptibility results, respectively. Simpson's Diversity Index and adjusted Wallace pairwise assessments of the three typing methods showed nearly identical discriminatory power. Antibiotic resistance prediction using a trained analytical pipeline examined 342 bacterial-drug combinations with an overall categorical agreement of 92.4% and very major, major, and minor error rates of 3.6, 4.1, and 4.1%, respectively. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa isolates are a serious public health concern due to their resistance to nearly all or all of the available antibiotics, including carbapenems. Utilizing molecular approaches in conjunction with antibiotic susceptibility prediction software warrants investigation for use in the clinical laboratory workflow. These molecular tools coupled with antibiotic resistance prediction tools offer the opportunity to overcome the extended turnaround time and technical challenges of phenotypic susceptibility testing.
Collapse
|
research-article |
3 |
|